环境监测——辐射与放射性监测

合集下载

放射性监测方法

放射性监测方法

放射性监测方法放射性监测方法一、监测对象及内容放射性监测按监测对象可分为①现场监测②个人剂量监测③环境监测。

实在测量内容包括:①放射源强度、半衰期、射线种类及能量;②环境和人体中放射物质含量、放射性强度、空间照射量或电离辐射剂量。

二、放射性测量试验室(1)放射性化学试验室(2)放射性计测试验室三、放射性检测仪器*常用的检测器有三类,即电离型检测器、闪亮检测器和半导体检测器。

(1)电离型检测器原理:假如核辐射被电离室中的气体汲取,该气体将发生电离。

电离探测器即是通过收集射线在气体中产生的电离电荷进行测量的。

仪器:常用的有电离室、正比计数管、盖革—弥勒计数管(G—M管)。

用法:电离室是测量由电离作用而产生的电离电流,适用于测量强放射性;正比计数管和盖革—弥勒计数管则是测量由每一入射粒子引起电离作用而产生的脉冲式电压变化,从而对入射粒子逐个计数,这适合于测量弱放射性。

(2)闪亮探测器原理:是利用射线照射在某些闪亮体上而使它发生闪光的原理进行测量的仪器。

它具有一个闪亮体,当射线进入其中时产生闪光,然后用光电倍增管将闪光讯号放大、记录下来。

用法:该探测器以其高灵敏度和高计数率的优点而被用作测量α、β、γ辐射强度。

由于它对不同能量的射线具有很高的辨别率,所以又可作谱仪使用。

通过能谱测量,辨别放射性核素,并且在适当的条件下,能够定量的分析几种放射性核素的混合物。

此外,这种仪器还能测量照射量和汲取剂量。

(3)半导体检测器原理:是将辐射汲取在固态半导体中,当辐射与半导体晶体相互作用时将产生电子—空穴对。

由于产生电子—空穴对的能量较低,所以该种探测器具有能量辨别率高且线性范围宽等优点。

用法:用硅制作的探测器可用于α计数、α、β能谱测定;用锗制作的半导体探测器可用于γ能谱测量,而且探测效率高、辨别本领好。

半导体探测器是近年来快速进展的一类新型核辐射探测仪器。

四、放射性监测方法对环境样品进行放射性测量和对非放射性环境样品监测过程一样,也是经过以下三个过程:样品采集——样品前处理——仪器测定依据下列因素决议采集样品的种类。

辐射监测概念

辐射监测概念

辐射监测概念
辐射监测是指对环境中的辐射水平进行测量、监测和评估的过程。

它是一种对辐射源、辐射传输和辐射对环境和人体的影响进行评估的方法。

辐射监测的目的是提供有关辐射水平的准确数据,以便进行风险评估、制定合理的辐射管理政策和采取必要的防护措施。

辐射监测可以包括以下内容:
1. 辐射源监测:监测不同类型的辐射源(如核能设施、天然放射性物质、医疗设备等)的辐射水平和辐射流量。

2. 辐射环境监测:监测环境中的辐射水平,包括地表、大气、水域和土壤等。

3. 辐射个人监测:监测工作场所内和个人周围的辐射水平,以评估工作人员和公众的辐射暴露程度。

4. 辐射废物监测:监测放射性废物的辐射水平和污染程度,以确保其安全处理和储存。

5. 辐射剂量监测:测量人体接受的辐射剂量,包括内部和外部辐射剂量,以评估辐射对人体健康的潜在影响。

辐射监测的方法可以包括现场测量、传感器监测、样品采集和实验室分析等。

各国都设立了辐射监测网络,通过定期监测和
数据分析,提供准确的辐射水平信息,以保障公众和环境的安全。

辐射环境监测方案

辐射环境监测方案

辐射环境监测方案随着社会经济的进展,人们的生活水平越来越高,但同时也伴随着种种环境问题的显现。

其中,辐射环境污染问题备受关注。

为了把握辐射环境的情况,进行有效整治,辐射环境监测是必不可少的一步。

因此,本文将重点探讨辐射环境监测的方案,包括监测内容、监测方式、监测仪器和监测管理等方面,并提出一些实在的措施和建议,以加强和完善辐射环境监测工作。

一、监测内容辐射环境监测的重要内容为放射性核素浓度、γ射线(X射线)剂量率和氡浓度等。

这些指标是反映环境中放射性污染情况的紧要指标。

其中,放射性核素浓度是指环境中放射性核素的含量,重要包括氡、铀、钍等。

γ射线(X射线)剂量率是指单位时间内的剂量,重要用于反映人体在环境中受到的辐射剂量。

氡浓度是指环境空气中氡的含量,这是与室内空气污染相关的指标。

二、监测方式辐射环境监测的方式重要有现场监测和自动监测两种。

现场监测是指专门的监测人员现场采集数据,该方式可以获得更为精准的数据。

自动监测是指通过安装相关的仪器设备,在长时间内连续监测辐射环境,具有连续监测的优点,但其精准性可能会受到环境条件的影响。

三、监测仪器辐射环境监测的仪器重要包括γ(X)射线监测器、氡浓度测量仪、放射性核素分析仪等。

γ(X)射线监测器用于测量环境中的γ射线(X射线)剂量率,一般常常使用探针式γ(X)射线计。

氡浓度测量仪用于测量环境空气中氡的浓度,常常使用电子式氡测仪。

放射性核素分析仪用于对环境中的放射性核素进行定量分析,能够实现高精度、高效率地分析污染环境中的放射性物质,为监测供给更为精准的数据支撑。

四、监测管理辐射环境监测的管理包括监测计划、监测执行、数据收集和分析处理等方面。

监测计划的订立需要考虑环境特征、监测目的、监测频率和监测规模等方面,使监测计划具有可操作性和针对性。

监测执行需要进行现场检测和试验室分析,并对监测数据进行质量掌控和统计分析,保证监测数据的精准性和牢靠性。

数据收集和分析需要对监测数据进行归档、整理和分析处理,对监测结果进行评估,适时提出污染源的整治建议。

环境辐射监测方法和技术

环境辐射监测方法和技术
遥感监测
利用卫星和无人机等遥感技术,实现大范围的环 境辐射监测,提高监测覆盖面和快速响应能力。
3
生物监测
利用生物个体或种群对辐射的敏感性,通过生物 指标反映环境辐射水平,为早期预警和评估提供 依据。
监测技术的挑战与对策
监测标准与规范
建立和完善环境辐射监测的标准和规范,确保监测数据的可比性和 准确性。
实时监测法
总结词
通过在线或自动监测设备,实时监测环境中放射性核素的含量。
详细描述
实时监测法是一种动态的环境辐射监测方法。它通过在线或自动监测设备,实时监测环境中放射性核 素的含量,能够快速获取环境辐射的实时数据。该方法适用于对环境辐射进行实时监控和预警,但设 备成本和维护成本较高,且需要定期校准和标定。
监测网络建设
加强环境辐射监测网络建设,提高监测点的密度和分布合理性,确 保监测数据的全面性和代表性。
监测设备研发
加大监测设备研发力度,提高设备的灵敏度、稳定性和耐用性,以满 足不同环境条件下的监测需求。
监测技术的未来展望
监测技术不断创新
随着科技的不断进步,环境辐射监测技术将不断推陈出新,提高 监测效率和准确性。
03
环境辐射监测技术
放射性测量技术
01
02
03
测量方法
通过测量放射性物质的活 度、能量和类型等参数, 评估环境中的辐射水平。
测量仪器
包括盖革计数器、闪烁计 数器和半导体探测器等。
应用范围
广泛应用于环境辐射监测 、核设施周边环境监测等 领域。
核素分析技术
分析方法
通过化学和物理手段,对环境中 的放射性核素进行分离、纯化和
鉴定。
分析仪器
包括质谱仪、光谱仪和色谱仪等。

辐射防护监测

辐射防护监测

辐射防护监测
辐射防护监测是指对环境中的辐射源进行监测和评估,并采取相应的防护措施,以保护人们免受辐射的伤害。

辐射可以分为离子辐射和非离子辐射两种类型。

离子辐射包括阿尔法、贝塔和伽马射线,非离子辐射包括电磁辐射,如紫外线、可见光、红外线、微波和无线电波。

辐射防护监测的主要目的是确定辐射水平,评估可能的辐射风险,并采取相应的保护措施。

辐射防护监测可以通过放射性监测仪器、辐射计和辐射剂量仪等设备来实施。

在辐射防护监测中,需要主要关注以下几个方面:
1. 辐射源的监测:对可能存在的放射性元素或装置进行监测,包括地下水中的镭、钍等元素、工业放射性废物、核电站等。

2. 辐射环境的监测:对环境中的辐射水平进行监测,包括空气中的辐射、土壤中的辐射等,以评估环境中的辐射风险。

3. 辐射工作场所的监测:对从事辐射相关工作的人员的辐射剂量进行监测,以确保工作场所符合安全标准。

4. 健康效应的监测:对可能受到辐射影响的人群进行健康效应的监测和评估,以确定是否存在辐射引起的健康问题。

辐射防护监测是保护公众、环境和工作场所免受辐射危害的重要措施,通过监测辐射水平并采取相应的防护措施,可以有效减少辐射的风险和潜在的健康影响。

环境监测第八章.

环境监测第八章.

天然铀
3. 自然界中单独存在的核素
40K
209Bi
自然环境中天然存在的放射性称为天然放射性本 底,它是判断环境是否受到放射性污染的基准。
(二)人为放射性核素
1. 核试验及航天事故
地下核爆炸冒 顶事故
大气层核试验 核动力航具事故
放射性尘埃
2. 核工业
原子能核电站
核动力潜艇
事故:三哩岛、切尔诺贝利核电站
污染:“三废”排放物
原子能反应堆
3. 工农业、医学、科研等部门的排放废物
放疗
示踪试验 发 光 钟 表
化 疗
4. 放射性矿的开采和利用
放射性物质 标志
稀土金属矿的开采、提炼— —排放“三废”
二、放射性核素在环境中的分布
(一)在土壤和岩石中的分布
表8.2 土壤、岩石中天然放射性核素的含量
核素
40K 226Ra 232Th 238U
受照射部位 器官分类 器官名称 全身、性腺、 红骨髓、眼晶体 职业性放射性 工作人员的年 最大容许剂量 当量①/Sv 放射性工作场所、相 广大居民年 邻及附近地区工作人 最大容许剂 员和居民的年最大容 量当量②/Sv ① 许剂量当量 /Sv
第一类 第二类
5×10-2
5×10-3 3×10-2 ②
5×10-4 1×10-2
表8.1 品质因数与照射类型、射线种类的关系
照射类型 射线种类
x、γ、e 中能中子(0.02MeV) 中能中子(0.1MeV) 快中子(0.5~10MeV) 重反冲核
品质因素
1 5 8 10 20
热中子及能量小于0.005MeV的中能中子 3
外照射
β -、β+、γ、e、x
内照射 α 裂变碎片、α发射中的反冲核

辐射源监测

辐射源监测

辐射源监测
辐射源监测是指对环境中的辐射源进行持续、定期或不定期的检测和监测的活动。

辐射源包括自然辐射源(如地球上的放射性物质)和人为辐射源(如核电站、医疗设备、工业设备等)。

辐射源监测的目的是保护公众和工作人员免受辐射伤害。

通过持续的监测,可以及时发现辐射源的存在和辐射水平的变化,采取必要的防护措施,以确保环境和人员的安全。

辐射源监测通常可以包括以下内容:
1. 环境辐射监测:监测环境中的辐射水平,包括空气中的放射性气体、土壤中的放射性物质、水源的辐射等。

2. 人员辐射监测:监测从事与辐射相关工作的人员的暴露剂量,包括佩戴个人剂量计或辐射计进行的监测。

3. 辐射设备监测:监测和评估辐射设备(如核电站、医疗设备等)的辐射水平是否符合国家或国际标准。

辐射源监测需要使用专业的仪器设备进行,包括辐射剂量仪、辐射计、辐射测量仪等。

监测数据需要进行有效的记录和分析,并及时向相关部门和人员报告。

总之,辐射源监测是确保环境和人员免受辐射危害的重要工作,有助于维护公众健康和安全。

《放射性监测》课件

《放射性监测》课件

2
监测结果的评估和应对策略
Hale Waihona Puke 监测结果的评估内容主要包括监测目标是否达成、环境和公众是否受到影响等方 面。在评估的基础上,应对策略包括环境修复、污染源控制、应急处置等。
放射性监测的应用领域
放射性监测在环境保护中的应用
放射性监测在环境保护工作中有着不可替代的作用,其应用领域包括核电站周边环境监测、 城市水环境监测、土壤污染监测等。
《放射性监测》PPT课件
欢迎大家来到放射性监测PPT课件,今天我将带你深入了解放射性监测的概 念、必要性以及应用领域。愿这份课件能为大家的理解提供更多帮助。
简介
1 概念
放射性监测是一项从环境、生物体及人体中 监测放射性物质的活动,旨在掌握环境中放 射性物质的变化和分布情况,保障公众健康 与环境质量。
监测方案中的要素包括哪些
放射性监测方案主要包括责任机构、监测目标和监测内容、监测方法和技术、监测时间和频 率、数据处理和质量保证等要素。
监测区域的划分
监测区域需要考虑哪些因素
放射性的监测区域包括周边区域和被污染区域两部 分,其划分需要考虑核污染区域范围、环境地理特 征、生物地理学制约因素等多方面因素。
2 建议
我们鼓励更多的专家学者投身到放射性监测 研究中来,通过共同的努力,保障环境安全, 维护公众健康,构建美好家园。
放射性监测在核电站等领域的应用
在核设施建造、运行、关闭和废除等生命周期的各个阶段,放射性监测都有广泛的应用,如 地面通风与气体处理系统、辐射控制设施、放射性废物等领域的监测。
结论
1 展望未来
作为一项重要的环境监测工作,随着技术的 进步和监测要求的增加,未来放射性监测工 作将更加突出其多样化、先进化、智能化和 实时化的发展特点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章辐射与放射性监测△本章教学目的、要求1.了解什么是放射性;2.一般的放射性源有哪些;3.掌握一般放射性监测的方法;△本章重点1.放射性的基本知识、半衰期;2.一般环境放射性监测的方法△本章难点1.放射性衰变类型、半衰期;2.放射性样品的采集和处理△本章教学目录7.1 放射性的基本概念7.2 放射性监测的方法7.1 放射性监测的基本概念7.1.1放射性和同位素原子核自发地放射出α、β、γ等各种射线的现象,称为放射性。

放射性是1896年法国物理学家贝壳勒尔(H.Becquerel)发现的。

他发现铀盐能放射出穿透力很强的,并能使照相底片感光的一种不可见的射线。

许多天然和人工制造的核素都能自发地放射出射线。

除了上述3种射线外,还有正电子、质子、中子和中微子等其它粒子。

能放射各种射线的核素,称为放射性核素。

发射放射性是核素一种固有的特性,不受加温、、加压或加磁场的影响,是由原子核内部的变化引起的,与核外电子状态的改变关系很小。

同位素是指具有相同核电荷但不同原子质量的原子(核素)称为同位素。

自19世纪末发现了放射性以后,到20世纪初,人们发现的放射性元素已有30多种,而且证明,有些放射性元素虽然放射性显著不同,但化学性质却完全一样。

1910年英国化学家F.索迪提出了一个假说,化学元素存在着相对原子质量和放射性不同而其他物理化学性质相同的变种,这些变种应处于周期表的同一位置上,称做同位素。

不久,就从不同放射性元素得到一种铅的相对原子质量是206.08,另一种则是208。

1897年英国物理学家W.汤姆逊发现了电子,1912年他改进了测电子的仪器,利用磁场作用,制成了一种磁分离器(质谱仪的前身)。

当他用氖气进行测定时,无论氖怎样提纯,在屏上得到的却是两条抛物线,一条代表质量为20的氖,另一条则代表质量为22的氖。

这就是第一次发现的稳定同位素,即无放射性的同位素。

当F.W. 阿斯顿制成第一台质谱仪后,进一步证明,氖确实具有原子质量不同的两种同位素,并从其他70多种元素中发现了200多种同位素。

到目前为止,己发现的元素有109种,只有20种元素未发现稳定的同位素,但所有的元素都有放射性同位素。

大多数的天然元素都是由几种同位素组成的混合物,稳定同位素约300多种,而放射性同位素竟达1500种以上。

1932年提出原子核的中子一质子理论以后,才进一步弄清,同位素就是一种元素存在着质子数相同而中子数不同的几种原子。

由于质子数相同,所以它们的核电荷和核外电子数都是相同的(质子数=核电荷数=核外电子数),并具有相同电子层结构。

因此,同位素的化学性质是相同的,但由于它们的中子数不同,这就造成了各原子质量会有所不同,涉及原子核的某些物理性质(如放射性等),也有所不同。

一般来说,质子数为偶数的元素,可有较多的稳定同位素,而且通常不少于3个,而质子数为奇数的元素,一般只有一个稳定核素,其稳定同位素从不会多于两个,这是由核子的结合能所决定的。

同位素的发现,使人们对原子结构的认识更深一步。

这不仅使元素概念有了新的含义,而且使相对原子质量的基准也发生了重大的变革,再一次证明了决定元素化学性质的是质子数(核电荷数),而不是原子质量数。

7.1.2放射性衰变的类型1. α衰变:α衰变的实质是其元素的原子核同时放出由两个质子和两个中子组成的粒子(即氦核),每发生一次α衰变,新元素与原元素比较,荷电荷数减少2,质量数减少4,即α射线是高速运动的氦原子核的粒子束,电离作用大,贯穿本领小。

2. β衰变:β衰变的实质是其元素的原子核内的一个中子变成质子时放射出一个电子. 每发生一次β衰变,新元素与原元素比较,核电荷数增加1,质量数不变. 即β射线是高速运动的粒子束,它的电离作用较小,贯穿本领大。

3. γ衰变:γ衰变是伴随着α衰变和β衰变同时发生的,γ衰变不改变原子核的电荷数和质量数.γ射线是波长很短的电磁波,称为γ射线。

它的电离作用小,贯穿本领大。

7.1.3放射性半衰期放射性同位素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位素,这就是所谓“核衰变”。

放射性同位素在进行核衰变的时候,可放射出α射线、β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同时放射出这几种射线。

核衰变的速度不受温度、压力、电磁场等外界条件的影响,也不受元素所处状态的影响,只和时间有关。

放射性同位素衰变的快慢,通常用“半衰期”来表示。

半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一半时所需要的时间。

如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32 原子,经过14.3天后,只剩下50万个了。

半衰期越长,说明衰变得越慢,半衰期越短,说明衰变得越快。

半衰期是放射性同位素的一特征常数,不同的放射性同位素有不同的半衰期,衰变的时候放射出射线的种类和数量也不同。

地球的年龄究竟有多大?这个难题曾经考验过许多科学家的智慧。

有人想出用沉积岩形成的时间来测定,有人主张用海水含盐浓度的增加来推算,而最精确可靠、量程最大的宇宙计时器,显然要数放射性元素的蜕变了。

放射性元素衰变一半需要的时间叫半衰期,它不以外界物理化学条件变化为转移。

例如铀235,每隔4亿5千万年就有一半变成铅与氦,钍232的半衰期是13亿年,而铷82的半衰期则将近50亿年。

从这些同位素和他们衰变产物的相对浓度中,我们测定出地球最古老的岩石-西格陵兰片麻岩已有38亿年的历史。

但这显然还只是地球从“天文时期”进入“地质时期”前后的时间。

根据对月球岩石和太阳系陨星的测定和比较,我们地球的高寿应该是46亿岁了。

常用同位素的特征常用同位素性质列表7.1.4放射性污染源环境中的放射性主要分为天然放射性和人工放射性1、天然放射性天然放射性核素品种很多,性质与状态也各不相同,它们在环境中的分布十分广泛。

在岩石、土壤、空气、水、动植物、建筑材料、食品甚至人体内都有天然放射性核素的踪迹。

地壳是天然放射性核素的重要贮存库,尤其是原生放射性核素。

地壳中的放射性物质主要为铀、钍系和。

其中,空气中的天然放射性核素主要有地表释入大气中的及其子体核素,动植物食品中的天然放射性核素大多数是。

土壤主要由岩石的浸蚀和风化作用而产生的,可见,其中的放射性是从岩石转移而来的。

由于岩石的种类很多,受到自然条件的作用程度也不尽一致,可以预期土壤中天然放射性核素的浓度变化范围是很大的。

土壤的地理位置、地质来源、水文条件、气候以及农业历史等都是影响土壤中天然放射性核素含量的重要因素。

存在于岩石和土壤中的放射性物质,由于地下水的浸滤作用而受损失,地下水中的天然放射性核素主要来源于此途径。

此外,粘附于地表颗粒土壤上的放射性核素,在风力的作用下,可转变成尘埃或气溶胶,进而转入到大气圈并进一步迁移到植物或动物体内。

土壤中的某些可溶性放射性核素被植物根吸收后,继而输送到可食部分,接着再被食草动物采食,然后转移到食肉动物,最终成为食品中和人体中放射性核素的重要来源之一。

环境水中天然放射性核素的浓度与多种因素有关。

此外,天然放射性物质还包括宇宙射线。

宇宙射线是一种从宇宙空间射到地球上的高能粒子流,它由质子、粒子等组成。

天然放射性已为人类所适应,并未造成什么危害。

2、人工放射性核试验核试验产生的放射性核素有核裂变产物和中子活化产物。

核裂变产物包括200多种放射性核素,如89Sr、90Sr等一些重要放射性核素;中子活化产物是由核爆炸时所产生的中子与大气、土壤、建筑材料发生核反应所形成的产物,如3H、14C、32P等,此外还有剩余未起反应的核素如235U、239Po等。

核爆炸后,裂变产物最初以蒸气状态存在,然后凝结成放射性气溶胶。

其粒径>0.1mm的气溶胶在核爆炸后一天内即可在当地降落,称为落下灰;粒径<25μm的气溶胶粒子可在大气中长期漂浮,称为放射性尘埃。

放射性尘埃在大气平流层的滞留时间一般认为在0.3-3年之间。

核工业包括原子能反应堆、原子能电站、核动力舰艇等。

它们在运行过程中排放含各种核裂变产物的三废排放物;特别是发生事故时,将会有大量放射性物质泄漏到环境中去,造成严重污染事故。

如英国温茨凯制钚厂反应堆事故,美国三哩岛和前苏联切尔诺贝利核电站事故等。

工农业、医学、科研等部门的排放废物这些部门使用放射性核素日益广泛,其排放废物也是主要的人为污染源之一。

例如,医学上使用60Co、131I等放射性核素已达几十种;发光钟表工业应用放射性同位素作长期的光激发源;科研部门利用放射性同位素进行示踪试验等。

放射性矿的开采和利用在稀土金属和其他共生金属矿开采、提炼过程中,其三废排放物中含有铀、钍、氡等放射性核素,将造成所在局部地区的污染。

7.1.5放射性的危害必及防护的必要性随着放射同位素的广泛应用,越来越多的人们认识到放射性对机体造成的损害随着放射照射量的增加而增大,大剂量的放射性会造成被照射部位的组织损伤,并导致癌变,即使是小剂量的放射性,尤其是长时间的小剂量照射蓄积也会导致照射器官组织诱发癌变,并会使受照射的生殖细胞发生遗传缺陷。

放射性对人体的影响主极随机效应和非随机效应。

随机效应(stochasticeffect)指放射性对机体至癌或遗传效应的发生几率,此发生几率与照射剂量的大小有关,而随机性效应的严重程度与剂量有关,如放射性致癌、放射性诱发各种遗传疾病均属随机性效应。

非随机性效应(non-stochastic effect)是机体受照射后在短期内就出现的急性效应,以及经过一定时间后发现的发育功能低下、白内障和造血机能障碍等等。

其严重程度随受照射剂量不同而变化,存在着明确的剂量阈值,这种效应是随着受照射剂量的增加,而有越来越多的细胞被杀死而产生的。

ICRP第60号出版物把非随机性效应改称为确定性效应。

放射性防护的目的就在于防止有害的确定性效应,并限制随机性效应的发生率,使其达到认为可以接受的水平。

放射性物质可以从体外或进入体内放出射线,对人体造成损害。

就外照射而言,由于各种射线穿透能力不同,γ射线照射对机体的危害大于β射线,而β射线的危害性又大于α射线。

受照射部位不同,受害程度出不同,对某种放射性同位素蓄积率高的组织或器官,必然受害严重,如[32P]对骨骼系统危害较大,[125I]和[131I]主要危及甲状腺器官等。

但是,由于射线与机体作用可产生电离,射线这种电离本领的大小,决定了当放射性物质进入了体内,对机体造成内照射的情形下,α射线由于射程很短,其危害性大于β射线和γ射线的危害,而β射线的内照射危害又大于γ射线。

放射防护的必要性在于保护操作者本人免受辐射损伤,防止了必要的射线照射,保护周围人群的健康和安全,做好放射性污物、污水的收集与处理,避免环境污染,保证实验能够正常进行,取得的结果可靠。

相关文档
最新文档