高中数学 第二章2.4.2 抛物线的简单几何性质讲解与例
§2.4.2抛物线的简单几何性质(1)(1)

结论得证.
例3.(抛物线的焦点弦问题 ) 已知过抛物线y 2 px p 0 的焦点F的直线l交抛
2
物线于A x1 , y1 , B x2 , y2 两点. 1 1 2 问题6 : 求证 : FA FB p
解法1 : 过A, B作x轴的垂线, 垂足分别为R, S , 直线l的倾斜角为 , P , 1 cos 1 1 cos 1 1 cos 1 1 2 ,同理 , . AF P BF P FA FB p ER EF FR P AF cos AF AF 解法 2 : 若直线l的斜率不存在, 结论显然成立, p y k( x ) 若直线l的斜率存, 设为k , 则 2 y 2 2 px 2 2 k p k 2 x 2 p( k 2 2 ) x 0 4 1 1 1 1 2 p p p FA FB x1 x2 2 2
例3.(抛物线的焦点弦问题 ) 已知过抛物线y 2 px p 0 的焦点F的直线l交抛
2
物线于A x1 , y1 , B x2 , y2 两点. 问题7 : 过A, B分别作准线的垂线, 垂足分别为A1 , B1 , 则AF1 BF1 .
解 : AA1 AF ,AA1F AFA1 AA1 / / OF AA1F A1FO A1FO A1FA, 同理B1FO B 1 FB , A1FB1 90, AF1 BF1 .
O
P ( x 0 , y0 )
F
x
通径的长度:2P
P越大,开口越开阔
利用抛物线的顶点、通径的两个端点可较准确画出 反映抛物线基本特征的草图。
例1.设M x0 , y0 是抛物线y 2 px上的任一点,
课件4:2.4.2 抛物线的简单几何性质

解:如图记焦点 F ,准线 l ,分别过点 A、B 作 l 的垂线,垂足分别为 M、NM.
由抛物线定义可知 FA MA , FB NB
过点 A 作 x 轴的垂线,垂足为 E. K Q
E
N
在△ AFE 中 EF AF cos .
记 x 轴与准线 l 的交点为 K ,则 KF p
∴ FA = MA KE p FA cos ∴ FA p 1 cos
焦点,与抛物线相交于 A、B ,求线段 AB 的长.
解:设
准线
A(
l:
x1, y1 ) ,
x p
B( x2 , y2 ) ,焦点 F
,分别过点 A、B
(p 2
作
,
l
0) M
的垂
2
( x1 , y1 )
线,垂足分别为 M、N.
由抛物线定义可知 FA MA , FB NB N
( x2 , y2 )
∴ AB
思考(课本第 69 页例 4)
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F ,且与 抛物线相交于 A、B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大);
法二:设而不求,运用韦达定理,计算弦长(运算量一般); 法三:设而不求,数形结合,活用定义,运用韦达定理,计算 弦长.
坐标法是一种非常好的证明,你还有 没有其他好方法呢?
本题几何法也是一个极佳的思维!
学习小结: 刚才发现的结论,坐标法起着重要作用. 设而不求,联立方程组,韦达定理这是研究直
线和圆锥曲线的位置关系问题的重要方法.
总结:
判断直线与抛物线位置关系的操作程序: 把直线方程代入抛物线方程
课件14:2.4.2 抛物线的简单几何性质

(2)如图把点 B 的横坐标代入 y2=4x 中,得 y=± 12, 因为 12>2,所以 B 在抛物线内部, 自 B 作 BQ 垂直准线于 Q,交抛物线于 P1. 此时,由抛物线定义知:|P1Q|=|P1F|. 那么|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=3+1=4. 即最小值为 4.
∴|AB|=4p,∴S△ABO=12·4p·2p=4p2.
命题方向2 ⇨抛物线焦点弦的性质 典例2 斜率为2的直线经过抛物线y2=4x的焦点,与抛 物线相交于两点A、B,求线段AB的长. [解] 如图,由抛物线的标准方程可知, 焦点F(1,0),准线方程x=-1. 由题设,直线AB的方程为:y=2x-2. 代入抛物线方程y2=4x,整理得:x2-3x+1=0.
1.抛物线 y=-3x2 的准线方程是 ( C )
A.y=34
B.y=-34
பைடு நூலகம்
C.y=112
D.y=-112
[解析] 由抛物线 y=-3x2 得 x2=-13y,∴2p=112.
可得准线方程为 y=112.故选 C.
2.若抛物线 y2=x 上一点 P 到准线的距离等于它到顶点的
距离,则点 P 的坐标为 ( B )
典例3 设P是抛物线y2=4x上的一个动点,F为抛物线 焦点. (1)求点P到点A(-1,1)的距离与点P到直线x=-1的距 离之和的最小值; (2)若B(3,2),求|PB|+|PF|的最小值.
[解] (1)如图,易知抛物线的焦点为 F(1,0),准线方程是 x=-1,由抛物线的定义知:点 P 到直线 x=-1 的距离等 于点 P 到焦点 F 的距离.于是,问题转化为:在曲线上求 一点 P,使点 P 到点 A(-1,1)的距离与点 P 到 F(1,0)的距离 之和最小.显然,连 AF 交抛物线于 P 点,故最小值为
课件1:2.4.2 抛物线的简单几何性质

【自主解答】法一 由已知条件可知抛物线的对称轴为 x 轴, ∴设抛物线的方程为 y2=2px 或 y2=-2px(p>0). 又∵抛物线的焦点到顶点的距离为 5, ∴2p=5,∴p=10. ∴所求抛物线的方程为 y2=20x 或 y2=-20x.
法二 由已知条件可知抛物线的对称轴为 x 轴. ∴设抛物线的方程为 y2=mx(m≠0). 又∵抛物线的焦点到顶点的距离为 5, ∴|m4 |=5,∴m=±20. ∴所求抛物线的方程为 y2=20x 或 y2=-20x.
【问题导思】 类比椭圆、双曲线的几何性质,你认为可以讨论抛
物线的哪些几何性质? 【提示】范围、对称性、顶点、离心率.
标准 y2=2px y2=-2px x2=2py x2=-2py 方程 (p>0) (p>0) (p>0) (p>0)
图形
y 0, y R y 0, y R
x轴
y轴
(0,0) 1
(2)当 k<1,且 k≠0 时,直线 l 与 C 有两个公共点; (3)当 k>1 时,直线 l 与 C 没有公共点.
规律方法 判断直线与抛物线的位置关系通常使用代数法:将直线的方程 与抛物线的方程联立,整理成关于 x 的方程 ax2+bx+c=0. (1)当 a≠0 时,利用判别式解决. Δ>0⇒相交;Δ=0⇒相切;Δ<0⇒相离. (2)当 a=0 时,方程只有一解 x=-bc,这时直线与抛物线的对 称轴平行或重合.
双曲线的渐近线方程为 3x-y=0 或 3x+y=0,
则焦点到渐近线的距离 d1=
| 3×1-0| 3 2+ -1
2= 23或 d2
=
|
3×31+2+0| 12=
3 2.
【答案】 B
题型二:直线与抛物线的位置关系的判断
2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.4.2 抛物线的简单几何性质

x∈R,y≥0
x∈R,y≤0
栏 目 链 接
x 轴 ____ O(0,0) ________
______ e= 1
y轴 ____
性 质
顶点 离心率 开口方 向
向右 ____
向左 ____
向上 ____
向下 ____
基 础 梳 理 2.焦半径与焦点弦. 抛物线上一点与焦点F的连线段叫做焦半径,过焦 点的直线与抛物线相交所得弦叫做焦点弦.设抛物线上 任意一点P(x0,y0),焦点弦端点A(x1,y1),B(x2,y2), 则四种标准形式下的焦点弦和焦半径公式
D.y=4
栏 目 链 接
解析:对于此类问题,解决过程中尤其要注意所给的方 1 2 程形式是否是标准方程形式,否则容易出错.由 y=- x 得 8 x2=-8y,故其准线方程是 y=2. 答案:C
3.设抛物线 y2=8x 的焦点为 F,准线为 l,P 为抛物线上一点,
PA⊥l,A 为垂足.如果直线 AF 的斜率为- 3,那么|PF|=( B )
变 式 迁 移
解析:(1)依题意知抛物线方程为 x2=±2py(p>0)的形式, 又 =3,所以 p=6,2p=12,故方程为 x2=±12y. 2 (2)线段 OA 的垂直平分线为 4x+2y-5=0,与 x 轴的交点 5 5 为 ,0,所以抛物线的焦点为 ,0,所以其标准方程是 y2= 4 4 5x. 答案:(1)C (2)y2=5x
解析:抛物线的焦点为 F(1,0),准线方程为 x=-1.由抛物线 p p 定义知|AB|=|AF|+|BF|=x1+ +x2+ =x1+x2+p,即 x1+x2+2 2 2 5 =7,得 x1+x2=5,于是弦 AB 的中点 M 的横坐标为 .因此点 M 2 5 7 到抛物线准线的距离为 +1= . 2 2
数学课件:第二章 2.4 2.4.2 抛物线的简单几何性质

∴y421p·y222+y1·y2=0, ∴b2+2pb=0, ∴b+2p=0,∴b=-2p. ∴y1·y2=-4p2,x1·x2=b2=4p2. ∴A、B 两点的横坐标之积、纵坐标之积,分别是 4p2 和-4p2. (2)AB 方程为 my=x-2p,∴AB 过定点(2p,0).
解决抛物线中定点、定值问题的方法 在直线和抛物线的综合题中,经常遇到求定值,过定点的问题,解决这类问 题的方法有很多,例如斜率法、方程法、向量法、参数法等.解决这类问题 的关键是代换和转化.有时利用数形结合思想能达到避繁就简、化难为易、 事半功倍的效果.
解析:抛物线的焦点F
p2,0
,所以过焦点且斜率为1的直线方程为y=x-
p 2
,即
x=y+
p 2
,将其代入得:y2=2px=2p
y+p2
=2py+p2,所以y2-2py-p2=0,所
以y1+2 y2=p=2,所以抛物线的方程为y2=4x,准线方程为x=-1.
答案:x=-1
探究一 抛物线性质的应用
[典例1]
直线与抛物线的位置关系 将直线方程与抛物线方程联立,转化为一元二次方程,可通过直线与 抛物线的位置关系转化为对判别式Δ或者对向量数量积的限制条件, 利用限制条件建立不等式或等式,利用根与系数的关系运算求解.
2.已知A、B为抛物线E上不同的两点,若抛物线E的焦点为(1,0),线段AB恰 被M(2,1)所平分. (1)求抛物线E的方程; (2)求直线AB的方程.
2.4.2 抛物线的简单几何性质
考纲定位
重难突破
1.掌握抛物线的性质、焦半径、焦点弦的应用.
2.会用抛物线的性质解决与抛物线相关的综合 重点:抛物线的图形和简
问题.
单几何性质.
课件4:2.4.2抛物线的几何性质

问题导入
我们根据抛物线的标准方程y2=2px(p>0)① 来研究它的一些几何性质.
学习新知 1.范围 因为p>0,由方程①可知,对于抛物线上的点 M (x,y),x≥0,所以这条抛物线在y轴的右侧,开口 方向与x轴正向相同; 当x的值增大时,|y|也增大,这说明抛物线向右 上方和右下方无限延伸.
典例精析 例1 已知抛物线以x轴为轴,顶点是坐标原点且开口 向右,又抛物线经过点M(4,2 3 ),求它的标准方程.
解 根据已知条件,设抛物线的方程为y2=2px (p>0).
因为点M(4,2 3 )在抛物线上, 所以(2 3 )2=2p·4,得2p=3. 因此,所求方程为y2=3x.
例2.汽车前灯反射镜与轴截面的脚线是抛物线的一部 分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物 线焦点处.已知灯口的直径是24cm,灯深10cm,那么灯 泡与反射镜的顶点(即截得的抛物线的顶点)距离是多 少?(图2-24(1))
a 4
),∴m=-a.
即抛物线方程为x2=-ay.
将(0.8,y)代入抛物线方程,
得0.82=-ay,
即y=-
0.82 a
.
欲使卡车通过隧道,应有y-(-
a 4
)>3,
a
0.82
即 4 - a >3.由于a>0,
得上述不等式的近似解为a>12.21.
∴a应取13.
x2=-2py (p>0)
图象
焦点 准线
性质
范围
对称轴 顶点 离心率
开口 方向
Fp2,0 x=-p2
F-p2,0
F0,p2 F0,-p2
x=p2
课件:第二章 2.4.2 抛物线的简单几何性质

自主解答:∵直线 l 过p2,0和(2p,2p), ∴l:y=43x-p2.
y2=2px, 联立方程y=43x-p2, 得 16x2-34px+4p2=0. 由根与系数关系,得 x1+x2=3146p, 所以焦点弦的长度为 x1+x2+p=258p.
【变式与拓展】 1.过抛物线 y=14x2 焦点的直线与此抛物线交于 A,B 两点,
两个顶点在抛物线上,则这个等边三角形的边长为2_-____3_或__2_+___.3 解析:利用抛物线的对称性,分两种情况讨论.
题型3 由几何性质求抛物线方程 例3:已知抛物线的顶点是坐标原点,对称轴为 x 轴,且
与圆 x2+y2=4 相交的公共弦长等于 2 3,求抛物线的方程.
思维突破:圆和抛物线都关于 x 轴对称,所以它们的交点 也关于 x 轴对称,即公共弦被 x 轴垂直平分,于是由弦长可知 交点纵坐标.
抛物线的性质和椭圆、双曲线比较起来,差别较大.它的 离心率等于 1;它只有一个焦点、一个顶点、一条对称轴和一 条准线,它无中心,也没有渐近线.
题型1 焦点弦问题 例1:已知直线 l 过抛物线 y2=2px(p>0)的焦点且与抛物线
相交,其中一点为(2p,2p),求其焦点弦的长度. 思维突破:①联立直线与抛物线方程,由根与系数关系求
自主解答:设所求抛物线方程为 y2=2px 或 1),B(x2,y2)(y1>0,y2<0),
则|y1|+|y2|=2 3,即 y1-y2=2 3. 由对称性知 y2=-y1,代入上式,得 y1= 3. 把 y1= 3代入 x2+y2=4,得 x=±1. ∴点(1, 3),(-1, 3)分别在抛物线 y2=2px 或 y2=-2px 上.∴3=2p 或 3=-2p×(-1).∴p=32. 故所求抛物线的方程为 y2=3x 或 y2=-3x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4.2 抛物线的简单几何性质问题导学一、抛物线几何性质的应用活动与探究1已知抛物线的顶点在原点,焦点F 在x 轴正半轴上.若抛物线上一动点P 到A ⎝ ⎛⎭⎪⎫2,32,F 两点距离之和的最小值为4,且A 为抛物线内一点,求抛物线方程.迁移与应用1.抛物线y 2=2px (p >0)上一点M 的纵坐标为-42,该点到准线的距离为6,则抛物线方程为________________.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =__________.注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.二、抛物线的焦点弦活动与探究2已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.迁移与应用1.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A ,B 两点,若A ,B 在准线上的射影为A 1,B 1,则∠A 1FB 1等于( ).A .45°B .90° C.60° D.120°2.过抛物线y 2=2px (p >0)的焦点F 作一条直线交抛物线于A ,B 两点,求1|AF |+1|BF |的值.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点,则弦AB 称为焦点弦.设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 的倾斜角),y 1y 2=-p 2,x 1x 2=p 24等.三、直线与抛物线的位置关系活动与探究3已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥OB (O 为坐标原点),求弦AB 的长.迁移与应用1.直线y =kx -2与抛物线y 2=8x 交于A ,B 两点,且AB 中点的横坐标为2,则k 的值为( ).A .-1B .2C .2或-1D .42.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若AB 恰被Q 平分,求AB 所在的直线方程.1.直线与抛物线位置关系的判定:直线方程与抛物线方程联立得方程ax 2+bx +c =0,当a =0时,直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,且只有一个交点;当a ≠0时,两者位置关系的判定和椭圆、双曲线相同,用判别式法即可,即①相交:两个不同交点⇔a ≠0且Δ>0;②相切⇔a ≠0且Δ=0;③相离⇔a ≠0且Δ<0.2.凡涉及抛物线的弦长、弦的中点问题,要注意“点差法”的运用,体现“设而不求”的优越性.答案:课前·预习导学 【预习导引】1.⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 x =-p 2 y =p2 x ≤0y ≤0 x 轴 y 轴 (0,0)预习交流1 提示:抛物线与双曲线的一支不相同.双曲线的一支有渐近线,离心率e >1;抛物线没有渐近线,它的离心率是唯一的,e =1.2.x 0+p2x 1+x 2+p 2p预习交流2 提示:抛物线方程化为y 2=13x ,2p =13,故其通径长为13.预习交流3 提示:不正确,若直线与抛物线相切,则它们只有一个公共点,但当直线与抛物线只有一个公共点时,直线不一定与抛物线相切,还可能是相交,这时直线与抛物线的对称轴平行或重合.这一点与圆、椭圆是不同的,要注意区别.课堂·合作探究 【问题导学】活动与探究1 思路分析:先根据题目条件设出抛物线方程,再结合图形,探讨抛物线上的动点P 满足到A ,F 两点距离之和取最小值时的条件,进而列出等量关系.解:设所求的抛物线方程为y 2=2px (p >0),其焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线l :x =-p2.如图所示,若A 点在“抛物线所包含的区域之内”, 过点P 作准线的垂线,垂足为H ,由抛物线定义可知|PF |=|PH |. 当H ,P ,A 在同一条直线上时, |PA |+|PF |取最小值|AH |=2+2p =4,解得p =4,故所求的抛物线方程为y 2=8x . 迁移与应用 1.y 2=16x 或y 2=8x 解析:由于抛物线的准线方程是x =-p2,而点M 到准线的距离为6,所以M 点的横坐标是6-p2,于是M ⎝ ⎛⎭⎪⎫6-p2,-42,代入方程得32=2p ⎝ ⎛⎭⎪⎫6-p2,解得p =8或p =4,故方程为y 2=16x 或y 2=8x .2.2 解析:圆x 2+y 2-6x -7=0的圆心为(3,0),半径为4,抛物线y 2=2px 的准线为x =-p 2.由⎪⎪⎪⎪⎪⎪3+p 2=4,得p =2或-14(舍).活动与探究2 思路分析:(1)由倾斜角可知斜率,从而得到l 的方程,与抛物线方程联立,结合抛物线定义可求得|AB |的值;(2)由|AB |=9求得弦AB 中点的横坐标即可求得M 到准线的距离.解:(1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5,而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知 |AB |=|AF |+|BF |=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3.又准线方程是x =-32,所以M 到准线的距离为3+32=92.迁移与应用 1.B 解析:如图,由抛物线定义知|AA 1|=|AF |,|BB 1|=|BF |,所以∠AA 1F =∠AFA 1.又∠AA 1F =∠A 1FO , 所以∠AFA 1=∠A 1FO . 同理∠BFB 1=∠B 1FO .于是∠AFA 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1. 故∠A 1FB 1=90°.2.解:已知抛物线的焦点,02p F ⎛⎫⎪⎝⎭,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2). 对于直线AB ,分两种情况考虑: (1)若直线AB 的倾斜角为90°, 则有|AF |=|BF |=p ,所以112||||AF BF p+=; (2)若直线AB 的倾斜角不等于90°, 设直线AB 的方程为2p y k x ⎛⎫=- ⎪⎝⎭, 与抛物线方程联立并消去y ,整理得k 2x 2-(k 2+2)px +224k p =0,由韦达定理得,x 1+x 2=22(2)k p k +,x 1x 2=24p .另一方面,由抛物线定义得|AF |=x 1+2p ,|BF |=x 2+2p. 于是121111||||22p p AF BF x x +=+++ =()122121224x x pp p x x x x +++++=()()22222222=2424k p pk p k p p p pk ++++⋅+. 活动与探究3 思路分析:要求弦AB 的长,只需求出A ,B 两点的坐标.为此,设出A ,B 两点的坐标,利用OA ⊥OB 以及A ,B ,P 三点共线的条件求解.解:∵A ,B 两点在抛物线y 2=6x 上,可设A ⎝ ⎛⎭⎪⎫y 216,y 1,B ⎝ ⎛⎭⎪⎫y 226,y 2. ∵OA ⊥OB ,∴OA u u u r ·OB uuu r=0.由OA u u u r =⎝ ⎛⎭⎪⎫y 216,y 1,OB uuu r =⎝ ⎛⎭⎪⎫y 226,y 2, 得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36.①∵点A ,B 与点P (4,2)在一条直线上,∴y 1-2y 216-4=y 1-y 2y 216-y 226,化简得y 1-2y 21-24=1y 1+y 2, 即y 1y 2-2(y 1+y 2)=-24. 将①代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35).∴|AB |=(x 1-x 2)2+(y 1-y 2)2=610.迁移与应用 1.B 解析:∵直线y =kx -2与抛物线y 2=8x 交于两点,∴k ≠0.由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4kx -8x +4=0,∴x 1+x 2=4k +8k2.而AB 中点的横坐标为2, ∴4k +8k2=4,解得k =-1或k =2.而当k =-1时,方程k 2x 2-4kx -8x +4=0只有一个解,即A ,B 两点重合,∴k ≠-1. 2.解:方法1:显然AB 不垂直于x 轴,故可设弦AB 所在的直线方程为y -1=k (x -4),联立方程组⎩⎪⎨⎪⎧y -1=k (x -4),y 2=8x ,消去x ,整理得ky 2-8y -32k +8=0.此方程的两根是弦AB 的端点A ,B 的纵坐标,由韦达定理得y 1+y 2=8k.又Q 点是弦AB 的中点,∴y 1+y 2=2.∴k =4. 故弦AB 所在的直线方程为y -1=4(x -4), 即4x -y -15=0.方法2:设弦AB 的端点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 则有2118y x =,2228y x =,两式相减得(y 1+y 2)(y 1-y 2)=8(x 1-x 2). 由于Q 点是弦AB 的中点,∴y 1+y 2=2,于是y 1-y 2x 1-x 2=4,即直线AB 的斜率k =4,故弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 当堂检测1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的斜率为3-,那么|PF |=( ).A .43B .8C .83D .16答案:B 解析:如图,直线AF 的方程为3(2)y x =--,与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6. ∴|PF |=x 0+2=8.2.直线y =kx +2与抛物线y 2=8x 只有一个公共点,则k 的值为( ). A .1 B .1或3 C .0 D .0或1答案:D 解析:联立22,8y kx y x=+⎧⎨=⎩得(kx +2)2-8x =0.整理得k 2x 2+(4k -8)x +4=0.当k =0时,方程变为-8x +4=0,只有一解,这时直线与抛物线只有一个公共点;当k ≠0时,由Δ=0得(4k -8)2-16k 2=0,解得k =1. 综上,k =0或1.3.过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122p =__________.答案:2 解析:如图,抛物线焦点为0,2p ⎛⎫ ⎪⎝⎭,设A (x 1,y 1),B (x 2,y 2),直线AB :y -2p =x ,即y =x +2p . 联立x 2=2py ,得2,22,p y x x py ⎧=+⎪⎨⎪=⎩消去y 得x 2-2px -p 2=0,∴x 1=(1+2)p ,x 2=(1-2)p .∴|AD |+|BC |=y 1+y 2=x 1+2p +x 2+2p=2p +p =3p ,|CD |=|x 1-x 2|=22p . 由S 梯形ABCD =12(|AD |+|BC |)·|CD |=13221222p p ⋅⋅=,解得p 2=4,∴p =±2.∵p >0,∴p =2.4.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.答案:-4 解析:由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴212242(2)2y y ⎧=⎨-=⎩,①,② ∴128,2,y y =⎧⎨=⎩∴P (4,8),Q (-2,2). 又∵抛物线可化为212y x =, ∴y ′=x ,∴过点P 的切线斜率为4'4x y ==. ∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为2'2x y =-=-,∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2.联立48,22,y x y x =-⎧⎨=--⎩得x =1,y =-4,∴点A 的纵坐标为-4.5.已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;答案:解:将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 5l 的方程;若不存在,说明理由. 答案:假设存在符合题意的直线l ,其方程为y =-2x +t .由22,4y x t y x=-+⎧⎨=⎩得y 2+2y -2t =0.∵直线l与抛物线C有公共点,∴Δ=4+8t≥0,解得12t≥-.另一方面,由直线OA与l的距离55d=,可得55=,解得t=±1.∵11,2⎡⎫-∉-+∞⎪⎢⎣⎭,11,2⎡⎫∈-+∞⎪⎢⎣⎭,∴符合题意的直线l存在,其方程为2x+y-1=0.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。