吉林省辽源市田家炳高级中学复数试题及答案doc

合集下载

2015-2016年吉林省辽源市田家炳高中高二(下)期中数学试卷(理科)和答案

2015-2016年吉林省辽源市田家炳高中高二(下)期中数学试卷(理科)和答案

2015-2016学年吉林省辽源市田家炳高中高二(下)期中数学试卷(理科)一、选择题(本题共12小题,每题5分,共60分)1.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的3.(5分)f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.44.(5分)用反证法证明命题:“若a、b、c是三连续的整数,那么a、b、c中至少有一个是偶数”时,下列假设正确的是()A.假设a、b、c中至多有一个偶数B.假设a、b、c中至多有两个偶数C.假设a、b、c都是偶数D.假设a、b、c都不是偶数5.(5分)已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2),则f′(2)的值等于()A.﹣2B.﹣1C.4D.26.(5分)若a>b>0,则下列不等式中总成立的是()A.a+>b+B.>C.a+>b+D.>7.(5分)已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)8.(5分)若曲线y=x2+ax+b在点(0,b)处的切线方程x﹣y+1=0,则()A.a=1,b=1B.a=﹣1,b=1C.a=1,b=﹣1D.a=﹣1,b=﹣1 9.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.B.﹣i C.i D.410.(5分)定积分dx的值为()A.9πB.3πC.D.11.(5分)某厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为,那么,原油温度的瞬时变化率的最小值是()A.8B.C.﹣1D.﹣812.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)二、填空题(本题共4小题,每道小题5分,共20分)13.(5分)的共轭复数为.14.(5分)已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是.15.(5分)曲线y=lnx上的点到直线2x﹣y+3=0的最短距离是.16.(5分)观察下列式子:,,,…,则可以猜想:.三、解答题(本题共6小题,共70分)17.(10分)已知复数z=1﹣i(i是虚数单位)(1)计算z2;(2)若z2+a,求实数a,b的值.18.(12分)已知函数f(x)=x3﹣ax+a(Ⅰ)若函数f(x)恰好有两个不同的零点,求a的值.(Ⅱ)若函数f(x)的图象与直线y=x﹣1相切,求a的值及相应的切点坐标.19.(12分)设f(x)=e x﹣ax﹣a.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)≥0对一切x≥﹣1恒成立,求a的取值范围.20.(12分)已知数列a n的前n项和为S n,且a1=1,S n=n2a n(n∈N),(1)试计算S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.21.(12分)求由抛物线y=﹣x2+4x﹣3与它在点A(0,﹣3)和点B(3,0)的切线所围成的区域面积.22.(12分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值;(1)求a,b的值及f(x)的极大值与极小值;(2)若方程x3+ax2+bx+c=1有三个互异的实根,求c的取值范围;(3)若对x∈[1,2],不等式f(x)<c2恒成立,求c的取值范围.2015-2016学年吉林省辽源市田家炳高中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每题5分,共60分)1.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.2.(5分)用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的【解答】解:∵任何实数的平方大于0,因为a是实数,所以a2>0,大前提:任何实数的平方大于0是不正确的,0的平方就不大于0.故选:A.3.(5分)f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.4【解答】解:f'(x)=3x2﹣6x=3x(x﹣2),令f'(x)=0可得x=0或2(2舍去),当﹣1<x<0时,f'(x)>0,当0<x<1时,f'(x)<0,∴当x=0时,f(x)取得最大值为f(0)=2.故选:C.4.(5分)用反证法证明命题:“若a、b、c是三连续的整数,那么a、b、c中至少有一个是偶数”时,下列假设正确的是()A.假设a、b、c中至多有一个偶数B.假设a、b、c中至多有两个偶数C.假设a、b、c都是偶数D.假设a、b、c都不是偶数【解答】解:用反证法证明数学命题的方法,应先假设要证命题的否定成立,而命题:“整数a,b,c中至少有一个偶数”的否定为:“a,b,c都不是偶数”,故选:D.5.(5分)已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2),则f′(2)的值等于()A.﹣2B.﹣1C.4D.2【解答】解:∵f(x)=x2+3xf'(2),∴f′(x)=2x+3f′(2)令x=2得f′(2)=2×2+3f′(2)∴f′(2)=﹣2.故选:A.6.(5分)若a>b>0,则下列不等式中总成立的是()A.a+>b+B.>C.a+>b+D.>【解答】解:∵a>b>0,∴>.又a>b,∴a+>b+;故选:A.7.(5分)已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)【解答】解:由图象可得:当f′(x)>0时,函数f(x)是增函数,所以f′(x)>0的解集为(﹣∞,﹣1),(1,+∞),当f′(x)<0时,函数f(x)是减函数,所以f′(x)<0的解集为(﹣1,1).所以不等式f′(x)<0即与不等式(x﹣1)(x+1)<0的解集相等.由题意可得:不等式(x2﹣2x﹣3)f′(x)>0等价于不等式(x﹣3)(x+1)(x+1)(x﹣1)>0,所以原不等式的解集为(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞),故选:D.8.(5分)若曲线y=x2+ax+b在点(0,b)处的切线方程x﹣y+1=0,则()A.a=1,b=1B.a=﹣1,b=1C.a=1,b=﹣1D.a=﹣1,b=﹣1【解答】解:y=x2+ax+b的导数为y′=2x+a,可得在点(0,b)处的切线斜率为a,由点(0,b)处的切线方程为x﹣y+1=0,可得a=1,b=1,故选:A.9.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.B.﹣i C.i D.4【解答】解:∵|4+3i|==5.∴(3﹣4i)z=|4+3i|,化为===,则z的虚部为.故选:A.10.(5分)定积分dx的值为()A.9πB.3πC.D.【解答】解:由定积分的几何意义知是由曲线,直线x=0,x=3围成的封闭图形的面积,故=,故选:C.11.(5分)某厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为,那么,原油温度的瞬时变化率的最小值是()A.8B.C.﹣1D.﹣8【解答】解:由题意,f′(x)=x2﹣2x=(x﹣1)2﹣1∵0≤x≤5∴x=1时,f′(x)的最小值为﹣1,即原油温度的瞬时变化率的最小值是﹣1故选:C.12.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)【解答】解:∵(x﹣1)f'(x)≥0∴x>1时,f′(x)≥0;x<1时,f′(x)≤0∴f(x)在(1,+∞)为增函数;在(﹣∞,1)上为减函数∴f(2)≥f(1)f(0)≥f(1)∴f(0)+f(2)≥2f(1)故选:D.二、填空题(本题共4小题,每道小题5分,共20分)13.(5分)的共轭复数为﹣i.【解答】解:∵==+i,∴的共轭复数为﹣i故答案为:﹣i14.(5分)已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是﹣1≤a<7.【解答】解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值范围是﹣1≤a<7,故答案为﹣1≤a<7.15.(5分)曲线y=lnx上的点到直线2x﹣y+3=0的最短距离是.【解答】解:因为直线2x﹣y+3=0的斜率为2,所以令y′==2,解得:x=,把x=代入曲线方程得:y=﹣ln2,即曲线上过(,﹣ln2)的切线斜率为2,则(,﹣ln2)到直线2x﹣y+3=0的距离d==,即曲线y=lnx上的点到直线2x﹣y+3=0的最短距离是.故答案为:16.(5分)观察下列式子:,,,…,则可以猜想:.【解答】解:由已知中的式子:=,=,=,…,我们可以推断故=故答案为:三、解答题(本题共6小题,共70分)17.(10分)已知复数z=1﹣i(i是虚数单位)(1)计算z2;(2)若z2+a,求实数a,b的值.【解答】解:(1)z2=(1﹣i)2=1﹣2i+i2=1﹣2i﹣1=﹣2i…(4分)(2)…(6分)所以由复数相等的充要条件得:…(8分)所以…(10分)18.(12分)已知函数f(x)=x3﹣ax+a(Ⅰ)若函数f(x)恰好有两个不同的零点,求a的值.(Ⅱ)若函数f(x)的图象与直线y=x﹣1相切,求a的值及相应的切点坐标.【解答】解:(Ⅰ)函数的导数f′(x)=x2﹣a,若a≤0,函数f′(x)=x2﹣a≥0,此时f(x)单调递增,不满足条件,若a>0,由f′(x)=x2﹣a=0的x=±,则x=±,是函数f(x)的两个极值点,若若函数f(x)恰好有两个不同的零点,则f(±)=0,∵f(0)=a>0,∴只能有f()=0,即()3﹣a•+a=0,即﹣+1=0,即=1,=,即a=.(Ⅱ)设切点P(m,n),则f′(m)=m2﹣a,则切线方程为y﹣(m3﹣am+a)=(m2﹣a)(x﹣m),即y=(m2﹣a)x+a﹣m3,∵切线方程为y=x﹣1,∴m2﹣a=1,a﹣m3=﹣1,即m3=0,即m=0,此时n=m﹣1=﹣1,a=﹣1,即若函数f(x)的图象与直线y=x﹣1相切,则a=﹣1,相应的切点坐标P(0,﹣1).19.(12分)设f(x)=e x﹣ax﹣a.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)≥0对一切x≥﹣1恒成立,求a的取值范围.【解答】解:(Ⅰ)a=1时,f(x)=e x﹣x﹣1,∴f′(x)=e x﹣1,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,∴f(x)在(﹣∞,0)递减,在(0,+∞)递增;(Ⅱ)由f(x)≥0,得a≤,(x>﹣1),令h(x)=,则h′(x)=,令h′(x)>0,解得:x>0,令h′(x)<0,解得:﹣1<x<0,∴h(x)在(﹣1,0)递减,在(0,+∞)递增,∴h(x)≥h(0)=1,(x>﹣1),∴a≤1,又x=﹣1时,(x+1)a≤e x即为0•a≤e﹣1,此时a取任意值都成立,综上得:a≤1.20.(12分)已知数列a n的前n项和为S n,且a1=1,S n=n2a n(n∈N),(1)试计算S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.【解答】解:(1)由a1=1,S n=n2a n(n∈N)得猜想(2)证明:∵S n=n2a n①∴S n﹣1=(n﹣1)2a n﹣1②=n2a n﹣(n﹣1)2a n﹣1①﹣②得S n﹣S n﹣1∴a n=n2a n﹣(n﹣1)2a n﹣1化简得∴把上面各式相乘得∴21.(12分)求由抛物线y=﹣x2+4x﹣3与它在点A(0,﹣3)和点B(3,0)的切线所围成的区域面积.【解答】解:∵y=﹣x2+4x﹣3,∴y′=﹣2x+4,x=0时,y′=4,x=3时,y′=﹣2,∴在点A(0,﹣3)和点B(3,0)的切线方程分别为y=4x﹣3和y=﹣2x+6,两条切线的交点是(1.5,3),如图所示,区域被直线x=1.5分成了两部分,∴所求面积为S=+=+=2.25.22.(12分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值;(1)求a,b的值及f(x)的极大值与极小值;(2)若方程x3+ax2+bx+c=1有三个互异的实根,求c的取值范围;(3)若对x∈[1,2],不等式f(x)<c2恒成立,求c的取值范围.【解答】解:(1)∵f'(x)=3x2+2ax+b由已知有,解得﹣﹣﹣﹣﹣﹣(3分)∴f'(x)=3x2﹣x﹣2,由f'(x)>0得x>1或,由f'(x)<0得﹣﹣﹣(5分)列表如下所以,当时,f(x)有极大值,当x=1时,f(x)有极小值﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(2)由于方程x3+ax2+bx+c=1有三个互异的实根,故曲线与y=1有三个不同交点﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(1)可知此时有,解得;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)(3)由(1)知,f(x)在x∈[1,2]上递增,此时f(x)max=f(2)=c+2﹣﹣(14分)要满足题意,只须c+2<c2解得c>2或c<﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分)。

7.1 复数的概念(精练)(解析版)

7.1 复数的概念(精练)(解析版)

7.1 复数的概念(精练)【题组一 实部虚部辨析】1.(2020·江西抚州市)若(2)x i i y i +=+,其中,x y R ∈,i 为虚数单位,则复数z x yi =+的虚部为( ) A .1 B .iC .2-D .2i -【答案】C【解析】由于(2)x i i y i +=+,则1x=且2y =-,所以12z x yi i =+=-,所以复数z 的虚部为2-. 故选:C.2.(2020·江苏宿迁市·宿迁中学高二期中)设i 为虚数单位,则复数55z i =-的实部为( ) A .5- B .5i -C .5D .5i【答案】C【解析】复数55z i =-的实部为5.故选:C.3.(2020·广西桂林市)复数3z i =-的虚部是( ) A .1 B .iC .-1D .i -【答案】C【解析】由复数虚部的定义得复数3z i =-的虚部是1-.故选:C4.(2020·四川省成都市新都一中高二期中)复数24i z =--的虚部是( ) A .2- B .2C .4-D .4【答案】C【解析】因为24i z =--,所以由复数定义可知虚部是4-,故选:C.5.(2020·江苏宿迁市·高二期中)已知复数1z i =-,其中i 是虚数单位,则复数z 的虚部为( ) A .i B .i -C .1-D .1【答案】C【解析】因为1z i =-,则虚部为1-.故选:C. 【题组二 复数的分类】1.(2021·江西景德镇市)已知复数()()1i 1i z m =--+是纯虚数,则实数m =( ) A .-2 B .-1C .0D .1【答案】D【解析】()()()1i 1i 11i z m m m =--+=--+,因为z 为纯虚数且m 为实数,故1010m m -=⎧⎨+≠⎩,故1m =,故选:D2.(2021·甘肃兰州市·兰州一中)i 为虚数单位,已知复数21(1)a a i -+-是纯虚数,则a 等于( ) A .±1 B .1C .1-D .0【答案】C【解析】复数21(1)a a i -+-是纯虚数,所以21010a a ⎧-=⎨-≠⎩,得1a =-.故选:C.3.(2021·江西南昌市)设复数i z a b =+(其中a b R ∈、,i 为虚数单位),则“0a =”是“z 为纯虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】B【解析】若复数i z a b =+是纯虚数,则0a =,0b ≠, 则0a =不能证得z 为纯虚数,z 为纯虚数可以证得0a =, 故“0a =”是“z 为纯虚数”的必要非充分条件, 故选:B.4.(2020·贵州毕节市)已知a 为实数,若复数()24(2)z a a i =-++为纯虚数,则复数z 的虚部为( ) A .2 B .4iC .2±D .4【答案】D【解析】2(4)(2)z a a i =-++为纯虚数,∴24020a a ⎧-=⎨+≠⎩,即2a =.∴复数z 的虚部为4. 故选:D .5.(2020·沙坪坝区·重庆南开中学高二期末)已知i 为虚数单位,a R ∈,复数()242a a i -+-是纯虚数,则a =( ) A .2 B .-2 C .4 D .-2或2【答案】B【解析】因为复数()242a a i -+-是纯虚数,所以240,202a a a -=-≠∴=-故选:B6.(2020·北京市八一中学高二期中)若复数(1)(2)z m m i =++-(m ∈R )是纯虚数,则m =______ 【答案】-1【解析】复数(1)(2)z m m i =++-(m ∈R )是纯虚数,则1020m m +=⎧⎨-≠⎩,所以1m =-. 故答案为:-17.(2019·河南洛阳市·高二期中(文))已知复数223(3)z m m m i =--+-为纯虚数,则实数m =_____________ 【答案】1-【解析】由题意,复数223(3)z m m m i =--+-为纯虚数,则满足223030m m m ⎧--=⎨-≠⎩,解得1m =-,即实数m 的值为1-.故答案为:1-.8.(2020·林芝市第二高级中学)实数m 取怎样的值时,复数()22153m m z i m --=-+是: (1)实数? (2)虚数? (3)纯虚数?【答案】(1)5m =或3m =-;(2)5m ≠且3m ≠-;(3)3m =. 【解析】(1)若22150m m --=,则z 为实数,此时3m =-或者5m =. (2)若22150m m --≠,则z 为虚数,此时3m ≠-且5m ≠.(3)若2302150m m m -=⎧⎨--≠⎩ ,则z 为纯虚数,此时3m =.9.(2020·辽源市田家炳高级中学校)已知复数()()11z m m i m R =++-∈. (1)m 取什么值时,z 为实数; (2)m 取什么值时,z 为纯虚数. 【答案】(1)1m =(2)1m =-【解析】(1)复数()()11z m m i m R =++-∈,若z 为实数,则10m -=,即1m =(2)若z 为纯虚数,则1010m m +=⎧⎨-≠⎩,解得1m =-10.(2021·江西上饶市)已知m 为实数,i 为虚数单位,设复数()()2256253z m m m m i =++++-. (1)当复数z 为纯虚数时,求m 的值;(2)当复数z 对应的复点在直线70x y -+=的右下方,求m 的取值范围. 【答案】(1)2-;(2)(4,4)-.【解析】(1)由题意得:225602530m m m m ⎧++=⎨+-≠⎩,解得2m =-;(2)复数z 对应的点的坐标为22(56,253)m m m m +++-, 直线70x y -+=的右下方的点的坐标(),x y 应满足70x y -+>,所以22(56)(253)70m m m m ++-+-+>,解得44m -<<,所以m 的取值范围为(4,4)-. 【题组三 复数的几何意义--复平面】1.(2019·重庆市江津第六中学校高二期中)在复平面内,复数1i -+所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】由题,1i -+在复平面内对应的点为()1,1-,在第二象限,故选:B2.(2020·甘肃省岷县第二中学)若,a b ∈R ,则复数()()224526a a b b i -++-+-表示的点在( ) A .在第一象限 B .在第二象限 C .在第三象限 D.在第四象限【答案】D【解析】因为()2245210a a a -+=-+>,()2226150b b b -+-=---<, 所以由复数的几何意义知该复数表示的点在第四象限.故选:D3.(2019·周口市中英文学校高二期中(文))复数()()2lg 2221()x xz x i x R -=-+-+-∈在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】复数()()2lg 2221()x xz x i x R -=-+-+-∈的实部()2lg 2a x -=+、虚部()221x x b -=-+-.因为()22221lg 20x x +≥>⇒+>,所以0a <. 因为21122202x x x x --≥-+⇒≥>+,所以0b <. 所以复数z 在复平面内对应的点位于第三象限.故选:C4.(2020·朔州市朔城区第一中学校)设复数1z ,2z 在复平面内对应的点关于虚轴对称,且12z i =+,则2z =( )A .2i +B .2i -+C .2i -D .2i --【答案】B 【解析】12z i =+,1z ∴在复平面内对应点的坐标为(2,1),由复数1z ,2z 在复平面内对应的点关于虚轴对称,可知2z 在复平面内对应的点的坐标为(2,1)-,22z i ∴=-+,故选:B .5.(2020·重庆高二期中)已知()()214Z m m i =++-在复平面内对应的点在第二象限,则实数m 的取值范围是____. 【答案】(),2-∞-【解析】()()214Z m m i =++-在复平面内对应的点()21,4m m +-在第二象限,所以21040m m +<⎧⎨->⎩,解得2m <-,即实数m 的取值范围是(),2-∞-.故答案为:(),2-∞-6.(2020·浙江台州市·高二期中)已知复数()()22lg 223z m m m m i =-++-若复数z 是实数,则实数m =________;若复数z 对应的点位于复平面的第二象限,则实数的取值范围为________.【答案】3- 21m <<+【解析】z 为实数,则2230m m +-=,解得1m =或3-,又220m m ->,所以3m =-.z对应点在第二象限,则22lg(2)0230m m m m ⎧-<⎨+->⎩,解得21m <<.故答案为:3-;21m <<+7(2021·宁夏长庆高级中学)在复平面内,复数()()222z m m m i =++--对应的点在第一象限,求实数m 的取值范围是________. 【答案】()()2,12,--+∞【解析】根据题意得出22020m m m +>⎧⎨-->⎩,解得21m -<<-或>2m ,所以实数m 的取值范围是()()2,12,--+∞.故答案为:()()2,12,--+∞.【题组四 复数的几何意义--模长】1.(2021·浙江高二期末)已知a R ∈,若有a i -=i 为虚数单位),则a =( ) A .1 B .2-C .2±D .±1【答案】C【解析】因为a R ∈所以a i -==,即215a +=,解得2a =±,故选:C2.(2020·辽宁沈阳市·高二期中)设复数z 满足1z i -=,z 在复平面内对应的点为(),x y 则x ,y 满足的关系式为______. 【答案】22(1)1y x +-=【解析】由题意,设复数(,)z x yi x y R =+∈,因为1z i -=1=,整理得22(1)1y x +-=,即复数z 在复平面内对应的点为(),x y 则,x y 满足的关系式为22(1)1y x +-=.故答案为:22(1)1y x +-=.3.(2021·江苏高二)已知a ,b R ∈,()123ai b a i +=++,则a =______,3a bi +=______.【答案】3- 【解析】∵()123ai b a i +=++∴123ba a =⎧⎨=+⎩,解得31a b =-⎧⎨=⎩,则333a bi i +=-+===故答案为:(1)3-;(2)4.(2020·北京人大附中高二月考)已知i 是虚数单位,若1z i =+,则22z z -=________. 【答案】2【解析】根据复数模的计算公式得:22212+222z z i i i -=+--=.故答案为:25.(2020·上海市通河中学高二期中)若z C ∈且342z i ++≤,则z 的取值范围为__________. 【答案】[]3,7【解析】342z i ++≤的几何意义为复平面内动点Z 到定点()3,4A --的距离小于等于2的点的集合,z 表示复平面内动点Z 到原点的距离,∵||5OA ==,5252z ∴-≤≤+.∴z 的取值范围为[]3,7. 故答案为:[]3,7. 【题组五 复数综合应用】1.(多选)(2020·江苏泰州市·高二期末)已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限【答案】BCD【解析】因为复数1z i =+, 所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确. 故选:BCD.2.(2020·重庆高二期末)若复数12z i =+(i 为虚数单位),则下列命题正确的是( )A .z 是纯虚数B .z 的实部为2C .z 的共轭复数为12i -+D .z 【答案】D【解析】复数12z i =+(i 为虚数单位)显然不是纯虚数,12z i =+的实部是1,z 的共轭复数为12i -,z =D 正确,故选:D.3.(2020·山东聊城市·高二期末)已知复数z 在复平面上对应的点为()1,1-,则( ) A .z i +是实数(i 为虚数单位) B .z i +是纯虚数(i 为虚数单位) C .1z +是实数 D .1z +是纯虚数 【答案】D【解析】由题意可得,1z i =-+,则1z i +=为纯虚数,12z i i +=-+是虚数,但不是纯虚数, 故选:D .4.(2020·咸阳百灵学校)关于复数3-4i 的说法正确的是( ) ①实部和虚部分别为3和-4;②复数模为5③在复平面内对应的点在第四象限;④共轭复数为3+4i A .①③ B .①②④C .①②③④D .①③④【答案】C【解析】复数3-4i 的实部和虚部分别为3和-4,①正确;复数模为5,②正确;在复平面内对应的点为(3,4)-在第四象限,③正确;复数3-4i 的共轭复数为3+4i ,④正确.故选:C.。

吉林省辽源市田家炳高级中学2021-2022学年高一上学期12月月考英语试题 Word版含答案

吉林省辽源市田家炳高级中学2021-2022学年高一上学期12月月考英语试题 Word版含答案

田家炳高中2021--2022学年度上学期12月月考高一英语试卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5个小题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.Where does this conversation take place?A.In a bookstore.B.In the kitchen.C.In a restaurant.2.How does the woman’s daughter usually go to school?A.On foot.B.By bike.C.On her school bus.3.Why does the woman refuse to drink milk today?A.Because she doesn’t feel alright.B.Because the milk has become bad.C.Because she drank to much yesterday.4.What did the man do this afternoon?A.He went swimming.B.He stayed at home.C.He watched a movie.5.What’s the weather like today?A.Sunny.B. RainyC. Snowy.其次节共15小题;(每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。

吉林省辽源市田家炳高级中学2021-2022高一英语12月月考试题.doc

吉林省辽源市田家炳高级中学2021-2022高一英语12月月考试题.doc

吉林省辽源市田家炳高级中学2021-2022高一英语12月月考试题第Ⅰ卷第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)1. Where does the man usually eat?A. At home.B. In his office.C. At a restaurant.2. Who is wanted on the phone?A. Susan.B. LilyC. Tom.3. What will the man do on Sunday?A. Go hiking.B. Write a report.C. Take a holiday.4. What are the two speakers talking about?A. Hobbies.B. MusicC. Musical instruments.5. What does the woman think of the activity?A. She thinks it is dull.B. She thinks it is interesting.C. She thinks it is just so-so.第二节(共15小题;每小题1.5分,满分22.5分)听第6段材料,回答第6至7题。

6. What does the woman think of the man's breakfast he had this morning?A. She thinks it is healthy.B. She thinks it is delicious.C. She thinks it is simple.7. Who usually makes breakfast at the man's home?A. The man's mother.B. The man's father.C. The man.听第7段材料,回答第8至10题。

吉林辽源市田家炳高级中学校高二上学期期中考试英语试题含答案

吉林辽源市田家炳高级中学校高二上学期期中考试英语试题含答案

田家炳高中高二2020-2021第一学期期中英语学科试题高二英语试卷第I卷(选择题)第一部分:听力(共两节,20小题,满分30分)。

第一节(共5小题;每小题1.5分,满分7. 5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What are the speakers mainly talking about?A.Turning off the light.B.Power failure.C.Buying air-conditioning.2.How does the man usually go to work?A.By car.B. On foot.C. By bus.3.What color does the man prefer to paint the bedroom?A.Pink.B. Yellow.C.Light blue.4.Where was the man last night?A. At the concert.B.At home.C. In the library.5.What do we know about the man?A.He used to have a car.B.He likes driving.C.He enjoys traveling by car.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题。

从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6.How much should the woman pay for the flat every week if she takes it?A. 17 pounds.B. 70 pounds.C. 30 pounds.7.What does the woman prefer?A.A flat without a kitchen.B.A flat with a big sitting room.C.A room of her own.听第7段材料,回答第8、9题。

吉林省辽源市田家炳高级中学2021-2022高一数学上学期12月月考试题(含解析)

吉林省辽源市田家炳高级中学2021-2022高一数学上学期12月月考试题(含解析)

吉林省辽源市田家炳高级中学2021-2022高一数学上学期12月月考试题(含解析)一、选择题 (每题5分 共60分)1.已知集合{}{}10,1,2,21A B x x =-=-<≤,,则A B =( )A. {1}B. {}0,1C. {}101-,,D.{}101,2-,, 【答案】C 【解析】 【分析】利用交集运算即可得到结果.【详解】∵集合{}{}10,1,2,21A B x x =-=-<≤,, ∴AB ={}101-,,故选:C【点睛】本题考查交集概念及运算,属于基础题. 2.函数()f x =的定义域为( )A. [1,2]B. (1,2]C. (1,2)D.(,1)(2,)-∞⋃+∞【答案】D 【解析】 【分析】根据平方根的定义可知负数没有平方根,又其在分式的分母位置,得到被开方数大于0,列出关于x 的不等式,解二次不等式,即为函数的定义域.【详解】解:由已知得2320x x -+>,解得1x <或2x >,故选:D 。

【点睛】此题属于以函数的定义域为平台,考查了一元二次不等式的解法,利用了转化的思想,是高考中的基本题型.3.已知3log 2a =,123b =,21log 3c =,则( ) A. a b c >>B. b c a >>C. c b a >>D.b ac >>【答案】D 【解析】 【分析】利用有理指数幂的运算性质与对数的运算性质分别比较,,a b c 与0和1的大小得答案. 【详解】解:102331b =>=,3330log 1log log 213a =<=<=,2231log log 10c =<=, ∴b a c >>. 故选:D .【点睛】本题考查指对数值的大小比较,考查对数的运算性质,是基础题. 4.若sin cos 0αα⋅>,则角α的终边在( ) A. 第一、二象限 B. 第一、三象限 C. 第一、四象限 D. 第二、四象限【答案】B 【解析】 【分析】结合三角函数在四象限对应的正负号判断即可 【详解】sin cos 0αα⋅>,sin ,cos αα∴同号,所以角α的终边在第一、三象限故选:B【点睛】本题考查根据三角函数正负判断角所在的象限,属于基础题5.若α是第二象限角,且sin 3α=,则tan α=()A. B. C.D. -【答案】D【解析】 【分析】根据角的范围可确定cos 0α<,利用同角三角函数的平方关系和商数关系可求得结果. 【详解】α是第二象限角 cos 0α∴<1cos 3α∴==-sin 3tan 1cos 3ααα∴===--本题正确选项:D【点睛】本题考查同角三角函数值的求解问题,属于基础题.6.()f x 是奇函数,当0x ≥时,2()log (2)1f x x =+-,则()2f -=( ) A. 2 B. 1C. -2D. -1【答案】D 【解析】 【分析】根据奇函数对称性特点进行求解即可 【详解】()f x 是奇函数,()()22f f ∴-=-,当2x =时,2(2)log (22)11f =+-=,()()221f f ∴-=-=-故选:D【点睛】本题考查奇函数具体函数值的求法,奇函数的对称性,属于基础题 7.()cos 2040-= ( )A.12B.2C. D. 12-【答案】D 【解析】 【分析】利用诱导公式即可求出. 【详解】解:()()1cos 2040cos 2040+3606=cos(120)cos(180120)cos602-=-⨯=--=-=-故选:D .【点睛】本题考查利用诱导公式求特殊角的三角函数值,是基础题. 8.已知幂函数()af x x=图象经过点(,则()4f 的值为 ( ) A.12B. 1C. 2D. 8【答案】C 【解析】 【分析】根据幂函数过点可求出幂函数解析式,即可计算求值.【详解】因为幂函数()af x x =的图象经过点(,2a =,解得12a =, 所以()12f x x=,()12442f ==,故选:C【点睛】本题主要考查了幂函数的解析式,属于容易题. 9.2()log 5f x x x =+-的零点所在区间为( ) A. ()1,2 B. ()2,3C. ()3,4D. ()4,5【答案】C 【解析】 【分析】根据零点存在性定理进行判断即可 【详解】201(1)log 154f =+-=-<,202(2)log 252f =+-=-<,22g 3(3)log 35lo 203f =+-=-<,204(4)log 451f =+-=>22(5)log 55log 055f =+-=>,根据零点存在性定理可得()()340f f ⋅<,则2()log 5f x x x =+-的零点所在区间为()3,4故选:C【点睛】本题考查零点存在性定理,属于基础题10.若()f x 是偶函数,且对任意12,x x ∈(0,)+∞且12x x ≠,都有()()21210-f x f x x x -<,则下列关系式中成立的是( )A. 123()()()234f f f >->B. 132()()()243f f f >->C. 312()()()423f f f >->D. 321()()()432f f f ->>【答案】A 【解析】 【分析】由于对任意的x 1,x 2∈(0,+∞),都有()()21210-f x f x x x -<,可得函数f (x )在(0,+∞)上单调递减,即可得出.【详解】∵对任意的x 1,x 2∈(0,+∞),都有()()21210-f x f x x x -<,∴函数f (x )在(0,+∞)上单调递减, 又∵123234<<, ∴123234f f f ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>, 又∵f (x )是偶函数,∴f (﹣23)=f (23). ∴123234f f f ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>. 故选:A .【点睛】本题考查了函数的奇偶性、单调性的应用,属于基础题. 11.已知角α的终边经过点(,6)P m -,且4cos 5α=-,则m =( ) A. 8B. 8-C. 4D. 4-【答案】B 【解析】【分析】45=-,即可求解,得到答案.【详解】由题意,可得||r OP===根据三角函数的定义,可得4cos5α==-且0m<,解得8m=-.故选B.【点睛】本题主要考查了三角函数的定义的应用,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知()f x是定义在R上的偶函数,且在区间(),0-∞上单调递增,若实数m满足()()11f m f->-,则m的取值范围是()A. (),0-∞ B. ()(),02,-∞+∞ C. (0,2) D. ()2,+∞【答案】C【解析】【分析】根据函数()f x为R上的偶函数,且在区间(),0-∞上单调递增,可得函数在()0,∞+上的单调性,然后将函数不等式转化为自变量的不等式,即可解得。

吉林省辽源市田家炳高级中学高二数学下学期期中试题 理

吉林省辽源市田家炳高级中学高二数学下学期期中试题 理

田家炳高中2017—2018学年度下学期高二期中考试理科数学试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间为120分钟。

一、选择题(本大题共有12个小题。

每小题5分,共60分)1.复数i i z 213--=的共轭复数是( ) A.i -1 B. i +1 C. i -1- D. i +1-2.已知z 是纯虚数,错误!是实数,那么z 等于( ) A .2i B .i C .-i D .-2i3.复数z =2-i 1+i(i 是虚数单位)在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.设()f x 在0x x =处可导,'0()2015f x =,则000()()lim x f x f x x x∆→-+∆∆等于( ) A .0 B .2015 C .-2015 D .不存在5.已知函数c bx ax x f ++=23)(,其导函数)(x f '图象如图所示,则函数)(x f 的极小值是( )A .c b a ++B .c b a ++48C .b a 23+D .c6。

若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是【 C 】A 。

1(,)3+∞ B. 1(,)3-∞ C 。

1[,)3+∞ D 。

1(,]3-∞7.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( )A .4857b b b b +=+B .4857b b b b ⋅=⋅C .4578b b b b ⋅=⋅D .4758b b b b ⋅=⋅8.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●,若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是( B )A .13B .14C .15D .169。

吉林省辽源市田家炳高级中学高二数学上学期期末考试试题理(含解析)

吉林省辽源市田家炳高级中学高二数学上学期期末考试试题理(含解析)
【答案】(1)5辆;(2)170;(3) .
【解析】
【分析】
(1)根据所有长方形面积之和为1,求得未知数 ,计算出区间 长方形的面积之和即为概率,用此数据乘以样本容量即可;
(2)用每个长方形的面积乘以所在区间底边中点值,再求和即可得到结果;
(3)先计算出在 中的车辆数量,再列举出所有的抽取可能性,找出满足题意的可能性,用古典概型的概率计算公式即可求得。
【答案】(1)证明见解析(2)
【解析】
【分析】
(1)建立空间直角坐标系,求出 的坐标,通过计算数量积得出 , ,故 平面 ;
(2)求出平面 的法向量,通过计算两平面的法向量的夹角得出法向量的夹角从而得出二面角 的余弦值。
【详解】
以 为坐标原点,射线 为 轴的正半轴,建立如图所示的空间直角坐标系 。
依题设 .
故选: .
【点睛】本题追要考查是向量共线定理 应用,考查了计算能力,及空间向量的应用,是基础题.
3.执行如图所示的程序框图,输出的k值为
A。 2B. 4
C。 6D。 8
【答案】C
【解析】
【分析】
模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的k的值.
【详解】模拟程序的运行,可得 ,
而当 ,时,例如取a=﹣2,b=﹣1,显然不能推出a>b>0.
故 是a>b>0的必要不充分条件.
故选B.
考点:必要条件、充分条件与充要条件的判断.
8.命题 , 的否定 是( )
A。 B。
C. D。
【答案】B
【解析】
【分析】
按存在性命题的否定的规则写出 即可。
【详解】因命题 为“ , ",它是存在性命题,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题1.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( ) A .1B .0C .-1D .1+i2.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6BC .5D 3.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i4.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 5.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3D .56.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.设2iz i+=,则||z =( )A B C .2D .58.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )A .1BC .2D .49.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z += B .22z i +=C .24z +=D .24z i +=10.复数2ii -的实部与虚部之和为( ) A .35 B .15- C .15D .3511.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1-B .3C .3iD .i -12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i -B .16i -C .16i --D .17i --13.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( ) A .75B .75-C .15D .15-14.已知i 为虚数单位,则43ii =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 15.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi -的模等于( )A BC D二、多选题16.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 17.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =18.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为20.设复数z 满足1z i z+=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =21.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点22.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1-23.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥25.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω=B .31ω=-C .210ωω++=D .ωω>26.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为227.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根 28.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .530.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】 由题意可知=, 故选C 解析:C 【分析】利用复数和三角函数的性质,直接代入运算即可 【详解】由题意可知i e π=cos sin 101i ππ+=-+=-, 故选C2.C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】 , , 所以,, 故选:C.【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】2z i =-,(12)(2)(12)43z i i i i ∴⋅+=-+=+,所以,5z =, 故选:C.3.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i -+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B4.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-.【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.5.D 【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .6.B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B7.B 【分析】利用复数的除法运算先求出,再求出模即可., . 故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i++===-,∴z ==故选:B .8.B 【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.解析:B 【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B.9.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B10.C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C 【点睛】易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .11.B 【分析】化简,利用定义可得的虚部. 【详解】则的虚部等于 故选:B解析:B 【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3 故选:B12.A 【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数. 【详解】 由题意,设,∵是平行四边形,AC 中点和BO 中点相同, ∴,即,∴点对应是,共轭复数为.解析:A 【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数. 【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同, ∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -.故选:A .13.D 【分析】先化简,求出的值即得解. 【详解】 , 所以. 故选:D解析:D 【分析】 先化简345ia bi -+=,求出,ab 的值即得解. 【详解】22(2)342(2)(2)5i i ia bi i i i ---+===++-,所以341,,555a b a b ==-∴+=-. 故选:D14.C 【分析】对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C解析:C 【分析】对43ii -的分子分母同乘以3i +,再化简整理即可求解. 【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C15.C 【分析】首先根据复数相等得到,,再求的模即可. 【详解】 因为,所以,. 所以. 故选:C解析:C 【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可. 【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C二、多选题 16.ACD 【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质. 【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.17.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确;对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误; 对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.21.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.22.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴=A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.23.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.24.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 25.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】 根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.26.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围27.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.28.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.。

相关文档
最新文档