复数的乘法和除法 优秀课ppt
合集下载
复数的乘法与除法优质课件

2.复数的除法运算法则的记忆
复数除法一般先写成分数形式,再把分母实数化,即
分子、分母同乘以分母的共轭复数,若分母为纯虚
数,则只需同乘以i.
3.记住以下结果,可提高运算速度.
(1)(1+i) =2i,(1-i) =-2i.
1- i 1+ i (2) =-i, =i. 1+ i 1- i
1 (3) =-i. i
2
2
3 i 1. (2012 · 新课标全国卷)复数z 的共轭复数是( D ) 2i
A.2+i
B.2-i
C.-1+i
D.-1-i
2.(2012·山东高考)若复数z满足z(2-i)=11+7i (i为虚数单位),则z为( A ) A.3+5i B.3-5i C.-3+5i D.-3-5i
1.复数的乘法法则类似于两个多项式相乘,展开后要把 i2换成-1,并将实部与虚部分别合并.若求几个复数的连 乘积,则可利用交换律和结合律每次两两相乘. 2.复数的除法法则类似于两个根式的除法运算,一般先 将除法运算式写成分数形式,再将分子、分母同乘以分母 的共轭复数,把分母化为实数,分子按乘法法则运算. 3.对复数的乘法、除法运算要求掌握它们的算法,不 要求记忆运算公式.
复数的除法是乘法的逆运算,满足 (c+di)(x+yi)=a+bi (c+di≠0)的复数 x+yi , 叫做复数a+bi除以复数c+di的商,
记作
a bi . c di
a bi (a bi)(c di) c di (c di)(c di)
(ac bd) (bc ad)i c2 d 2
2 2
复数的乘除法ppt

性质
复数乘法满足结合律、交换律和单 位元存在性,即对于任何复数 z 和 整数 n,有 z^n = n个z相乘。
复数乘法的几何意义
几何解释
复数乘法可以理解为在复平面上的向量旋转和伸缩。设 z1 和 z2 分别对应向量 OZ1 和 OZ2,则 z1z2 对应的向量 OZ1Z2 是通过以 OZ1 和 OZ2 为邻边的平 行四边形的对角线来确定的。
除数为虚数单位
当除数为虚数单位时,商 为实数。
除法运算的几何意义
复平面上的表示
在复平面上,复数除法可以通过旋转和缩放来表示。将分子和分母分别表示为向量,通过旋转和缩放分母向量, 使其与分子向量共线,然后缩放分母向量使其长度为1,得到的结果即为商。
几何意义的应用
复数除法的几何意义在信号处理、电气工程等领域有广泛应用,如频谱分析、滤波器设计等。
利用复数乘除法规则,计算 ((a + bi) × (c + di))^2,其中 a, b, c, d 均为实数
将 (a + bi) 的共轭复数与自身相乘,得 到 |a + bi|^2 = a^2 + b^2
详细描述
计算 ((2 + 3i) × (4 - 5i)) ÷ ((2 + 3i) × (4 - 5i))
03
复数除法规则
复数除法的定义
定义
复数除法是将一个复数除以一个非零复数,得到的结果称为 商或有理数。
除法运算的步骤
将除数与其共轭复数相乘,得到一个分母为实数的复数,再 与被除数相乘,得到商。
除
除数不能为零,否则会导 致无意义或无穷大结果。
除数为无穷大
当除数为无穷大时,商为 零。
复数乘除法的重要性
复数乘法满足结合律、交换律和单 位元存在性,即对于任何复数 z 和 整数 n,有 z^n = n个z相乘。
复数乘法的几何意义
几何解释
复数乘法可以理解为在复平面上的向量旋转和伸缩。设 z1 和 z2 分别对应向量 OZ1 和 OZ2,则 z1z2 对应的向量 OZ1Z2 是通过以 OZ1 和 OZ2 为邻边的平 行四边形的对角线来确定的。
除数为虚数单位
当除数为虚数单位时,商 为实数。
除法运算的几何意义
复平面上的表示
在复平面上,复数除法可以通过旋转和缩放来表示。将分子和分母分别表示为向量,通过旋转和缩放分母向量, 使其与分子向量共线,然后缩放分母向量使其长度为1,得到的结果即为商。
几何意义的应用
复数除法的几何意义在信号处理、电气工程等领域有广泛应用,如频谱分析、滤波器设计等。
利用复数乘除法规则,计算 ((a + bi) × (c + di))^2,其中 a, b, c, d 均为实数
将 (a + bi) 的共轭复数与自身相乘,得 到 |a + bi|^2 = a^2 + b^2
详细描述
计算 ((2 + 3i) × (4 - 5i)) ÷ ((2 + 3i) × (4 - 5i))
03
复数除法规则
复数除法的定义
定义
复数除法是将一个复数除以一个非零复数,得到的结果称为 商或有理数。
除法运算的步骤
将除数与其共轭复数相乘,得到一个分母为实数的复数,再 与被除数相乘,得到商。
除
除数不能为零,否则会导 致无意义或无穷大结果。
除数为无穷大
当除数为无穷大时,商为 零。
复数乘除法的重要性
5.2.2复数的乘法与除法-【新教材】北师大版高中数学必修第二册课件

因此,定义复数的乘法如下:
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
课文精讲
➢ 复数的乘法
在进行复数乘法运算时,实际上不直接使
用乘法法则,而使用多项式乘法法则.
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
典型例题
例1:计算:(-2-i)(3+i).
解:(-2-i)(3+i)
思考:
计算下列各式,你发现其中有什么
规律吗?
(1) (3+2i)(3-2i);
(2) (2+i)(2-i) ;
(3) (2 -i) (-2 +i) ;
(4) ( + i) ( - i).
解:(1)(3+2i)(3-2i)=9+4=13;
(2) (2+i)(2-i)=4+1=5 ;
课文精讲
+
−
= .
典型例题
例3:求一元二次方程ax2+bx+c=0(a,b,
c∈R,且a≠0)在复数范围内的根x1,x2,
并验证x1+x2=− ,x1x2=.
解: (1)若b2-4ac≥0,则
−+ −
x1=
,
−− −
x2=
.
典型例题
例3:求一元二次方程ax2+bx+c=0(a,b,
课文精讲
➢ 复数的乘法
在复数的乘方运算中,经常要计算i的
乘方,i的乘方有如下规律:
i0=1, i1=i, i2=−1, i3=−i,···
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
课文精讲
➢ 复数的乘法
在进行复数乘法运算时,实际上不直接使
用乘法法则,而使用多项式乘法法则.
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
典型例题
例1:计算:(-2-i)(3+i).
解:(-2-i)(3+i)
思考:
计算下列各式,你发现其中有什么
规律吗?
(1) (3+2i)(3-2i);
(2) (2+i)(2-i) ;
(3) (2 -i) (-2 +i) ;
(4) ( + i) ( - i).
解:(1)(3+2i)(3-2i)=9+4=13;
(2) (2+i)(2-i)=4+1=5 ;
课文精讲
+
−
= .
典型例题
例3:求一元二次方程ax2+bx+c=0(a,b,
c∈R,且a≠0)在复数范围内的根x1,x2,
并验证x1+x2=− ,x1x2=.
解: (1)若b2-4ac≥0,则
−+ −
x1=
,
−− −
x2=
.
典型例题
例3:求一元二次方程ax2+bx+c=0(a,b,
课文精讲
➢ 复数的乘法
在复数的乘方运算中,经常要计算i的
乘方,i的乘方有如下规律:
i0=1, i1=i, i2=−1, i3=−i,···
复数的乘法与除法优秀课件

(6-6)+(4+9)i
4+9
9
关于共轭复数的运算性质
z1 , z2 ∈ C , z1∙z2= z1∙z2 , z1 z1 ( ) = z2 z2 ,(z2 ≠0) . 则
10
在乘除法运算中关于复数模的性质
已知 z1 , z2 ∈C , 求证:
| z1 ∙ z2 |=| z1 | ∙ | z2 | , z1 | z1 | = z2 | z2 | ,(z2 ≠0) .
6
(a+bi)(c-di) a+bi = c+di (c+di)(c-di) = (ac+bd)+(bc-ad)i c2+d2
= ac+bd + bc-ad i (c+di ≠0) c2+d2 c2+d2 因为c+di ≠0 即 c2+d2 ≠0, a+bi 所以商 是唯一确定的复数. c+di
7
例3 计算: (1) (1+2i)(3-4i)
1+2i 解:(1+2i)(3-4i)= 3-4i
= (1+2i)(3+4i) (3-4i)(3+4i)
= -5+10i 25
1 2 =- + i . 5 5
8
(2)
解:
(3+2i) (2-3i)
3+2i (3+2i)(2+3i) = 2-3i (2-3i)(2+3i) = =i
3 2
1 3 1 3 ( i)( i) 2 2 2 2 1
小结:
,( ) ,
2 2
4+9
9
关于共轭复数的运算性质
z1 , z2 ∈ C , z1∙z2= z1∙z2 , z1 z1 ( ) = z2 z2 ,(z2 ≠0) . 则
10
在乘除法运算中关于复数模的性质
已知 z1 , z2 ∈C , 求证:
| z1 ∙ z2 |=| z1 | ∙ | z2 | , z1 | z1 | = z2 | z2 | ,(z2 ≠0) .
6
(a+bi)(c-di) a+bi = c+di (c+di)(c-di) = (ac+bd)+(bc-ad)i c2+d2
= ac+bd + bc-ad i (c+di ≠0) c2+d2 c2+d2 因为c+di ≠0 即 c2+d2 ≠0, a+bi 所以商 是唯一确定的复数. c+di
7
例3 计算: (1) (1+2i)(3-4i)
1+2i 解:(1+2i)(3-4i)= 3-4i
= (1+2i)(3+4i) (3-4i)(3+4i)
= -5+10i 25
1 2 =- + i . 5 5
8
(2)
解:
(3+2i) (2-3i)
3+2i (3+2i)(2+3i) = 2-3i (2-3i)(2+3i) = =i
3 2
1 3 1 3 ( i)( i) 2 2 2 2 1
小结:
,( ) ,
2 2
《复数的加减乘除》课件

复数在物理学、工程学等领域中广泛应用,有 助于解决实际问题。
结论和总结
复数的加减乘除是解决复杂计算和问题的重要工具。我们学习了复数的概念 和表示方法,并探讨了复数运算的规律和实际应用。复数在数学和应用科学 中具有重要意义。
将复数的实部和虚部分别相减。
复数的乘法和除法
复数相乘相当于根据实部和虚部的乘法规则计算得出的结果。复数相除相当于根据实部和虚部的 除法规则计算得出的结果。
复数乘法
将复数的实部和虚部分别相乘。
复数除法
将复数的实部和虚部分别相除。
复数运算的公式和规律
复数运算有很多公式和规律,如共轭复数的定义和性质,复数的模、辐角等。
1 共轭复数
共轭复数是实部相同但虚部符号相反的复数。
2 复数的模
复数的模表示复数到原点的距离,可以通过勾股定理计算。
3 复数的辐角
复数的辐角表示复数与正实数轴的夹角,可以通过三角函数计算。
实际应用举例
复数在物理学、电气工程、控制理论等领域有广泛的应用。以下是一些实际应用的举例:
电路分析
复数可以用来描述电路中的电压、电流等复杂的参数。
《复数的加减乘除》PPT 课件
本课件将介绍复数的概念和表示方法,探讨复数的加法和减法,讨论复数的 乘法和除法,并解释复数运算的公式和规律。我们还会给出实际应用的举例, 进一步探讨复数的重要性和意义,并在结论中进行总结。
复数的概念和表示方法
复数由实部和虚部组成,可以用实数a和b表示为a+bi的形式。实部表示实数部分,虚部表示虚数 部分。
复数表示法
复数可以用直角坐标形式或极坐标形式来表 示。
复平面图
可以使复数图
将复数在复平面图上绘制,可以形成复数图。
结论和总结
复数的加减乘除是解决复杂计算和问题的重要工具。我们学习了复数的概念 和表示方法,并探讨了复数运算的规律和实际应用。复数在数学和应用科学 中具有重要意义。
将复数的实部和虚部分别相减。
复数的乘法和除法
复数相乘相当于根据实部和虚部的乘法规则计算得出的结果。复数相除相当于根据实部和虚部的 除法规则计算得出的结果。
复数乘法
将复数的实部和虚部分别相乘。
复数除法
将复数的实部和虚部分别相除。
复数运算的公式和规律
复数运算有很多公式和规律,如共轭复数的定义和性质,复数的模、辐角等。
1 共轭复数
共轭复数是实部相同但虚部符号相反的复数。
2 复数的模
复数的模表示复数到原点的距离,可以通过勾股定理计算。
3 复数的辐角
复数的辐角表示复数与正实数轴的夹角,可以通过三角函数计算。
实际应用举例
复数在物理学、电气工程、控制理论等领域有广泛的应用。以下是一些实际应用的举例:
电路分析
复数可以用来描述电路中的电压、电流等复杂的参数。
《复数的加减乘除》PPT 课件
本课件将介绍复数的概念和表示方法,探讨复数的加法和减法,讨论复数的 乘法和除法,并解释复数运算的公式和规律。我们还会给出实际应用的举例, 进一步探讨复数的重要性和意义,并在结论中进行总结。
复数的概念和表示方法
复数由实部和虚部组成,可以用实数a和b表示为a+bi的形式。实部表示实数部分,虚部表示虚数 部分。
复数表示法
复数可以用直角坐标形式或极坐标形式来表 示。
复平面图
可以使复数图
将复数在复平面图上绘制,可以形成复数图。
复数代数形式的乘除运算ppt课件

探究
思考…
复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗?
对于任意z1, z2 , z3 ∈C有 交换律:z1z2 = z2z1 结合律:(z1z2 )z3=z1(z2z3 ) 分配律:z1(z2 + z3 )=z1z2+z1z3
复数乘法法满足交换律的证明如下:
设Z1 = a1 + b1i,Z2 = a2 + b2i,Z3 = a3 + b3i. 因为
3.两个复数的积是一个确定的复数.
4.复数的乘法仍然满足交换律、结合 律、分配律.
5.一般地,当两个复数的实部相等, 虚部互为相反数时,这两个复数叫 做互为共轭复数.
6.复数z=a+bi的共轭复数记作
z, 即 z = a - bi.
7.复数的除法是乘法的逆运算.
8.复数的除法法则:
(a
+
bi)
(c
= (a1a2 + a1a3 - b1b2 - b1b3 ) + (b1a2 + b1a3 + a1b2 + a1b3 )i,
Z1Z2 + Z1Z3 = (a1 + b1i)(a2 + b2i) + (a1 + b1i)(a3 + b3i) = (a1a2 - b1b2 ) + (b1a2 + a1b2 )i + (a1a3 - b1b3 ) + (b1a3 + a1b3 )i
解: 原式=(11-2i)(-2+i)
=-20+15i. 注意
(-2i)4i=8 而不是
-8!
例题2
计算 (1)(3 + 4i)(3 - 4i); (2)(1 + i)2 .
复数乘除法运算ppt

掌握复数乘除法的计算技巧
乘法技巧
掌握分配律、结合律等乘法运算的技巧,简化计算过程。
除法技巧
掌握共轭复数、有理化分母等除法运算的技巧,确保结果的准确性。
THANKS
感谢观看
01
02
03
实例1
将3 + 4i除以2,得到结果 为1.5 + 2i。
实例2
将-5 - 6i除以-3,得到结 果为5/3 - 2i。
实例3
将4 - 3i除以3 + 2i,得到 结果为(4 - 3i)(3 - 2i)/13 = 1 - i。
03
复数乘除法的应用
在物理学中的应用
量子力学
复数在量子力学中扮演着重要的角色,它们用于描述波函数和概率幅。通过复 数乘除法运算,可以计算波函数的演化、叠加和测量结果。
使用草稿纸
在草稿纸上进行每一步的 计算,避免在同一张纸上 涂改,导致混乱。
多次检查
完成运算后,要反复检查, 确保结果的准确性。
理解复数乘除法的数学意义
复数乘法意义
理解复数乘法的几何意义,即两个复数相乘相当于在复平面上进行旋转和伸缩变换。
复数除法意义
理解复数除法的几何意义,即一个复数除以另一个复数相当于将除数的共轭复数与被除数相乘后再进行相应的逆 变换。
几何表示
伸缩
复数乘法可以理解为在复平面上的向 量旋转和伸缩。
当两个复数的实部相等时,虚部相乘 等于原来两个虚部相乘的结果加上实 部平方,实部相乘等于原来两个实部 相乘的结果减去虚部平方。
旋转
当两个复数的虚部相等时,实部相乘 等于原来两个实部相乘的结果减去虚 部平方,虚部相乘等于原来两个虚部 相乘的结果加上实部平方。
7.2.2 复数的乘除运算PPT课件(人教版)

A.1+2iB.12iC.2+i D.2-i
-
(2)若z (1+i)=1-i,则 z=( D )
A.1-i
B.1+i
C.-i D.i
解析 (1)31+ +ii=( (31+ +ii) )( (11- -ii) )=4-2 2i=2-i.
-
(2)由z (1+i)=1-i,
得-z=11- +ii=(1+(i1)-(i)1-2 i)=-i,故 z=i.
D.1+2i
解析 31+ -ii=( (31+ -ii) )( (11+ +ii) )=2+2 4i=1+2i.
-
4.设复数 z1=2-i,z2=1-3i,则复数zi1+z52的虚部等于____1____.
-
解析 ∵zi1+z52=2-i i+1+5 3i=i(25+i)+15+35i
=-15+25i+15+35i=i,
题型三 复数范围内解方程
【例3】 已知1+i是方程x2+bx+c=0的一个根(b,c为实数). (1)求b,c的值; (2)试判断1-i是否为方程的根. 解 (1)∵1+i是方程x2+bx+c=0的根,∴(1+i)2+b(1+i)+c=0, 即(b+c)+(2+b)i=0. ∴b2+ +cb==00,,得bc==2-. 2,∴b=-2,c=2. (2)由(1)知方程为x2-2x+2=0,把1-i代入方程左边,得 x2-2x+2=(1-i)2-2(1-i)+2=0,显然方程成立, ∴1-i也是方程的一个根.
思维升华
1.进行复数的运算时,除了应用四则运算法则之外,对于一些简单算式要知道其 结果,这样可简化运算过程.例如,1i =-i,(1+i)2=2i,(1-i)2=-2i,11+ -ii= i,11- +ii=-i,a+bi=i(b-ai),ba-+abii=i 等.
-
(2)若z (1+i)=1-i,则 z=( D )
A.1-i
B.1+i
C.-i D.i
解析 (1)31+ +ii=( (31+ +ii) )( (11- -ii) )=4-2 2i=2-i.
-
(2)由z (1+i)=1-i,
得-z=11- +ii=(1+(i1)-(i)1-2 i)=-i,故 z=i.
D.1+2i
解析 31+ -ii=( (31+ -ii) )( (11+ +ii) )=2+2 4i=1+2i.
-
4.设复数 z1=2-i,z2=1-3i,则复数zi1+z52的虚部等于____1____.
-
解析 ∵zi1+z52=2-i i+1+5 3i=i(25+i)+15+35i
=-15+25i+15+35i=i,
题型三 复数范围内解方程
【例3】 已知1+i是方程x2+bx+c=0的一个根(b,c为实数). (1)求b,c的值; (2)试判断1-i是否为方程的根. 解 (1)∵1+i是方程x2+bx+c=0的根,∴(1+i)2+b(1+i)+c=0, 即(b+c)+(2+b)i=0. ∴b2+ +cb==00,,得bc==2-. 2,∴b=-2,c=2. (2)由(1)知方程为x2-2x+2=0,把1-i代入方程左边,得 x2-2x+2=(1-i)2-2(1-i)+2=0,显然方程成立, ∴1-i也是方程的一个根.
思维升华
1.进行复数的运算时,除了应用四则运算法则之外,对于一些简单算式要知道其 结果,这样可简化运算过程.例如,1i =-i,(1+i)2=2i,(1-i)2=-2i,11+ -ii= i,11- +ii=-i,a+bi=i(b-ai),ba-+abii=i 等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
设 z1 a bi , z2 c di (a,b,c,d R)
(a bi) (c di) 则 z1 z2
ac adi bci bdi
(ac bd) (ad bc)i
显然,两个复数的乘积仍为复数
2
2.复数运算满足交换律、结合律、分配 律。
1 2 2 1
(1 2) 3 1 (2 3)
1 (2 3) 1 2 1 3
三、【例题讲解】
例1
已知1 1 2i, 2 3 4i 计算1 2。
解:
1 2 ( 1 2i) (3 4i)
2
2
3、共轭复数的定义
当两个复数的实部相等,虚部互为相反数时, 这两个复数叫做互为共轭复数。虚部不等于0的 两个共轭复数也叫做共轭虚数。 特别地,实数的共轭复数是实数本身。 Z的共轭复数记作Z 思考:若z1 、 z2 ,是共轭复数,那么 (1)在复平面内,它们所对应的点有怎样 的位置关系? (2) z1 、z2是一个怎样的数?
(a bi)(c di) (ac bd ) (bc ad )i 2 2 (c di)(c di) c d
分母实数化
a bi (a bi ) (c di ) c di
例4.计算
解:
(1 2i) (3 4i)
四、【巩固新知】
已知
求
z1 z1 z2 , z1 z2 , z1 z2 , z2
z1 3 2i , z2 1 4i
五、【课堂小结】
复数的乘法法则是: (a+bi)(c+di)=(ac-bd)+(bc+ad)i. 复数的代数式相乘,可按多项式类似 的办法进行,不必去记公式. 复数的除法法则是: i(c+di≠0). 两个复数相除较简捷的方法是把它们 的商写成分式的形式,然后把分子与 分母都乘以分母的共轭复数,再把结 果化简
复数加减法的运算法则:
运算法则: 设复数z1=a+bi,z2=c+di,那么:
z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是实部与实部,虚部与虚部分 别相加(减).
二、【新课探究】
1.复数的乘法法则
两个复数的乘法可以按照多 项式的乘法运算来进行,只 是在遇到 i 时,要把 i 换 成-1,并把最后的结果写成 a bi (a, b R) 的形式。
六、【作业布置】
P61习题3.2
A组
4(4)、 5(4)
两个互为共轭的复数的乘积等于这个复数 (或其共轭复数)模的平方
结论:
2
2练习:Βιβλιοθήκη 求(1 i) 2 (1 i)
2
(a bi) a 2abi b i
2 2
2 2
a 2abi b
2
2
4【思考探究】 i 的指数变化规律
i i , i 1 , i i , i 1
3 4i 6i 8i 2
11 2i
例2(1 2i)(3 4i)(2 i)
解:
例3 计算:
2 9-16i (3+4i)(3-4i) = =9+16=25
练习:计算
( 1 ) (a bi)(a bi)
a abi abi b i
2
2 2
a b
1 2 3 4
- i , i __ 1 , i __ 1 i __ i , i -__
5 6 7 8
你能发现规律吗?有怎样的规律?
i
4n
1 ,
i
4 n 1
i ,
i
4n2
1
, i
4 n 3
i
(5)复数的除法法则
先把除式写成分式的形式,再把分子 与分母都乘以分母的共轭复数,化简后 写成代数形式(分母实数化).即
天才就是百分之一的灵感,百分之九十九的汗水! 欢 迎 光 临!欢 指 导 ! 舟 书 山 路 勤习,老 为 径,学 无 崖 苦 作 少 成功 小 =有 艰苦的劳动 不 学 +数系的扩充与复数的引入 正确的方法 来海 徒迎 伤 + 少谈空话 悲 《选修 1-2 》第三章
3.2.2 复数的乘除运算
一、【回顾旧知】
设 z1 a bi , z2 c di (a,b,c,d R)
(a bi) (c di) 则 z1 z2
ac adi bci bdi
(ac bd) (ad bc)i
显然,两个复数的乘积仍为复数
2
2.复数运算满足交换律、结合律、分配 律。
1 2 2 1
(1 2) 3 1 (2 3)
1 (2 3) 1 2 1 3
三、【例题讲解】
例1
已知1 1 2i, 2 3 4i 计算1 2。
解:
1 2 ( 1 2i) (3 4i)
2
2
3、共轭复数的定义
当两个复数的实部相等,虚部互为相反数时, 这两个复数叫做互为共轭复数。虚部不等于0的 两个共轭复数也叫做共轭虚数。 特别地,实数的共轭复数是实数本身。 Z的共轭复数记作Z 思考:若z1 、 z2 ,是共轭复数,那么 (1)在复平面内,它们所对应的点有怎样 的位置关系? (2) z1 、z2是一个怎样的数?
(a bi)(c di) (ac bd ) (bc ad )i 2 2 (c di)(c di) c d
分母实数化
a bi (a bi ) (c di ) c di
例4.计算
解:
(1 2i) (3 4i)
四、【巩固新知】
已知
求
z1 z1 z2 , z1 z2 , z1 z2 , z2
z1 3 2i , z2 1 4i
五、【课堂小结】
复数的乘法法则是: (a+bi)(c+di)=(ac-bd)+(bc+ad)i. 复数的代数式相乘,可按多项式类似 的办法进行,不必去记公式. 复数的除法法则是: i(c+di≠0). 两个复数相除较简捷的方法是把它们 的商写成分式的形式,然后把分子与 分母都乘以分母的共轭复数,再把结 果化简
复数加减法的运算法则:
运算法则: 设复数z1=a+bi,z2=c+di,那么:
z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是实部与实部,虚部与虚部分 别相加(减).
二、【新课探究】
1.复数的乘法法则
两个复数的乘法可以按照多 项式的乘法运算来进行,只 是在遇到 i 时,要把 i 换 成-1,并把最后的结果写成 a bi (a, b R) 的形式。
六、【作业布置】
P61习题3.2
A组
4(4)、 5(4)
两个互为共轭的复数的乘积等于这个复数 (或其共轭复数)模的平方
结论:
2
2练习:Βιβλιοθήκη 求(1 i) 2 (1 i)
2
(a bi) a 2abi b i
2 2
2 2
a 2abi b
2
2
4【思考探究】 i 的指数变化规律
i i , i 1 , i i , i 1
3 4i 6i 8i 2
11 2i
例2(1 2i)(3 4i)(2 i)
解:
例3 计算:
2 9-16i (3+4i)(3-4i) = =9+16=25
练习:计算
( 1 ) (a bi)(a bi)
a abi abi b i
2
2 2
a b
1 2 3 4
- i , i __ 1 , i __ 1 i __ i , i -__
5 6 7 8
你能发现规律吗?有怎样的规律?
i
4n
1 ,
i
4 n 1
i ,
i
4n2
1
, i
4 n 3
i
(5)复数的除法法则
先把除式写成分式的形式,再把分子 与分母都乘以分母的共轭复数,化简后 写成代数形式(分母实数化).即
天才就是百分之一的灵感,百分之九十九的汗水! 欢 迎 光 临!欢 指 导 ! 舟 书 山 路 勤习,老 为 径,学 无 崖 苦 作 少 成功 小 =有 艰苦的劳动 不 学 +数系的扩充与复数的引入 正确的方法 来海 徒迎 伤 + 少谈空话 悲 《选修 1-2 》第三章
3.2.2 复数的乘除运算
一、【回顾旧知】