5 离散时间系统最优控制

合集下载

离散控制系统的最优控制理论

离散控制系统的最优控制理论

离散控制系统的最优控制理论离散控制系统的最优控制理论是控制工程领域中的一个重要研究方向。

离散控制系统是指在时间上只能在特定时间点进行操作的系统,相比连续控制系统,离散控制系统需要使用离散时间模型进行建模和控制设计。

最优控制理论是研究如何设计控制策略以使系统能够在某种指标下达到最优性能的一门学科。

离散控制系统的最优控制理论旨在寻找最优的控制策略,使得系统的性能指标如稳定性、响应速度、能耗等在给定约束条件下达到最优。

1. 离散控制系统的建模离散控制系统的建模是进行最优控制设计的基础。

在离散控制系统中,系统的状态在一系列离散时间点上进行更新。

离散控制系统的建模通常使用差分方程或状态空间模型。

差分方程描述了系统的状态在每个时间点的更新关系,而状态空间模型则将系统的状态和输入表示为向量,并使用矩阵形式描述系统的动态特性。

根据具体问题的需要,选择合适的建模方法可以更好地描述系统的动态行为。

2. 离散控制系统的性能指标离散控制系统的性能指标是评价系统控制性能的定量指标。

常见的性能指标包括稳定性、响应速度、能耗等。

稳定性是系统重要的性能指标之一,用于评估系统是否能够在有限时间内达到稳定状态。

响应速度是指系统对输入变化的快速响应能力。

能耗则是指系统在完成特定任务时所消耗的能源。

通过选取合适的性能指标,可以更好地评估和改进离散控制系统的性能。

3. 最优控制理论的基本原理最优控制理论的基本原理是寻找一组最优控制策略,使得系统的性能指标达到最优。

最优控制问题通常可以通过数学方法建立为一个优化问题。

其中,最常见的方法是最小化或最大化一个性能指标的数学表达式。

为了求解这些优化问题,可以使用动态规划、最优化理论等数学工具。

最优控制理论提供了一种系统优化设计的方法,可以帮助工程师设计更优秀的控制策略。

4. 最优控制策略的设计方法最优控制策略的设计方法取决于具体的离散控制系统和性能指标。

常见的设计方法包括经典控制方法和现代控制方法。

现代控制理论最优控制课件

现代控制理论最优控制课件

04 离散时间系统的最优控制
CHAPTER
离散时间系统的最优控制问题的描述
定义系统
离散时间系统通常由差分方程描述,包括状 态转移方程和输出方程。
确定初始状态
最优控制问题通常从一个给定的初始状态开 始,我们需要确定这个初始状态。
确定控制输入
在离散时间系统中,控制输入是离散的,我 们需要确定哪些控制输入是可行的。
工业生产领域
02 现代控制理论在工业生产领域中也得到了广泛的应用
,如过程控制、柔性制造等。
社会经济领域
03
现代控制理论在社会经济领域中也得到了广泛的应用
,如金融风险管理、能源调度等。
02 最优控制基本概念
CHAPTER
最优控制问题的描述
确定受控系统的状态和输入,以便在 给定条件下使系统的性能指标达到最 优。
LQR方法
利用LQR(线性二次调节器)设计最优控制 器。
线性二次最优控制的应用实例
经济巡航控制
在航空航天领域,通过线性二次最优控制实现燃料消 耗最小化。
电力系统控制
在电力系统中,利用线性二次最优控制实现稳定运行 和最小化损耗。
机器人控制
在机器人领域,通过线性二次最优控制实现轨迹跟踪 和避障等任务。
03
02
时变控制系统
04
非线性控制系统
如果系统的输出与输入之间存在 非线性关系,那么该系统就被称 为非线性控制系统。
这类系统的特点是系统的参数随 时间而变化。
静态控制系统
这类系统的特点是系统的输出与 输入之间没有时间上的依赖关系 。
发展历程
古典控制理论
这是最优控制理论的初级阶段,其研究的主 要对象是单输入单输出系统,主要方法是频 率分析法和根轨迹法。

离散控制系统中的最优控制方法

离散控制系统中的最优控制方法

离散控制系统中的最优控制方法离散控制系统是一种在时间和状态上都是离散的控制系统,相对于连续控制系统来说,其最优控制方法也有所不同。

本文将介绍离散控制系统中的最优控制方法,主要包括动态规划、最优化算法和强化学习。

一、动态规划动态规划是一种基于状态转移的最优化方法,在离散控制系统中有着广泛的应用。

其基本思想是将原问题分解为若干子问题,并通过求解子问题的最优解来得到原问题的最优解。

在离散控制系统中,我们可以将状态和控制变量转化为状态转移方程,然后利用动态规划递推求解,得到最优的控制策略。

二、最优化算法最优化算法是一种通过迭代优化来求解最优控制问题的方法,常见的有梯度下降法、牛顿法等。

在离散控制系统中,我们可以将控制问题转化为一个优化问题,并使用最优化算法来求解最优的控制策略。

例如,在离散时间马尔可夫决策过程中,我们可以利用值迭代或策略迭代等最优化算法来求解最优策略。

三、强化学习强化学习是一种通过试错学习来求解最优控制问题的方法,其核心思想是智能体通过与环境的交互来学习最优的行为策略。

在离散控制系统中,我们可以将控制问题抽象为一个马尔可夫决策过程,并使用强化学习算法如Q-learning、SARSA等来求解最优策略。

强化学习在离散控制系统中具有较好的应用效果,在复杂的离散控制系统中能够找到近似最优的控制策略。

综上所述,离散控制系统中的最优控制方法包括动态规划、最优化算法和强化学习。

这些方法在不同的离散控制系统中有着广泛的应用,能够求解出最优的控制策略。

在实际应用中,我们需要根据具体的控制问题选择合适的方法,并结合系统的特点和需求进行调整和优化。

离散控制系统中的最优控制方法在提高系统性能和效率方面具有重要意义,对于实际工程应用具有较大的价值。

控制工程基础第三版课后答案 (3)

控制工程基础第三版课后答案 (3)

控制工程基础第三版课后答案第一章1.1 分析控制系统的对象控制系统的对象通常指的是待控制的物理系统或过程。

在分析控制系统对象时,首先需要了解系统的动态特性。

为了分析控制系统的特性,我们可以通过选取一个合适的数学模型来描述物理系统的动态行为。

一种常用的方法是通过微分方程来描述系统的动态特性。

例如,对于一个简单的电路系统,可以使用基尔霍夫电流定律和基尔霍夫电压定律来建立描述电路中电流和电压之间关系的微分方程。

然后,通过求解这个微分方程,我们可以得到系统的传递函数。

另外,我们还可以使用频域分析的方法来分析控制系统的对象。

通过对信号的频谱进行分析,我们可以得到系统的频率响应。

1.2 常见的控制系统对象控制系统的对象存在各种各样的形式,下面列举了一些常见的控制系统对象:•机械系统:例如机器人、汽车悬挂系统等。

•电气系统:例如电路、电机等。

•热力系统:例如锅炉、冷却系统等。

•化工系统:例如反应器、蒸馏塔等。

针对不同的控制系统对象,我们需要选择合适的数学模型来描述其动态特性,并进一步分析系统的稳定性、性能等指标。

第二章2.1 控制系统的数学模型控制系统的数学模型描述了物理系统的动态特性和输入与输出之间的关系。

常见的控制系统数学模型包括:•模型中几何图形法:通过几何图形来描述系统的动态特性。

•传递函数法:采用以系统输入和输出的转移函数来描述系统的动态特性。

•状态方程法:将系统的状态变量与输入变量和输出变量之间的关系用一组偏微分方程或代数方程来描述。

在使用这些模型时,我们可以选择合适的数学工具进行分析和求解,例如微积分、线性代数等。

2.2 传递函数的定义和性质传递函数是描述控制系统输入输出关系的数学函数,通常用G(s)表示。

传递函数的定义和性质如下:•定义:传递函数G(s)是系统输出Y(s)和输入U(s)之间的比值,即G(s) = Y(s)/U(s)。

•零点和极点:传递函数可以有零点和极点,零点是使得传递函数为零的s值,极点是使得传递函数为无穷大的s值。

最优控制理论与系统第三版教学设计 (2)

最优控制理论与系统第三版教学设计 (2)

最优控制理论与系统第三版教学设计课程简介本课程是介绍最优控制理论与系统的基础知识,主要包括状态空间法、优化控制、最优化方法、动态规划等方面的内容。

前置知识•线性代数•微积分学•控制理论基础•Matlab编程基础教学目标•掌握最优控制基本知识和方法;•理解状态空间模型和其在控制系统中的应用;•熟悉优化方法,如最小二乘、线性规划、非线性规划等;•掌握动态规划的基本概念和应用。

教材《最优控制理论与系统第三版》韩子昂,陈锡文著教学内容第一章引言•课程简介•教材介绍第二章状态空间法•模型描述–动态系统与状态方程–状态变量与状态空间•基本概念–可观性与可控性–稳定性判据第三章优化控制•范畴与概念•线性二次型调节器–离散时间系统–连续时间系统•数字计算算法第四章最优化方法•最小二乘问题•线性规划问题•非线性规划问题第五章动态规划•基本概念•离散时间动态规划–最优子结构–递推式的建立–递推法解决离散时间动态规划问题•连续时间动态规划第六章总结与测试•课程总结•测试与准备教学方法•课堂讲授:通过理论讲解,引导学生了解控制原理,在讲解过程中会有举例和计算操练。

•组织讨论:通过设计控制问题,组织学生进行讨论并解决实际问题。

•课外作业:课堂讲授之后,要求学生完成作业,加深对理论知识的理解和掌握。

考核方式•课堂测试:考察学生掌握情况,包括课堂讲解内容和作业题目。

•期末考试:考查学生对整个课程的掌握程度,考试形式为书面考试和机试。

参考文献•韩子昂,陈锡文. 最优控制理论与系统第三版[M]. 科学出版社, 2016.•余志豪. 最优控制理论与应用[M]. 北京大学出版社, 2002.•Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control: optimization, estimation, and control[M]. CRC press.。

控制系统中的控制算法与算法设计

控制系统中的控制算法与算法设计

控制系统中的控制算法与算法设计控制系统是指通过对特定对象的输入信号进行调节和控制,以使对象按照预定要求进行运动或保持特定状态的系统。

而控制算法则是控制系统中的重要组成部分,它决定了系统如何根据测量信号和目标要求来产生控制信号。

本文将探讨控制系统中的控制算法,并重点关注算法设计的重要性。

一、控制系统中的控制算法概述控制算法是控制系统的核心。

它根据控制系统的要求和目标,通过对测量信号的处理和分析,以及经验法则的应用,生成相应的控制信号,从而实现对被控对象的控制。

控制算法的设计,既需要考虑控制效果,又需要考虑计算复杂度和实时性。

控制算法主要通过数学模型、传感器反馈和控制器的组合来实现。

常见的控制算法包括PID控制算法、模糊控制算法、遗传算法、最优控制算法等。

二、控制算法设计的重要性控制算法设计的好坏直接决定了控制系统的性能和稳定性。

一个优秀的控制算法能够快速、准确地响应系统的变化,并通过对控制信号的调节,使系统达到预期的控制效果。

在控制算法设计中,需要考虑以下几个方面:1. 系统的稳定性:控制算法要能确保系统的稳定性,避免系统出现不稳定、振荡或超调等问题。

2. 控制精度:控制算法要能保证系统输出与目标值的偏差尽可能小,以实现精确的控制。

3. 响应速度:控制算法要能够迅速地对系统的变化做出响应,以实现快速的控制。

4. 鲁棒性:控制算法要能适应不同的工作环境和参数变化,保持对外界干扰的抵抗能力。

5. 计算复杂度和实时性:控制算法需要根据实际应用场景,考虑计算资源的限制和实时性要求。

三、常见的控制算法1. PID控制算法PID控制算法是最常见的一种控制算法。

它通过比较目标值与实际值的误差,计算出比例、积分和微分三个控制量的加权和,从而产生控制信号。

PID控制算法具有简单实用、性能稳定的特点,在工业控制中得到广泛应用。

2. 模糊控制算法模糊控制算法是一种基于模糊逻辑的控制方法。

它通过模糊化输入信号和输出信号,建立模糊规则库,并通过模糊推理和解模糊化的方法,产生控制信号。

最优控制理论及应用讲解

最优控制理论及应用讲解
多级决策过程所谓多级决策过程是指将一个过程按时间或空间顺序分为若干级步然后给每一级步作出决策在控制过程中令每走一步所要决定的控制步骤称之为决策以使整个过程取得最优的效果即多次的决策最终要构成一个总的最优控制策略最优控制方案
第4章 动态规划
求解动态最优化问题的两种基本方法:极小值原理和动态规划。
动态规划:是一种分级最优化方法,其连续形式与极小值原理相 辅相成,深化了最优控制的研究。
Optimal Control Theory & its Application
主要内容
1
多级决策过程和最优性原理
2
离散控制系统的动态规划
3
连续控制系统的动态规划
4 动态规划与变分法、极小值原理的关系
5
本章小结
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.7
Optimal Control Theory & its Application
Optimal Control Theory
Dong Jie 2012. All rights reserved.
特点:1)将一个多阶段决策问题化为多个单阶段决策问题,易于分析 2)每阶段评估只与前一阶段结果有关,计算量减小
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.5
Optimal Control Theory & its Application

离散控制系统中的自适应鲁棒控制方法

离散控制系统中的自适应鲁棒控制方法

离散控制系统中的自适应鲁棒控制方法鲁棒控制方法是一种能够抵抗系统参数变化和外部干扰的控制策略。

而离散控制系统是指时间是离散的、用样值表示的控制系统。

离散控制系统中,自适应鲁棒控制方法被广泛应用于解决系统模型不准确、外部干扰较大以及系统参数变化较快等问题。

本文将介绍离散控制系统中的一些常见的自适应鲁棒控制方法。

一、滑模控制方法滑模控制方法是一种常用的自适应鲁棒控制方法。

它通过引入一个滑模面,使系统状态在该滑模面上滑动,从而实现对系统状态的鲁棒控制。

滑模控制方法具有结构简单、鲁棒性好等特点。

在离散控制系统中,滑模控制方法可以通过离散时间状态方程来实现。

通过选取合适的滑模参数,可以有效地抑制系统中的模型不准确性和外部干扰。

二、最优控制方法最优控制方法是一种通过优化目标函数来实现控制的方法。

在离散控制系统中,最优控制方法可以通过求解离散时间最优控制问题来实现。

最优控制方法的核心思想是通过调整控制输入信号使系统的性能指标达到最优。

最优控制方法在离散控制系统中有广泛的应用,例如在工业生产中的优化控制、机器人控制等领域。

三、自适应控制方法自适应控制方法是一种通过监测系统的状态和参数来实时调整控制策略的方法。

在离散控制系统中,自适应控制方法可以通过参数估计器来实现系统参数的估计,并根据估计结果来调整控制器的参数。

自适应控制方法可以适应系统参数的变化,提高系统鲁棒性。

同时,自适应控制方法还可以通过在线的调整控制策略来抵消外部干扰的影响。

四、鲁棒控制方法的应用案例现代离散控制系统中的自适应鲁棒控制方法已经得到了广泛的应用。

例如,在工业生产过程中,离散控制系统中的自适应鲁棒控制方法可以有效地抵抗系统参数变化和外部干扰,提高生产过程的稳定性和效率。

此外,离散控制系统中的自适应鲁棒控制方法还可以应用于机器人控制、智能交通系统等领域,提高系统的性能和鲁棒性。

总结:离散控制系统中的自适应鲁棒控制方法是一种能够抵抗系统参数变化和外部干扰的控制策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
考虑 J 中,
Lk
Lk 1
1 2 (5-2-14) u ( k ) ( k 1)[ x ( k ) au( k ) x ( k 1)] 2 1 u 2 ( k 1) ( k )[ x ( k 1) au( k 1) x ( k )] (5-2-15) 2
N 1 k 0
[ x(k ) x(k 1)] B u(k )
(5-1-5)
k 0
N 1
。则该多级萃取过程寻求收益最大化问题就可以描述为一个离 V 散最优控制问题,即要确定一组最优控制序列u(k)( k = 0,1,…, N-1),使性能
指标J达到最大。
(2) 离散系统最优控制问题的提法
在萃取过程中,对第k个萃取器有如下萃取平衡关系
z ( k 1) Kx( k )
(5-1-1)
其中,K为萃取平衡常数。同时有物料平衡关系 V[x (k-1)-x(k)]= u (k-1) z (k-1) (5-1-2) 由以上关系可列出萃取物浓度方程 x( k 1) (5-1-3) f [ x( k 1), u( k 1)] x( k ) K 1 u( k 1) V 将x(k) 视为状态变量,u(k)视为控制变量,则上式可作为状态方程。 假定A物质的单价为α,萃取剂的单价为β,则N级萃取过程总的收益为
p V [ x ( k 1) x( k )] u( k )
k 1 k 0 N N 1
(5-1-4)
引进性能指标 N N 1 p J [ x ( k 1) x ( k )] B u( k ) V k 1 k 0 其中 B
kN
L[ x ( k 1), x ( k ), k 1] 0 x (k ) x ( k ) k 0 由 x ( k ) 的任意性,可得极值的必要条件
(5-2-6)
L x ( k ), x ( k 1), k L x ( k 1), x ( k ), k 1 0 x ( k ) x ( k )
x ( 0) x 0 L x ( N 1), x ( N ), N 1 0 ( ) x N
(5-2-9)
综上所述,离散Lagrange问题(5-2-1)的极值若存在,其极值解 x * ( k ) 必满足Euler方程
Lk L k 1 0 x ( k ) x ( k )
2 2 由边界条件有 x (10) x (0) 10a C 1 10a C 0
可解得
C 1 / 10a 2
则有最优控制 u* ( k ) 最优轨线
x* (k ) 1
1 10a
k 10
5.3 离散极大值原理
• 与连续系统相似,离散变分法解最优控制问题多有不便,需考虑 离散极大值原理。 考虑离散系统状态方程 (5-3-1) x ( k 1) f [ x ( k ), u( k ), k ], k 0,1,· · ·, N 1 初始状态 x ( 0) x 0 (5-3-2) 终态应满足的约束条件 (5-3-3) [ x ( N ), N ] 0 和性能指标 N 1 (5-3-4) J [ x ( N ), N ] L[ x ( k ), u( k ), k ]
x( k 1) x( k ) a 2C
因而有
x (1) x (0) a 2C
x ( 2) x (1) a 2C x (0) 2a 2C x ( 3 ) x ( 2 ) a 2 C x ( 0 ) 3a 2 C
┇ ┇ x ( k ) x (0) ka 2C
给定离散系统状态方程
x ( k 1) f [ x ( k ), u( k ), k ], k 0,1, , N 1
和初始状态
(5-1-6) (5-1-7)
x ( 0) x 0
函数向量。考虑性能指标
k 0
n m 其中x ( k ) R , u( k ) R 分别为状态向量和控制向量,f 为连续可微的n维
N 1
J [ x ( N ), N ] L[ x ( k ), u( k ), k ] • •
(5-1-8)
其中Φ、L连续可微。 离散系统的最优控制问题就是确定最优控制序列u*(0),u*(1),…,u*(N1),使性能指标J 达到极小(或极大)值。 将最优控制序列u*(0),u*(1),…,u*(N-1)依次代入状态方程,并利用初始 条件,可以解出最优状态序列x*(1),x*(2),…,x*(N),也称为最优轨线。
k 0 其中:x(k)∈Rn,u(k)∈Rm。u(k)不受约束,f

为n维连续可微向量 函数,Ψ是x(N)的连续可微r 维向量函数,Φ是x(N)的连续可微标 量函数,L为x(k)、u(k)的连续可微标量函数,要求最优控制序列 u*(k), k=0,…, N-1,使J最小。
与连续系统类似,引入Lagrange乘子向量 [ 1 , 2 , , r ]T 和协态变量序列 ( k ) [1 ( k ), 2 ( k ), , n ( k )]T , k 1,2, , N 使问题转化为求使辅助性能指标 J [ x ( N ), N ] Τ [ x ( N ), N ]
Lk a ( k 1) u( k ) u( k ) Lk 1 0 u( k ) 因而可以写出 J 的Euler方程为
( k 1) ( k ) 0 a ( k 1) u( k ) 0 解之可得 ( k ) C 常数 u( k ) aC 由状态方程有
• • •
5.1 离散时间系统最优控制问题的提法
(1) 离散系统最优控制举例——多级萃取过程最优控制
• 萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将 要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 • 多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。
u(0) V 萃取器1 x(0) x(1) V 萃取器2 x(2) x(k-1) u(1) V V 萃取器k x(k) x(N-1) z(N-1) u(k) V V 萃取器N x(N) u(N-1) V
假定离散性能指标J存在极小值,则式(5-2-1)存在极值解序列 x * ( k ) 。在 x * ( k ) , x * ( k 1) 的邻域内 x ( k ), x ( k 1)-2) * x ( k 1) x ( k 1) x ( k 1) x ( k ) 和 x ( k 1) 分别是x ( k ) 和x ( k 1) 的变分,代入J 其中 为参变量, 有 N 1 J ( ) L x * ( k ) x ( k ), x * ( k 1) x ( k 1), k (5-2-3)
L x ( k 1), x ( k ), k 1 xT (k ) 0 x ( k ) k 0
kN
(5-2-7) (5-2-8)
上两式分别称为离散Euler方程和离散的横截条件。 当初态 x (0) x0 给定,终态x(N)自由,即 x ( N ) 是任意值时,则有横截条 件为
第五章 离散时间系统最优控制
引 言
• • • 前面所讨论的都是关于连续时间系统的最优控制问题。 现实世界中,很多实际系统本质上是时间离散的。 即使是系统是时间连续的,因为计算机是基于时间和 数值上都离散的数字技术的,实行计算机控制时必须 将时间离散化后作为离散系统处理。 因此,有必要讨论离散时间系统的最优控制问题。 离散时间系统仍然属于连续变量动态系统(CVDS)范畴。 注意与离散事件动态系统(DEDS)的区别。 CVDS与DEDS是自动化领域的两大研究范畴,考虑不 同的自动化问题。
z(0)
z(1) 多级萃取过程
z(k-1)


含物质A的混合物以流量V进入萃取器1,混合物中A浓度x(0); 萃取剂以流量u(0)通过萃取器1,单位体积萃取剂带走A的量为z(0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V; 流出萃取器1的混合物中A物质的浓度为x(1)。 以此类推至萃取器N。
1 9 2 J u (k ) 2 k 0
(5-2-10) (5-2-11) (5-2-12)
求使J达极小值的最优控制和最优轨线。 解:应用Lagrange乘子法,构造辅助泛函
1 J { u 2 ( k ) ( k 1)[ x ( k ) au( k ) x ( k 1)]} (5-2-13) k 0 2

N 1 k 0
x (k )
T
Lk 1 L x ( k ) k 1 x ( k ) x ( k ) k 0
T
kN
(5-2-5) 离散分部积分
代入(5-2-4)有
N 1 k 0
x ( k )
T T
L[ x ( k ), x ( k 1), k ] L[ x ( k 1), x ( k ), k 1] x k x k ( ) ( )
L[ x ( k ), u( k ), k ] Τ ( k 1)[ f [ x ( k ), u( k ), k ] x ( k 1)]} k 0 (5-3-5)
达极小值的问题。 定义离散Hamilton函数 H ( k ) H [ x ( k ), ( k 1), u( k ), k ] L[ x( k ), u( k ), k ] Τ ( k 1) f [ x( k ), u( k ), k ] (k=0,1,…, N-1) (5-3-6) 则有 N 1 Τ J [ x ( N ), N ] [ x ( N ), N ] [ H ( k ) Τ ( k 1) x ( k 1)] k 0 (5-3-7)
相关文档
最新文档