残余应力测量原理

合集下载

x射线残余应力测试原理

x射线残余应力测试原理

x射线残余应力测试原理宝子们!今天咱们来唠唠这个超酷的X射线残余应力测试原理呀。

咱先得知道啥是残余应力呢。

就好比你捏一个小泥人儿,你捏的时候给它施加了各种力,就算你把手松开了,这个小泥人儿里面其实还留着你捏它时候的那些力的影响,这在材料里就叫做残余应力啦。

那这个X射线咋就能把这残余应力给找出来呢?X射线呀,它就像一个超级小的侦探。

当X射线照到材料上的时候,就会发生衍射现象。

这衍射呢,就好像是X射线在材料的原子晶格里面玩了一场超级有趣的弹珠游戏。

原子晶格就像是一个有规则排列的小格子,X射线这个小弹珠打进去,就会按照一定的角度弹出来。

这里面的学问可大了呢。

正常情况下,如果材料没有残余应力,那X射线弹出来的角度啊,强度啊,都是有一定规律的。

但是一旦有了残余应力,这个原子晶格就像是被调皮的小怪兽给挤歪了或者拉变形了。

这时候X射线再进去玩弹珠游戏,弹出来的角度和强度就会发生变化啦。

比如说,要是残余应力是拉应力,就好像把原子晶格给拉长了一点,那X射线弹出来的角度就会跟没有拉应力的时候不一样,可能会变得大一点或者小一点,就看这个拉应力是怎么个拉法喽。

同理,如果是压应力,把原子晶格给压得紧凑了些,X射线的衍射情况又会是另外一种变化。

科学家们就通过测量X射线衍射角度和强度的这些变化,然后用超级复杂的数学公式来计算出残余应力到底有多大。

这就像是根据小弹珠弹出来的奇怪轨迹,倒推这个弹珠游戏场地(原子晶格)被搞成啥样了,从而知道之前施加了什么样的残余应力。

你可别小看这个残余应力哦。

在很多地方它都特别重要呢。

就像在机械制造里面,如果零件有不合适的残余应力,可能这个零件在使用的时候就会莫名其妙地坏掉。

就像你穿了一双不合脚的鞋子,走几步就难受得不行。

通过X射线残余应力测试,就可以提前知道零件的状态,就像给零件做了一个超级细致的健康检查。

而且呀,在建筑材料里也是一样的道理。

要是建筑材料里面残余应力没控制好,那建筑物可能就会有安全隐患呢。

剥层法测残余应力原理

剥层法测残余应力原理

剥层法测残余应力原理宝子,今天咱来唠唠剥层法测残余应力这个超有趣的事儿哈。

咱先得知道啥是残余应力呢?就好比啊,你把一个小弹簧用力拉一下,然后又松开了一部分,但这个弹簧里面还是有一些被你之前拉伸留下的“小情绪”,这个“小情绪”在材料里就是残余应力啦。

那这个剥层法呢,就像是一个特别聪明的小侦探,专门去找出这些残余应力的秘密。

想象一下哈,有一块金属材料,它里面藏着残余应力。

这个剥层法呢,就开始从这个材料的表面一层一层地剥开,就像剥洋葱一样。

为啥要这样剥呢?这是因为当我们把表面的一层剥掉的时候,原来在这一层里的残余应力就被释放了。

就好比一个被关在小盒子里的小精灵,盒子一打开,小精灵就跑出来啦。

那这个应力释放了之后呢,材料就会发生变形哦。

这个变形可有意思啦,它就像是材料在跟我们悄悄说:“我之前可是被应力压着呢,现在可算松快一点啦。

”我们就可以通过测量这个变形来反推之前在这一层里的应力到底有多大。

比如说,如果材料变形得很厉害,那就说明之前在这一层里的残余应力很大;要是变形比较小呢,那残余应力也就比较小。

不过呀,这个测量变形可不是那么简单的事儿呢。

就像你要量一个调皮的小虫子的长度一样,得特别小心。

我们会用到一些超级精密的仪器,像应变片之类的。

应变片就像是一个超级敏感的小耳朵,它能很敏锐地听到材料变形时发出的“小声音”,然后把这个信息告诉我们。

而且哦,每剥掉一层,我们都要重复这个过程。

就像是爬楼梯一样,一层一层地往上走,每一层都去发现它的应力秘密。

这个过程就像是在探索一个神秘的宝藏,每剥开一层就离宝藏更近一步。

在这个过程中呢,还有好多小细节要注意。

比如说,剥层的时候要保证剥得均匀,不能这边厚那边薄的,不然就像你走路的时候一只脚的鞋子厚一只脚的鞋子薄,肯定走不稳呀。

如果剥层不均匀,那测量出来的应力就会不准确,这个小侦探就会被误导啦。

再说说这个计算应力的方法吧。

这里面用到了一些数学小魔法哦。

根据材料力学的一些原理,我们把测量到的变形数据放到一些公式里,就像把食材放到魔法锅里一样,然后搅拌搅拌,就能算出应力啦。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法1、什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

2、X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的E.Mchearauch 提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

3、X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

X射线衍射方法主要是测试沿试样表面某一方向上的内应力σφ。

中子衍射测残余应力

中子衍射测残余应力

中子衍射测残余应力
中子衍射测残余应力——一种非破坏性测试技术
中子衍射测残余应力是一种非破坏性测试技术,可以用于测量物
体中的残余应力状态。

这种技术具有高精度、高灵敏度和非破坏性的
特点,适用于多种不同材料的测量。

中子衍射测残余应力的原理
中子在物质中的散射现象被称为中子衍射。

当中子通过一个材料时,受到物体中的原子排列方式的影响,会发生散射。

这些散射产生
的中子会呈现出干涉条纹,可以用来测量物体中的残余应力状态。

中子衍射测残余应力的优点
1. 非破坏性
中子衍射测量可以在不破坏材料的情况下进行,不会影响材料的性能
和寿命。

同时,材料也不需要进行任何准备工作。

2. 精度高
中子衍射测量的精度非常高,对于微小的应力差异都能够准确测量。

3. 对多种材料适用
中子衍射测量适用于多种材料,包括金属、陶瓷、塑料等。

可以应用
于工业、材料科学等领域。

中子衍射测残余应力的应用
1. 研究材料性能
中子衍射测量可以用于研究材料性能,包括压力、温度、疲劳等方面。

可以帮助科研人员更好地了解材料的行为。

2. 制造质量控制
中子衍射测量可以用于制造质量控制,可以测量零件的残余应力状态,帮助生产商提高产品质量。

3. 材料检测
中子衍射测量可以检测材料中的应力状态,如果存在异常可以及时发现,避免出现意外事故。

总之,中子衍射测残余应力是一种非常有价值的测试技术,可以用于多种领域,具有高精度、高灵敏度和非破坏性的特点。

未来,将有更多的应用场景出现。

盲孔法测残余应力原理及几种打孔方式简介[1]

盲孔法测残余应力原理及几种打孔方式简介[1]

第15届全国残余应力学术交流会论文盲孔法测残余应力原理及几种打孔方式简介王晓洪赵怀普(郑州机械研究所河南郑州450052)引言机械零部件和构件在制造加工的过程中由于不同的制造工艺,例如铸造、切削、焊接、热处理等,都会在材料中产生残余应力。

残余应力的存在,一方面工件会降低强度,使工件在制造时产生变形和开裂等工艺缺陷;另一方面又会在制造后的自然释放过程中使工件的尺寸发生变化或者使其疲劳强度等力学性能降低,从而影响到它们的使用安全性。

因而,了解残余应力的状态对于确保工件的安全性和可靠性有着非常重要的意义。

目前,比较成熟且普遍应用的残余应力测试方法分为两大类:无损检测法和机械检测法。

无损法在检测过程中不对工件产生创伤,机械法在测量的过程中要对工件体做全部或部分的破坏,例如切割法(又称剖分法)和环芯法对工件的破坏较大,而盲孔法对工件的破坏较小,因而盲孔法又称半无损法。

本文主要针对盲孔法的原理和几种打孔方式给于介绍。

一、盲孔法测残余应力的基本原理盲孔法最早由由德国人J.Mathar于1934年首先提出,以后经长期不断地改进和完善,目前已成为应用最广泛的残余应力测量方法之一。

美国材料试验协会ASTM已于1981年制订了测量标准(2)。

盲孔法测量残余应力的原理如图1所示,假设一个各向同性材料上某一区域内存在一般状态的残余应力场,其最大、最小主应力分别为σ1和σ2,在该区域表面上粘贴一专用应变花,在应变花中心打一小孔,引起孔边应力释放,从而在应变花丝删区域内产生释放应变,根据应变花测量的释放应变就可以计算出残余应力:图1 盲孔法残余应力测量原理图()()()()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧---=--+-++=--+--+=1331223122313122312231311222)(442)(44εεεεεθεεεεεεεσεεεεεεεσtgBEAEBEAE(1)式(1)中:ε1、ε2、ε3—三个方向释放应变;σ1、σ2 —最大、最小主应力;θ—σ1与1号片参考轴的夹角;E —材料弹性模量;A、B —两个释放系数。

x射线衍射测量残余应力实验指导书

x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。

2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。

二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。

三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。

从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。

材料中内应力分为三大类。

第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。

由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。

第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。

第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。

第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。

在通常情况下, 我们测得是残余应力是指第一类残余应力。

当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。

当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。

材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。

原理见图1。

由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。

当然更适用于薄膜材料的残余应力测量。

图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。

压痕法残余应力测试

压痕法残余应力测试

压痕法残余应力测试一、什么是压痕法残余应力测试?压痕法残余应力测试是一种非破坏性的材料力学测试方法,用于测量材料表面的残余应力。

该方法通过在材料表面制作一个微小的凸起,然后测量凸起周围的表面形变来计算出该区域的残余应力。

这种测试方法可以用于各种材料,包括金属、陶瓷、塑料等。

二、压痕法残余应力测试原理1. 原理概述压痕法残余应力测试是通过对材料表面进行微小的变形来测量其残余应力。

当在材料表面施加一定大小的载荷时,会形成一个微小的凸起。

这个凸起周围会产生一定程度的塑性变形,从而导致该区域内存在着残余应力。

2. 测试步骤压痕法残余应力测试主要分为以下几个步骤:(1)选择适当的载荷和工具尖头;(2)将工具尖头放置在待测材料表面上,并施加一定大小的载荷;(3)卸载载荷并移除工具尖头;(4)测量凸起周围的表面形变,并根据形变计算出残余应力。

三、压痕法残余应力测试的应用1. 应用领域压痕法残余应力测试可以用于各种材料的残余应力测量,特别是对于那些难以进行传统拉伸或压缩测试的材料,如薄膜、涂层等。

该测试方法在金属、陶瓷、塑料等行业中得到广泛应用。

2. 应用案例(1)汽车工业:在汽车发动机活塞环上使用该方法来检测其表面的残余应力,以确保其正常工作并延长使用寿命。

(2)航空航天工业:在航空航天部件上使用该方法来检测其表面的残余应力,以确保其安全可靠。

(3)电子行业:在电子元器件上使用该方法来检测其表面的残余应力,以确保其性能和可靠性。

四、压痕法残余应力测试的优点和局限性1. 优点(1)非破坏性:与传统拉伸或压缩测试相比,压痕法残余应力测试不会对材料造成破坏。

(2)简便易行:该测试方法只需要一些简单的工具和设备就可以完成,不需要复杂的仪器和设备。

(3)适用范围广:该方法适用于各种材料,包括金属、陶瓷、塑料等。

2. 局限性(1)精度受限:由于测量的是表面残余应力,因此该测试方法的精度受到表面形貌和材料性质的影响。

(2)局部性强:由于测量的是一个小区域内的残余应力,因此该测试方法不能反映整个材料内部的应力分布情况。

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。

但是,习惯上将残余应力分为微观应力和宏观应力。

两种应力在X射线衍射谱中的表现是不相同的。

微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。

这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。

通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。

宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。

一般情况下,残余应力的术语就是指在宏观上存在的这种应力。

宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。

当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。

通过测量样品衍峰的位移情况,可以求得残余应力。

X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。

20世纪初,人们就已经开始利用X射线来测定晶体的应力。

后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。

1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。

X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。

其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。

用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。

X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

残余应力测量原理
残余应力的检测对于热处理工艺、表面强化处理工艺、消除应力工艺的效果及废品分析等都有很重要的意义,聚航科技为大家总结盲孔法及磁测法残余应力测量原理及相关产品。

盲孔法残余应力测量
盲孔法残余应力测量的原理是在平衡状态下的原始应力场上钻孔,以去除一部分具有应力的金属,而使圆孔附近部分金属内的应力得到松弛,钻孔破坏了原来的应力平衡状态而使应力重新分布,并呈现新的应力平衡,从而使圆孔附近的金属发生位移或应变,通过高灵敏度的应变仪,测量钻孔后的应变量,就可以计算原应力场的应力值。

磁测法残余应力测量
磁测法残余应力检测法主要是通过测定铁磁材料在内应力的作用下磁导率发生变化确定残余应力的大小和方向。

铁磁材料其磁化方向为易磁化轴向方向,同时具有磁致伸缩性效应,且磁致伸缩系数是各向异性的,在磁场作用下,应力产生磁各向异性。

磁导率作为张量与应力张量相似。

通过精密传感器和高精度的测量电路,将磁导率变化转变为电信号,输出电流(或电压)值来反映应力值的变化,并通过装有特定残余应力计算机软件的计算机计算,得出残余应力的大小、方向和应力的变化趋势。

以上就是盲孔法及磁测法残余应力测量原理介绍,如果您那还有其他的疑问,可随时联系聚航科技,我们很愿意为您答疑解惑。

相关文档
最新文档