层次分析法评价TOP方案的模型

合集下载

topsis综合评价模型

topsis综合评价模型

topsis综合评价模型TOPSIS是一种常用的综合评价模型,通过计算样本相对距离与最优解和最劣解之间的距离来进行评价和排序。

它可以用于各种领域的综合评价,如企业绩效评价、产品质量评价、项目评价等。

该模型一般分为以下步骤:1. 确定评价指标体系评价指标体系应该包括所有与评价对象相关的指标,确保涵盖对象的所有关键方面。

指标选择应该符合实际需要,具有代表性、可测性和可比性。

在确定指标体系时,还需要确定各指标权重。

2. 建立评价矩阵评价矩阵是以评价对象为行、评价指标为列的矩阵,用于描述评价对象各指标的表现情况。

评价矩阵应该被标准化,使其数据值都位于0-1之间。

3. 确定最优解和最劣解最优解和最劣解是整个评价体系的关键基准。

最优解应该是所有指标均达到最好水平的“理想状态”,而最劣解则反之。

通过这两个基准,可以得出评价对象相对距离。

4. 计算距离计算各评价对象与最优解和最劣解之间的距离,以确定它们在评价体系中的相对距离。

常用的距离计算方法包括欧氏距离、曼哈顿距离和切比雪夫距离等。

5. 确定加权系数加权系数用于消除不同指标之间的差异。

权重应该根据各指标的相对重要性,通过专家调查、问卷调查等方法确定。

权重的确定应该是公正、客观和可信的。

6. 计算综合得分将各指标的得分按照其权重加权,然后求和得到综合得分。

综合得分越高,评价对象的综合表现就越好。

评价对象可以按照综合得分排序,从高到低排列。

TOPSIS模型具有以下优点:1. 相对直观该模型通过计算距离和加权得分来评价对象,具有简单直观的特点,易于理解。

2. 具有可操作性该模型通过确定指标体系和权重等关键因素,具有可操作性,使得评价结果更加可靠。

3. 具有灵活性该模型可以用于不同领域的综合评价,如企业、产品、项目等,具有很强的灵活性。

总之,TOPSIS模型是一种简单有效的综合评价方法,适用于各种领域的实际应用。

通过该模型,可以精确地评价和排序一系列评价对象,为实践提供有力支持。

TopSis法

TopSis法

TopSIS法的发展趋势
研究进展
国内外研究现状和趋势 应用领域和实际案例 未来研究方向和挑战
未来发展方向
提高计算效率:通 过优化算法和并行 计算技术,提高 To p S I S 法 的 计 算 效率。
扩展应用领域:将 To p S I S 法 应 用 于 更多领域,如环境 评估、供应链管理 等。
建 立 To p S I S 模 型 : 根 据 评 价 指 标 建 立 To p S I S 模 型
计 算 权 重 : 根 据 To p S I S 模 型 计 算 各 评价指标的权重
综合评价:根据权重和评价指标进 行综合评价
结果分析:对综合评价结果进行分 析,找出最优方案或改进措施
应 用 推 广 : 将 To p S I S 法 应 用 于 实 际 工作中,不断优化和改进
• 3前景展望 • ***SIS法在决策分析中的应用将越来越广泛
• 随着技术的发展,TopSIS法将更加智能化和高效 ***SIS法与其他决策分析方法 的结合将成为一个重要的研究方向 ***SIS法在解决实际问题中的应用案例将 不断增加,为其发展提供更多支持
• ***SIS法与其他决策分析方法的结合将成为一个重要的研究方向 • ***SIS法在解决实际问题中的应用案例将不断增加,为其发展提供更多支持
应用领域
风险评估:用于风险评估, 如自然灾害、事故等
质量管理:用于质量管理, 如产品质量控制、服务质量
评估等
决策分析:用于多属性决策 分析,如投资决策、项目评 估等
环境评估:用于环境评估, 如环境污染、生态保护等
TopSIS法的原理
原理概述
确定评价
计算各指标的得分
改进方向
提高可解释性:通过改进算法, 使 得 To p S I S 法 的 结 果 更 容 易 被 理 解和解释。

《TOPSIS评价方法》课件

《TOPSIS评价方法》课件

TOPSIS评价方法的原理
TOPSIS评价方法的原理基于两个关键概念:理想解和负理想解。理想解是指 在所有评价指标上都达到最佳水平的方案,而负理想解是指在所有评价指标 上都达到最差水平的方案。
TOPSIS方法通过计算每个方案与理想解和负理想解之间的距离,来确定每个 方案的综合评价值,距离越小则越接近理想解。
最佳解。
确定评价指标
首先,确定需要评价的指标,这些指标 应该能够全面反映方案的优劣。
确定权重
根据指标的重要性,确定每个指标的权 重,以体现不同指标在综合评价中的重 要程度。
计算综合评价值
根据距离计算结果,确定每个方案的综 合评价值,距离越小则综合评价值越高。
TOPSIS评价方法的应用领域
工程项目选择
TOPSIS评价方法在计算综合评价值时,需要 确定每个评价指标的权重,权重的确定可能 存在主观性。
2 对标准化的敏感性
TOPSIS评价方法对评价指标的标准化处理非 常敏感,标准化方法的选择可能影响结果。
总结
TOPSIS评价方法是一种多指标决策方法,通过综合考虑各个评价指标,帮助 决策者选择最佳的方案。
它的原理简单易懂,应用领域广泛。然而,权重确定和标准化处理等问题需 要特别注意。
在工程项目选择中,TOPSIS评价方法可以帮助项 目方从多个方案中选择最佳的工程项目。
市场调研
在市场调研中,TOPSIS评价方法可以帮助企业选 择最佳的市场调研方案。
供应链管理
在供应链管理中,T。
投资决策
在投资决策中,TOPSIS评价方法可以帮助投资者 选择最佳的投资方案。
《TOPSIS评价方法》PPT 课件
TOPSIS评价方法是一种多指标决策方法,用于帮助决策者选择最佳的方案。 它综合考虑各个方案与理想方案的距离,并通过比较,选出最接近理想方案 的方案。

评估模型研究_层次分析法

评估模型研究_层次分析法

2.评估方法概述2.1 层次分析法(AHP)层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法,其基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。

这样就可以得出不同替代方案的重要度,从而为选择最优方案提供决策依据。

运用层次分析法建模,大体上可按下面四个步骤进行:(1)建立递阶层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次单排序及一致性检验;(4)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

2.1.1 递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(2)中间层:这一层次中包图1 AHP评估层次结构示意图含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(3)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

TOPSIS法(优劣解距离法)

TOPSIS法(优劣解距离法)

TOPSIS法(优劣解距离法)Technique for Order Preference by Similarity to Ideal Solution⼀、场景分析层次分析法在某些指标数据已知时候不可⽤。

成绩和排名已知的时候,要我们对⼏名同学进⾏合理评分(能够描述其成绩的⾼低,可以理解为前⾯的权重),⽤归⼀法就可以直接根据排名(倒序)计算评分了,但是却有⼀些不合理的地⽅。

我们可以看出这样计算时,我们修改成绩只要保证排名不发⽣变化,我们得到的评分也就不会发⽣改变,⽐如:当最低分特别低或者最⾼分特别⾼的时候,他们的排名是不变的。

这说明我们给出的评分不⾜以反应出原数据的信息。

我们可以构造⼀个计算评分的公式,来避免此类问题发⽣。

当根据多个指标来评分时,我们需要根据多个指标进⾏综合判断评分。

我们增加BMI指数对⼏位同学进⾏综合评分,BMI指数在18.5~23.9之间为正常,评分标准与成绩也不同,就需要我们对每个指标设定⼀个统⼀的标准,然后进⾏各指标评分,最后进⾏综合处理得到最后的评分。

⼆、简单介绍TOPSIS法是⼀种常⽤的综合评价⽅法,根据有限个评价对象与理想化⽬标的接近程度进⾏排序的⽅法,是在现有的对象中进⾏相对优劣的评价。

它能够充分利⽤原始数据的信息,它的结果能精确地反映出各评价⽅案之间的差距。

三、基本步骤1、将原始矩阵正向化常见的四种指标:a、极⼤型(效益型)指标,如:成绩、GDP增速、企业利润,指标特点:越⼤越好 b、极⼩型(成本型)指标,如:费⽤、坏品率、污染程度,指标特点:越⼩越好 c、中间型指标,如:⽔质量评估时的PH值,指标特点:越接近某个值越好 d、区间型指标,如:提问、⽔中植物性营养物量,指标特点:越接近某个值越好。

所有指标转化为极⼤型指标就是原始矩阵正向化。

2、正向化急诊标准化⽬的:为了⼩区不同指标量纲的影响。

标准化处理公式:每个元素除以本列所有元素平⽅和开根号。

3、计算得分并归⼀化只有⼀个指标时构造计算评分的公式:(x−min)(max−min)可以化成:D(x−min)D(max−x)类⽐只要⼀个指标计算得分定义最⼤值向量Z1,最⼩值向量Z2,定义第i个评价对象与最⼤值的距离为D i1,最⼩值距离为D i2,则第i个评价对象未归⼀化的得分为S i=D i2D i1+D i2且0≤Si≤1,S i越⼤D i1越⼤,越接近最⼤值。

层次分析法模型

层次分析法模型

二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。

层次分析及综合评价方法

层次分析及综合评价方法
数据收集与处理
采用适当的方法,将各个指标综合起来,得出一个总体的评价结果。
综合评价
对评价结果进行分析,为决策提供依据。
结果分析
07
综合评价指标体系的建立
构建步骤
明确评价目标、设计初步指标、筛选与确定指标、确定权重、建立完整的指标体系。
导向性原则
指标应具有导向性,能够引导被评价对象向正确的方向发展。
方案层可以包含多个元素,每个元素代表一个具体的方案或措施。
方案层需要具体、可行,能够针对准则层中的各个因素提出相应的解决方案。
方案层
03
构造判断矩阵
判断矩阵的定义与元素确定
判断矩阵定义
判断矩阵是层次分析法中用于表示各因素之间相对重要性的矩阵,通常采用正互反矩阵形式。
元素确定方法
判断矩阵的元素通常采用专家打分、历史数据比较等方法确定,根据实际情况选择合适的方法。
将决策问题分解成不同的组成因素,并根据因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
将决策问题分解成不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
通过较少的定量信息使决策者的思维过程数学化,为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
计算加权评价值
根据加权评价值的大小,确定最优的决策方案。
确定决策方案
将决策方案付诸实施,并根据实际情况进行反馈和调整。
决策实施与反馈
基于层次总排序的决策分析
06
综合评价方法概述
定义
综合评价是一种对多个指标进行综合分析的方法,通过对各个指标进行权重分配,得出一个综合的评价结果。

基于分析层次法的教育质量评价模型

基于分析层次法的教育质量评价模型

基于分析层次法的教育质量评价模型随着人口结构的变化和社会经济的快速发展,对教育质量的要求越来越高。

教育质量评价是现代教育管理中的重要环节,对于提高教育质量、提升教学水平以及指导政策制定都具有重要意义。

基于分析层次法的教育质量评价模型成为了现代教育质量评价的一种重要方法。

一、分析层次法的基本原理和步骤分析层次法是以层次分析为基础的决策分析方法,它是由美国运筹学家托马斯·L·赛蒂斯于20世纪70年代提出的。

分析层次法是一种定性分析方法,它把层次化的复杂问题,通过逐层分解、层与层之间的比较与判断,得出最终的决策结果。

分析层次法主要包括如下步骤:1.建立层次结构模型:将问题分解为若干个层次,从而得到一个有层次结构的模型。

2.构造判断矩阵:对于每个节点,采用比较判断法来确定两两比较的重要程度。

3.计算判断矩阵的特征值和特征向量:通过计算矩阵的特征值和特征向量来确定各节点的权重,从而得到加权后的判断矩阵。

4.一致性检验:通过计算一致性指标,判断构造判断矩阵时是否存在较大的不一致性。

5.合成各级权重:通过合成各级节点的权重,确定各个层次的全局权重。

6.综合评判:将所研究的对象分别归到各级指标中去,确定各个指标及各级权重的重要性大小,得出最终的评价结果。

二、分析层次法在教育质量评价中的应用分析层次法是一种全面、科学、定量化的教育质量评价方法,同时也是一种较为科学、可以紧密结合实际的评价工具。

在教育管理中,分析层次法可以用来评价教育质量、评估办学水平等。

1.建立教育质量评价模型教育质量评价模型是指评价体系、评价指标和评价方法三个方面的总和,是教育质量评价的核心。

利用分析层次法可以建立一个科学完整的教育质量评价模型,通过对教师、课堂、校园、课程、实践等各个方面进行系统化的评价,精确分析出教育机构的强度和不足,从而有针对性地提高教育质量。

2.确定评价指标评价指标是教育质量评价的重要内容之一,是教育质量评价具体实现的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法评价TOP方案的模型
一、建立模型
最高层。

最高层也叫目标层,这一层次中只有一个元素,它一般是我们所要分析的预定目标或理想结果。

中间层。

中间层也叫准则层,这一层次中包含了为实现最高层所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的一些准则、子准则。

最低层。

最低层也叫方案层,这一层次包括了为实现最高层而提供了选择的各种措施、决策方案等。

评估互动社区层次结构(如图):
二、构造判断矩阵
针对上一层次某一因素,下一层次中凡与该因素联系的全部因素进行两两比较。

确定各准则对目标的权重,以及各个方案对每个准则的权重。

按标度表赋值后,构成矩阵形式,就是判断矩阵。

表1 第一层判断矩阵
表2 第二层判断矩阵
表3 第二层判断矩阵
表4 第二层判断矩阵
A:选择合适的互动社区产品B1:系统功能B2:系统易用性B4:系统排名
注:bij即为比值,则当i=j时,bij=1。

i不等于j时,bij=1/bij(i,j=1,2,3,4),bij 的确定应在广泛征求专家和诸多群众意见的基础上确定
三、单排序矩阵权数的计算(以第一层为例)
判断矩阵A=(bij)满足特征值问题:AW=nW,其中n为特征根,W为标准化特征向量。

当n=λmax(最大特征值)时,W=(W1,W2……Wn)T(T为矩阵转置的符号),即为接受判断的各因素对所联系因素指标的权数。

求解W按以下步骤:
(1) 计算判断矩阵A各行各个元素幂的和
6
1W =
6
2W =
……..
6
6W =
(2) 将A 的各行元素的和进行归一化 6
1
j Wi
Wi Wj
==
∑ 求出W 的分量Wi ;
(3)最后按以下公式:
6
1
max ()/i BW i nWi λ==
∑ ,求出λmax 。

四、相容性检验
当矩阵完全相容时,即任一bij=bik*bkj ,则λmax =n 。

一般地,主观判断矩阵不可能完全相容,此时λ<n 。

相容比指标:CI=(λ-n)∕(n -1)
当矩阵完全相容时,CI=0,CI 越大,矩阵的相容性越差。

采用相容比指标还应引入平均随机相容性指标RI 值。

对3—9阶判断矩阵来说,RI 值分别对应表5。

表5 平均随机相容性指标
相容比CR=CI∕RI 。

当CR<0.1时,即认为判断矩阵具有满意的相容性,否则要对判断矩阵重新作出调整。

五、多层次综合权数以及总排序((以第一层为例))
当A 层次有K 个元素,其权重分别是aj(j=1,2……k)时,其下一层次C 中各因素对层次A 的综合权数可按表6计算。

表中Ci(i=1….9)是A层次的下一层次C的因素,其对应aj的权数分别是Wij;层C第i因素的综合权数其结果列于表右边作C层次的总排序的依据。

在整个层次分析法结构中,采用此表由上到下逐层计算。

直到求出最低层次全部因素的综合权数为止,并依据权数大小给出总排序结果。

六、打分
邀请专家、使用者、开发者及淘宝技术人员按照模型对排名前20位的互动社区作品打分,并统计积分结果。

每个互动社区作品的最终得分取值为按照上述方法方法打分值的平均分。

相关文档
最新文档