第七章 分子结构和晶体结构

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

无机材料科学基础___第二章晶体结构

第 2 章结晶结构 一、名词解释 1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体 2.空间点阵与晶胞: 空间点阵是几何点在三维空间内周期性的重复排列 晶胞:反应晶体周期性和对称性的最小单元 3.配位数与配位多面体: 化合物中中心原子周围的配位原子个数 成配位关系的原子或离子连线所构成的几何多面体 4.离子极化: 在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶: 同一物质在不同的热力学条件下具有不同的晶体结构 化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构 6.正尖晶石与反尖晶石: 正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。 反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。 二、填空与选择 1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。 2.空间点阵是由 C 在空间作有规律的重复排列。( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。 4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为 6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 , 八面体空隙数为 12 ,四面体空隙数为 6 。 5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

无机化学:第七章 晶体结构

第七章 晶体结构 二、离子晶体 3、离子极化理论 离子极化的定义——当离子中的电子置于外加电场中,离子的原子核就会受到正电场的排斥和负电场的吸引;而离子中的电子则会受到正电场的吸引和负电场的排斥,原子核与电子发生相对位移,导致离子变形而产生诱导偶极。如图所示,此过程称为离子的极化。 离子极化的强弱取决于两个因素:①离子的极化力;②离子的变形性。 ( a ) 无电场作用 ( b ) 外加电场作用 阳离子、阴离子既有极化力,又有变形性。 通常阳离子半径小,电场强,“极化力”显著。 阴离子半径大,电子云易变形,“变形性”显著。 A 、离子的极化力『主动』 定义:某种离子使异号离子极化而发生变形的能力。 离子的极化力可以用“离子势(?)”或“有效离子势(*?)”来表示。 ?(或*?)→∞?离子极化力→∞。 定义式: =Z r ?(主要用于s 区,p 区) * *= Z r ?(主要用于d 区,ds 区) 式中Z 为离子电荷(绝对值), Z *为有效核电荷,r 为离子半径(pm ),常用 L.Pauling 半径。 离子的极化力与离子的电荷、半径以及离子的电子构型密切相关。 离子的电子构型 ①阴离子:ns 2np 6 8电子构型 ②阳离子价电子分布通式 离子电子构型 实例 1s 2 2(稀有气体型) Li +、Be 2+ ns 2np 6 8(稀有气体型) Na +、Mg 2+、Al 3+ ns 2np 6nd 1~9 9~17 Cr 3+、Mn 2+、Fe 2+ ns 2np 6nd 10 18 Ag +、Zn 2+、Hg 2+ (n-1)s 2(n-1)p 6(n-1)d 10ns 2 18+2 Sn 2+、Pb 2+、Bi 3+ a 、q →∞,0r →,电场强度→∞?离子极化力→∞; b 、离子电荷相同,半径相近时,离子的电子构型决定离子极化力的大小。(18+2)e ,18e ,2e >(9~17)e >8e ;『原因: d 电子云“发散”,对核电荷屏蔽不完全,使 Z *↑,对异号离子极

高中化学选修三——晶体结构与性质.doc

晶体结构与性质 一、晶体的常识1.晶体与非晶体 晶体与非晶体的本质差异 晶体非晶体 自范性 有(能自发呈现多面体外形)无(不能自发呈现多面体外形) 微观结构 原子在三维空间里呈周期性有序排列 原子排列相对无序 晶体呈现自范性的条件:晶体生长的速率适当 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法)2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=8×晶胞顶角上的原子数+4×晶胞棱上的原子+2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? 1 1 1

eg:1.晶体具有各向异性。如蓝晶(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在() ①硬度②导热性③导电性④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是() A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO2一定是晶体 3.下图是CO2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H2O、H2S、NH3、CH4、HX等 b.酸:H2SO4 、HNO3、

专题08 分子结构与晶体结构

专题八分子结构与晶体结构 ★双基知识 1.几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构(5)C n的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体 ★巧思巧解 (1)异类晶体:原子晶体(离子晶体)分别大于分子晶体

一般地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:对于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一般地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,可以证明某化合物内一定存在离子键的是:( ) A .可以溶于水 B.具有较高的熔点 C .水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A .LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na +,○表示Cl - ,已知食盐的密度为ρg/cm 3, NaCl 的摩尔质量为M g/mol ,阿佛加得罗常数为N ,则在食盐晶体是Na +离子和Cl - 离子的 间距大约是: A . B. 3 2N M C. D. [例4]:根据石墨晶体结构示意图及提供的数据计算(保留三位有效数值)。有关公式、数据见框图。⑴12 g 石墨中,正六边形的数目有多少? ⑵求石墨密度。 ⑶求12克石墨的体积。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

第七章 晶体的点阵结构和晶体的性质

第七章晶体的点阵结构和晶体的性质

第七章晶体的点阵结构和晶体的性质 一、概念及问答题 1、由于晶体内部原子或分子按周期性规律排列,使晶体具有哪些共同的性质?答:a. 均匀性,一块晶体内部各个部分的宏观性质是相同的。 b. 各向异性,在晶体中不同的方向上具有不同的物理性质。 c. 自发地形成多面体外形,晶体在生长过程中自发地形成晶面,晶面相交 成为晶棱,晶棱会聚成项点,从而出现具有多面体外形的特点。 2、点阵 答:点阵是一组无限的点,连结其中任意两点可得一向量,将各个点按此向量平移能使它复原,凡满足这条件的一组点称为点阵。点阵中的每个点具有完全相同的周围环境。 3、晶体的结构基元 点阵结构中每个点阵点所代表的具体内容,包括原子或分子的种类和数量及其在空间按一定方式排列的结构,称为晶体的结构基元。结构基元与点阵点是一一对应的。 4、晶体结构 在晶体点阵中各点阵点的位置上,按同一种方式安置结构基元,就得整个晶体的结构,所以地晶体结构示意表示为:晶体结构=点阵+结构基元 5、直线点阵 根据晶体结构的周期性,将沿着晶棱方向周期地重复排列的结构基元,抽象出一组分布在同一直线上等距离的点列,称为直线点阵。 6、晶胞 按照晶体内部结构的周期性,划分出一个个大小和形状完全一样的平行六面体,以代表晶体结构的基本重复单位,叫晶胞。晶胞的形状一定是平行六面体。晶胞是构成晶体结构的基础,其化学成分即晶胞内各个原子的个数比与晶体的化学式一样,一个晶胞中包含一个结构基元,为素晶胞,包今两个或两个以上结构基元为复晶胞,分别与点阵中素单位与复单位相对应。 7、晶体中一般分哪几个晶系? 根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它自己的特征对

第二章 晶体结构

晶体结构分类方法

(B) 2.1 符号中的第一个大写字母表示结构的类型,后面的数字为第个大写字母表示结构的类型后面的数字为顺序号,不同的顺序号表示不同的结构,例如A1是铜型结 结构等。 构,B2是CsCl型结构等,C3是FeS 2

Pearson符号 它所属的布喇菲点阵类型(例如P、I、F、C等),第三个数 等) 字表示单胞中的原子数。 2.2 金属单质的晶体结构 在元素周期表中,共有70多种金属元素。

由于金属键不具有饱和性和方向性,使金属的晶体结构倾向配位数(

将用原子刚性球模型讨论每个单胞所含的原子数以及这些构中的间隙等。 2.2.1 面心立方结构 结构符号是A1,Pearson 符号是c F4。 原子坐标为0 0 0,0 1/2 1/2,1/2 0 1/2和1/2 1/2 0 每个晶胞含4个原子 最紧密排列面是{111},密排方向 是<110>。原子直径是a/2<110>的 长度,即 面心立方结构的晶胞体积为a 3, 晶胞内含4个原子,所以它的致密 度η为4 2a r =423443443 3 33? ??? ????×=×=ππηa r 每个原子有个最近邻原子,它的 配位数(CN )是12。 74 .062 ==πa a

面心立方结构的最密 排面是{111},面心立 方结构是以{111}最密 排面按一定的次序堆 垛起来的。 第一层{111}面上有两个 可堆放的位置:▲和▼位 可堆放的位置▲和▼位 置,在第二层只能放在一 种位置,在面上每个球和 下层3个球相切,也和上 层3个球相切。 第一层为A,第 二放在B 位置, 第三层放在C 位 置,第四层在 置第四层在 放回A位置。 {111}面 按…abcabc… 顺序排列,这 就形成面心立 方结构。

第七章习题分子结构

第七章习题 1. 指出下列离子分边属于何种电子构型: Ti4+, Be2+, Cr3+, Fe2+, Ag+, Cu2+, Zn2+, Sn4+, Pb2+, Tl+, S2-, Br- 2. 已知KI的晶格能(U)为-631.9 kJ·mol-1,钾的升华热[S(K)]为90.0 kJ·mol-1,钾的电离能(I)为418.9 kJ·mol-1,碘的升华热[S(I)]为62.4kJ·mol-1,碘的解离能(D)为151 kJ·mol-1,碘的电子亲核能(E)为-310.5 kJ·mol-1,求碘化钾的生成热(△f H) 3. 根据价键理论画出下列分子的电子结构式(可用一根短线表示一对公用电子) BCl3, PH3, CS2, HCN, OF2, H2O2, N2H4, AsCl3, SeF6 4. 试用杂化轨道理论说明BF3是平面三角形,而NF3是三角锥形。 5. 指出下列化合物的中心原子可能采取的杂化类型,并预测其分子的几何构型。 BBr3, SiH4, PH3, SeF6 6. 将下列分子按照键角从大到小排列: BF3, BeCl2, SiH4, H2S, PH3, SF6 7. 用价层电子对互斥理论预言下列分子和离子的几何构型. CS2, NO2-, ClO2-, I3-, NO3-, BrF3, PCl4+, BrF-, PF5, BrF5, [AlF6]3- 8. 根据分子轨道理论比较N2和N2+键能的大小。 9. 根据分子轨道理论判断O2+, O2, O2-, O22-的键级和单电子数。 10. 用分子轨道理论解释: (1)氢分子离子H2+可以存在。 (2)Be2为顺磁性物质。 (3)N2分子不存在。 11. 试问下列分子中哪些是极性的?那些是非极性的?为什么? CH4, CHCl3, BCl3, NCl3, H2S, CS2 12. 试比较下列各对分子偶极矩的大小: (1) CO2和CS2(2) CCl4和CH4(3)PH3和NH3 (4)BF3和NF3(5)H2O和H2S 13. 将下列化合物按熔点从高到低的顺序排列: NaF,NaCl,NaBr,NaI,SiF4,SiCl4,SiBr4,SiI4 14. 试用离子极化观点解释: (1)KCl熔点高于GeCl4 (2)ZnCl2熔点低于CaCl2 (3)FeCl3熔点低于FeCl2 15. 下列说法是否正确?为什么? (1)分子中的化学键为极性键,则分子也为极性分子。 (2)Mn2O7中Mn(Ⅶ)正电荷高,半径小,所以该化合物的熔点比MnO高。 (3)色散力仅存在与非极性分子间。 (4)3电子π键比2电子π键的键能大。 16. 指出下列各对分子间存在的分子间作用力的类型(取向力、诱导力、色散力和氢键):(1)苯和CCl4(2)甲醇和H2O (3)CO2和H2O 4)HBr和HI 17. 下列化合物中哪些自身能够形成氢键? C2H6, H2O2, C2H5OH, CH3CHO, H3BO3, H2SO4, (CH3)2O 18. 比较两种化合物熔沸点高低,并说明原因。 (1)乙醇(C2H5OH)和二甲醚(CH3OCH3)组成相同,但前者的沸点为78.5℃,而后者的沸点

第二章材料中的晶体结构

第二章材料中的晶体结构 基本要求:理解离子晶体结构、共价晶体结构。掌握金属的晶体结构和金属的相结构,熟练掌握晶体的空间点阵和晶向指数和晶面指数表达方法。 重点:空间点阵及有关概念,晶向、晶面指数的标定,典型金属的晶体结构。难点:六方晶系布拉菲指数标定,原子的堆垛方式。 §2.1 晶体与非晶体 1.晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 2. 非晶体:非晶体在整体上是无序的;近程有序。 3. 晶体的特征 周期性 有固定的凝固点和熔点 各向异性 4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”) 5.晶体与非晶体的相互转化 思考题: 常见的金属基本上都是晶体,但为什么不显示各向同性? §2.2 晶体学基础 §2.2.1 空间点阵和晶胞 1.基本概念 阵点、空间点阵 晶格 晶胞:能保持点阵特征的最基本单元

2.晶胞的选取原则: (1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。 3. 描述晶胞的六参数 §2.2.2 晶系和布拉菲点阵 1.晶系 2. 十四种布拉菲点阵 晶体结构和空间点阵的区别 §2.2.3 晶面指数和晶向指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。 1.晶向指数的标定 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边

第二章晶体结构

第二章 晶体结构 2.1 (1)证明:如图所示,六角层内最近邻原子间距为a ,而相邻两层间的最近邻原子间距为: ( )2 1 2 2 4 3 c a d +=, 当a d =时构成理想的密堆六角结构,此时有: ( )2 1 2 2 4 3 c a a +=, 由此解出,() 633.138 2 1==a c (2)解:(2)体心立方每个单胞包含2个基元,一个基元所占的体积为 23 c c a V = , 单位体积内的格点数为. 1 Vc 六角密堆积每个单胞包含6个基元,一个基元所占的体积为 3 2 1 222 23843436/323a a a c a c a a V s = ? ?? ???==???? ? ????= 因为密度不变,所以 s c V V 11=,即:3 3 2 22/a a c = nm a a c s 377.02 /6 1== nm a c s 615.0633.1== 2.2证明: 设简单六角布拉菲格子基矢如图示 :

∧ ∧∧ ∧ =+ = =z c a y a x a a x a a 321, 2 32 , 则其倒格子的三个基矢为 ()( )( ) ∧ ∧ ∧∧= == ?=???? ??-=?=z c b y a a a b y x a a a b ππ ππ ππ 223322233223 2133 211323 211 另知21,b b 的夹角为120度,且 a 34π= =,2313,b b b b ⊥⊥ 故简单六角布拉菲格子的倒格子仍为简单六角,倒格子的晶格常数分别为 a c 34, 2ππ,倒格 子相对于正格子绕c 轴旋转30度,(如图中标出321,,b b b 更清晰) 2.3 体心立方

分子结构与晶体结构

分子结构与晶体结构 ★双基知识 几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构 (5)Cn的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体★巧思巧解 2.四种晶体的比较

晶体类型离子晶体原子晶体分子晶体金属晶体 存在粒子 粒子间作用 熔、沸点 硬度 溶解性 导电性 实例 3.晶体熔、沸点比较 (1)异类晶体:原子晶体(离子晶体)分不大于分子晶体 一样地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:关于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一样地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,能够证明某化合物内一定存在离子键的是:()A.能够溶于水 B.具有较高的熔点 C.水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A.LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na+,○表示Cl-,已知食盐的密度为ρg/cm3,NaCl的摩尔质量为M g/mol,阿佛加得罗常数为N,则在食盐晶体是Na+离子和Cl-离子的间距大约是:

分子结构与晶体结构

第七章分子结构与晶体结构 第一节离子键 一、离子键的形成和特征 1、离子键的形成 电负性I1或Y1(KJ/mol) 电离能很小的金属原子:Na 0.9 496 K 0.8 419 电子亲合能很大的非金属原子:Cl 3.0 -348.8 O 3.5 -141 电负性相差大的元素相遇,一失电子,一得电子,它们之间以静电引力相结合,形成离子键。 ④:阳阴离子间具有静电引力,两原子的电子云间存在排斥力,两原子核间存在相互排斥力,当两原子接近到一定距离,引力=斥力,(此时整个体系能量最低),形成离子键。 2、离子键的特征 ① 本质:阴、阳离子间的静电引力 ② 无方向性、饱和性 只要空间允许,尽可能多地吸引带相反电荷的离子(任何方向,尽可能多)。但总体来说,有一定比例。 二、离子的特性 1、离子的电荷 离子化合物AmBn:A n+,B m- +n﹥+3,很少见 2、离子的电子层结构 简单阴离子的电子构型,一般与同周期希有气体原子电子层构型相同。 简单的阳离子构型:

3、离子半径 将阴阳离子看成是保持着一定距离的两个球体。 d = r+ + r-单位:pm(10-12m) 规律: ①同一元素: 负离子半径>原子半径>正离子半径 低价负离子半径>高价负离子半径 低价正离子半径>高价正离子半径 例: ②同一周期 从左到右,阳离子:正电荷数↑,半径↓ 阴离子:负电荷数↓,半径↓ ③同一主族 电荷数基本相同,从上到下,半径↑(∵电子层增加) 离子半径↓,离子间引力↑,离子键强度↑,熔、沸点↑,硬度↑ 第二节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫作共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。

分子结构与晶体结构

第2~3章 分子结构与晶体结构 1、已知下列表中数据,求KCl 晶格能 2、写出氯酸根离子 ClO 3- 的路易斯结构式. Cl 原子的电负性小于O 原子,意味着不存在 O -O 之间的键合. 合理的排布应该如下所示: ClO 3-离子中价电子总数等于26(四个原子的价电子数相加再加1), 扣除3个单键的6个电子,余下的20个电子以孤对方式分配给四个原子, 使它们均满足八隅律的要求. 3、判断 OF 2、XeF 4分子的基本形状. 写出路易斯结构式, 并读出中心原子周围价电子对的总数:中心原子价层有4对电子. 4 对价电子的理想排布方式为正四面体, 但考虑到其中包括两个孤对, 所以分子的实际几何形状为角形, 相当于 AB 2E 2 型分子. E D I S H U U E D I S H -+++?-=∴-+-++ +=?21 )()(2 1 θf θf Cl O O O Cl O O O F — O —

XeF4中心原子价层有6 对电子. 理想排布方式为正八面体, 但考虑到其中包括两个孤对, 所以分子的实际几何形状为平面四方形, 相当于AB4E2 型 分子. 苯、二氧化碳、臭氧、碳酸根分子的化学键(1)、苯分子中的p-p大π键苯分子中碳原子采用sp2杂化,3个杂化轨道分别用于形成3个σ键,故苯分子有键角为120 °的平面结构的σ骨架,苯分子的每个碳原子尚有一个未参加杂化的p轨道,垂直于分子平面而相互平行,6 个“肩并肩”的平行p轨道上共有6个电子在一起形成弥散在整个苯环的p-p大π键,符号为π 6 6(2)、二氧化碳分子里的大π键 分子中碳原子采用sp杂化,形成直线型的分子σ骨架O-C- O ,每个碳原子尚有二个未参加杂化的p轨道,其空间取向为相互垂直且与sp杂化轨道的 轴呈正交关系。形成两套3原子4电子符号为π 3 4的p-p大π键(3)、臭氧中的大π键 分子的中心氧原子采用sp2杂化,形成平面三角形,中心氧原子尚有一个未参加杂化的p轨道,垂直于分子平面,端位的2个氧原子也各有一个垂直于 分子平面的p轨道,“肩并肩” 形成符号为π 3 4的p-p大π键(4)、碳酸根中的大π键分子中碳原子采用sp2杂化,形成平面三角形,碳原子尚有一个未参加杂化的p轨道,垂直于分子平面,端位的3个氧原子也各有一个垂直于分子 平面的p轨道,“肩并肩” 形成符号为π 46的p-p大π键(1)CO 2 、CNS-、NO 2 +、N 3-通式AX 2 ,价电子数16,直线型,2个л4 3 (2)CO 3 2-、NO 3 -、SO 3 通式AX 3,总价电子数24,平面三角形,1个л6 4 (3)SO 2 、O 3 、NO 2 -通式 AX 2 ,价电子数18,V字型, (4)SO 42-、PO 4 3-通式AX 4 ,价电子数32,正四面体(5)PO 3 3-、SO 3 2-、 ClO 3-通式AX 3 ,价电子数26,三角锥型

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

分子结构与晶体结构

第七章分子结构与晶体结构 序言 第一节离子键 第二节共价键理论 第三节杂化轨道理论与分子几何构型第四节晶体的特征 第五节离子晶体 第六节原子晶体 第七节分子间力和氢键 第八节金属晶体 第九节离子极化 第十节混合型晶体

序言: v原子怎样结合成为分子?-化学键?离子键 Link ?共价键 ?金属键 v分子的形状?-分子构型 ?价电子对互斥理论 v分子怎样组成物质材料?-分子间作用力v固体材料的结构? -晶体结构 -无定型结构

价电子(Valence electrons )·····H ·He ::N ··O ·:Cl ·K ·Mg: :Ne :· ·········K ·+ :Cl ·→K +[:Cl:]- ····失或得电子→稳定结构(主族) Loss or gain electrons →octet rule 为什么惰性气体稳定? n s 2n p 6 八电子层结构 ????

化学键—分子中的两个(或多个)原子之间的相互作用 第一节离子键 1916 年德国科学家Kossel( 科塞尔) 提出离子键理论 一离子键的形成(以NaCl为例) 第一步电子转移形成离子: Na -e ——Na+,Cl+ e ——Cl- 相应的电子构型变化: 2s 2 2p 6 3s 1——2s 2 2p 6 ,3s 2 3p 5 ——3s 2 3p 6 形成Ne和Ar的稀有气体原子的结构,形成稳定离子。

第二步靠静电吸引,形成化学键。 体系的势能与核间距之间的关系如图所示: V Vr0 r0r 横坐标核间距r ;纵坐标体系的势能V。 纵坐标的零点当r 无穷大时,即两核之间无限远时的势能。 下面来考察Na+和Cl-彼此接近的过程中,势能V 的变化。 ,当r 减小时,正负离子靠静电相互吸图中可见:r > r 引,势能V 减小,体系趋于稳定。

无机分析化学第七章习题解答 分子结构

第七章习题解答 分子结构 3. B Cl Cl Cl P H H H C S S H CN O F F O H O H H H N H (三角锥) (正八面体) 4. P150 BF 3分子中, B 的价电子为2S 22P 1???→激发 2S 22P 1 ? 2Py 12sp ??? →杂化 形成三角SP 2 杂化轨道(平面三角形) 3F λ??????→与个形成三个键 BF 3 平面三角形分子。 NF 3 :N 的价电子为2S 2 2P 3 3sp ?????→不等性杂化 三个成单的 SP 3杂化轨道 3F λ??????→与个形成三个键 三角锥形的NF 3 分子。 5. BBr 3 中心原子B :SP 2等性杂化;分子构型为平面三角形。 SiH 4 中心原子Si :SP 3杂化轨道,正四面体 PH 3 中心原子 P :SP 3杂化轨道,三角锥形 SeF 6 中心原子Se :d 2sp 3杂化,正八面体。 7. CS 2 中心原子C 电子对数4 22 =;价电子对构型:直线型 分子的几何构型为直线型。 2 NO - 中心原子N :电子对数() 532 --1= ; 价电子对构型:平面三角形 2NO - 离子的几何构型为“角形” 2 ClO - 中心原子Cl , 价电子对数() 7142 --= ; 价电子对构型:正四面体; 2ClO - 的构型为直线型。

3I - 中心离子I - ;价电子对数 ()712 52 --+=; 价电子对构型:三角双锥;3I - 的几何构型为直线型。 3NO - 中心原子N ;价电子对数 () 5132 --=; 价电子对构型:平面三角形;3NO - 的几何构型为平面三角形 3BrF 中心原子 Br ;价电子对数 73 52 +=; 价电子对构型:三角双锥;分子的几何构型为“T ”形。 4 PCl + 中心原子 P ;价电子对数541 42 +-=; 价电子对构型:正四面体;离子的几何构型:正四面体 4BrF - 中心原子 Br ;价电子对数 () 74162 +--=; 价层电子对构型:正八面体;离子的几何构型为:平面正方形 5PF 中心原子 P ;价层电子对数 55 52 +=; 价层电子对构型:三角双锥;分子的几何构型:三角双锥 5BrF 中心原子Br ;价电子对数 7+5 62 =; 价层电子对构型:正八面体;5BrF 分子的几何构造:四方锥 36[]AlF - 中心原子:Al ; 价电子对数 () 36362 +--=; 价层电子对构型:正八面体;36[]AlF -离子的几何构型:正八面体 11. 4CH :非极性分子; 虽然C -H 键有极性,但由于4CH 是空间正四面体分子,键的 极性刚好抵消。 3CHCl 极性分子;由于C -H 键和C -Cl 键的极性不同,虽然分子是对称的正四面体,但 键的极性不能相互抵消。 3BCl 非极性分子;分子为平面三角形,对称结构,B -Cl 键的极性相互抵消。 3NCl 极性分子;分子为三角锥形,不对称,N -Cl 键的极性不能抵消。 2H S 极性分子;分子为“V ” ,不对称,H -S 键的极性不能抵消 。

相关文档
最新文档