深圳市松岗中学七年级数学上册第一单元《有理数》检测(答案解析)

合集下载

七年级数学上册《第一章有理数》单元测试卷及答案(人教版)

七年级数学上册《第一章有理数》单元测试卷及答案(人教版)

七年级数学上册《第一章有理数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.-2022的绝对值是( )A .12022-B .12022C .2022D .-20222.将5041精确到百位的结果是( )A .5000B .5.0×103C .50D .5.04×1033.下列各组数中,不是..互为相反数的是( ) A .(3)-- 与 (3)+-B .23- 与 2(3)-C .3-- 与 3+D .3(3)-- 与 33 4.若a 是有理数,那么在①1a + ,②1a + ,③1a + ,④21a + 中,一定是正数的 ( )A .1个B .2个C .3个D .4个5.山西省某地某天的最低温度为﹣7℃,且昼夜温差为12℃,则最高温度为( )A .5℃B .7℃C .﹣12℃D .﹣5℃6.如图,数轴的单位长度为1,如果点A 和点C 表示的有理数互为相反数,那么点B 表示的有理数是( )A .-3B .-1C .1D .37.若|a |=5,|b |=19,且|a +b |=﹣(a +b ),则a ﹣b 的值为( )A .24B .14C .24或14D .以上都不对8.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( )A .12B .1118C .76D .59二、填空题9.绝对值不大于4的所有正整数的和为 .10.若数轴上表示互为相反数的两点之间的距离是14,则这两个数是 .11.把时针从钟面数字“12”开始,按顺时针方向拨到“6”,记做拨了 12+周,那么把时针从钟面数字“12”开始拨了 14- 周,则该时针所指的钟面数字为 . 12.地球与太阳的距离约为1.5×108 km,光的速度是3×105 km/s,则太阳光照射到地球上约需 s.13.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润是 元.三、计算题14.计算: 42112(2)63⎡⎤--÷⨯--⎣⎦15.计算: (1)(16 - 34 + 512)× 12 (2)()()148121649-÷⨯÷-16.计算:(1)11623⎛⎫-⨯- ⎪⎝⎭(2)22434292⎛⎫÷-⨯- ⎪⎝⎭.17.下列各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?(1)小红的体重为45.0千克;(2)小明的妈妈的年薪约为5万元;(3)月球轨道呈椭圆形,远地点平均距离为4.055×105千米.18.某中学抽查了某次月考中某班10名同学的成绩,以100分为基准,超过的记为正数,不足的记为负数,记录的结果如下: 8,2,20,9,32,12,14,1,7,0+-+-++--+ .(1)这10名同学中最高分是多少?最低分是多少?最高分与最低分相差多少?(2)小明在这次考试中考了116分,按这种计分方法,应记作什么?19.国庆放假时,小明一家三口准备驾驶小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,先向东走了6千米到超市买东西,然后再向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)问超市A和外公家C相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家...所经历路程小车的耗油量.参考答案:1.C 2.B 3.D 4.B 5.A 6.B 7.C 8.D9.1010.±711.912.5×102(或500)13.16014.解:原式 ()1232=--⨯⨯-112=-+11=15.(1)解:原式=16×12-34×12+512×12 =2-9+5=-(9-2-5)=-2(2)解:原式=(-81)×49×49×(-116) =116.(1)解:原式=-3+2=-1(2)解原式=16÷2-4994⨯=8-1=7 17.解:(1)精确到十分位,有3个有效数字;(2)精确到万位,有1个有效数字;(3)精确到百位,有4个有效数字.18.(1)解:由题意,这10名同学中最高分为 10032132+= (分)最低分为 ()1001486+-= (分)则 1328646-= (分)答:这10名同学中最高分是132分,最低分是86分,最高分与最低分相差46分;(2)解: 11610016-=答:按这种计分方法,应记作 16+ .19.(1)解:点A 、B 、C 如图所示:(2)解:AC=|6-(-4.5)|=10.5(千米).故超市A 和外公家C 相距10.5千米(3)解:6+1.5+12+4.5=24(千米)24×0.08=1.92(升).答:小明一家从出发到返回家所经历路程小车的耗油量约为1.92升。

深圳中学七年级数学上册第一单元《有理数》经典测试(含答案解析)

深圳中学七年级数学上册第一单元《有理数》经典测试(含答案解析)

一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个2.13-的倒数的绝对值( )A .-3B .13-C .3D .133.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个4.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b5.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=6.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定 7.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13 B .+13 C .-3或+13 D .+3或-1 8.若1<a <2,则化简|a -2|+|1-a |的结果是( ) A .a -1B .1C .a +1D .a -39.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-10.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( ) A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯11.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,312.下列正确的是( ) A .5465-<- B .()()2121--<+- C .1210823--> D .227733⎛⎫--=-- ⎪⎝⎭13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 14.某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日B .11月5日C .11月6日D .11月7日15.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+ B .a 1a b a b a 1+>+>->- C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题16.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________. 17.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.计算1-2×(32+12)的结果是 _____. 19.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.20.运用加法运算律填空: (1)[(-1)+2]+(-4)=___=___; (2)117+(-44)+(-17)+14=____=____.21.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.22.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出23.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.24.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________. 25.一个数的25是165-,则这个数是______.26.绝对值小于4.5的所有负整数的积为______.三、解答题27.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 28.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 29.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 30.计算: (1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭。

人教版七年级数学上《第一章有理数》单元试卷含答案解析

人教版七年级数学上《第一章有理数》单元试卷含答案解析

人讲课标版七年级上第一章《有理数》综合测试题附答案七年级上册第一章《有理数》综合测试题一.选择题 (每题 3 分,共 24 分 )1.- 2 的相反数是( )A . 2B .- 2C .1 12D .22. │-|的值是( ).A . 0B .-C .- 3.14 D . 3.14+3.一个数和它的倒数相等,则这个数是()A . 1B . 1C . ±1D . ±1 和 04.若是 | a |a ,以下成立的是()A . a0 B .a 0C .aD .a5.用四舍五入法按要求对0.05019 分别取近似值,其中错误的选项是()A .(精确到)B .(精确到百分位)C .(保留两个有效数字)D.(精确到 )6.计算(2) 11 ( 2)10 的值是()A . 2B . ( 2) 21C .0D .2107.有理数 a 、 b 在数轴上的对应的地址以下列图:则()ab-11A . a + b <0B . a + b > 0C . a - b = 0D . a -b > 08.以下各式中正确的选项是() A . 22 ( 2)2 B . 33 ( 3)3C . 22| 22 |D . 33 | 33 |二.填空 (每题 3 分,共 24 分 )9.在数、 -4、、1、 0、 90、34 、53 不是整数。

10. +2 与-2 是一对相反数,请赐予它本质的意义:11. 5的倒数的绝对值是 ___________.3| 24 | 中,________是正数, __________________.12. ( 2) +4=;13.用科学记数法表示13 040 000,应记作 _______________.14.若 a 、b 互为相反数, c 、 d 互为倒数,则 (a + b) 3 .(cd) 4 =__________.15.大肠杆菌每过20 分便由 1 个分裂成 2 个,经过3 小时后这种大肠杆菌由1 个分裂成__________个 .16.在数轴上与 -3 距离四个单位的点表示的数是 __________. 三.解答题 (每题 6 分,共 12 分 )17.()+( +4.4 )+() +()18. |7 2 1) 1 2| (53 ( 4 )93四.解答题 (每题 8 分,共 40 分 )19.把以下各数用 “ ”号连接起来:1 ,, 1,5 , -(),155 5520. 如图,先在数轴上画出表示2.5 的相反数的点 B,再把点 A 向左搬动 1.5 个单位 ,获取点 C,求点 B,C 表示的数 ,以及 B,C 两点间的距离 .A21. 求 x2 + x7 的最小值22.某公司昨年平均每个月盈利1~ 3 月平均每个月损失 1.5 万元, 4~6 月平均每个月盈利 2 万元, 7~ 10 1.7 万元, 11~ 12 月平均每个月损失 2.3 万元,问:这个公司昨年总的盈、亏月情况如何?23.某食品厂从生产的袋装食品中抽出样品20 袋,检测每袋的质量可否吻合标准,高出或不足的部分分别用正、负数来表示,记录以下表:与标准质量的差值13 6(单位: g )5 2袋数143 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为 450 克,则抽样检测的总质量是多少?参照答案一.选择题 1. A 2. C3. C4. D 5. C 6. D 7. A 8. A 二.填空题9.、90;、、134、.5310.向前走 2 米记为 +2 米,向后走 2 米记为 2 米。

七年级数学上册《第一章 有理数》单元检测题含答案(人教版)

七年级数学上册《第一章 有理数》单元检测题含答案(人教版)

七年级数学上册《第一章有理数》单元检测题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.﹣2的相反数是()A.2 B.﹣2 C.- 12D.122.计算22×(−2)3+|−3|的结果是()A.-21 B.35 C.-35 D.-29 3.下列计算错误的是()A.3−(−2)=5B.−3÷(−12)=6C.(−3)+(+2)=−5D.−1×(−13)=134.某种鲸的体重约为1.36×105千克. 关于这个近似数,下列说法正确的是().A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字5.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算6.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C.D.7.如图所示的是手机天气APP所示的长春11月份某4天的天气情况,其中温差最大的是()A.11月26日B.11月27日C.11月28日D.11月29日8.甲、乙、丙三地海拔高度分别为30米,−25米,−5米,那么最高的地方比最低的地方高()A.20米B.25米C.35米D.55米二、填空题9.近似数0.034,精确到位.10.比较大小:-45-911.11.在数轴上表示数a的点到表示-1的点的距离为3,则a-3= . 12.化成最简整数比:25g∶0.5kg=.13.实数x,y,z 在数轴上的位置如图所示,则 |y| - |x| +| z|= .三、解答题14.计算:(1)(−3)+1−5−(−8)(2)−11−(−7)+|−9|−(−12)(3)(−8)×(16−512+310)×15(4)(−5)×3−60÷(−15)+12×(−72)15.在数轴上分别画出表示下列各数的点:−(−3) , 0 , ﹣|﹣1.5|,12和-2 .并将这些数从小到大用“<”号连接起来.16.小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?17.把下列各数序号..分别填在表示它所在的集合的大括号里①(−1)4;②−35;③+3.2;④0;⑤13;⑥−(+6.5);⑦−(−108);⑧−22;⑨-6(1)整数集合{ }(2)正分数集合{ }(3)负分数集合{ }(4)负数集合{ }18.科技改变生活,当前网络销售日益盛行,许多果商采用网上销售的方式进行营销,实现脱贫致富.小宇把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增有减,超过计划量记为正,不足计划量记为负.下表是小宇第一周苹果的销售情况:星期一二三四五六日苹果销售超过或不足计划量情况(单位:千克)+4 ﹣3 ﹣2 +9 ﹣7 +13 +5 (1)小宇第一周销售苹果最多的一天比最少的一天多销售多少千克?(2)小宇第一周实际销售苹果的总量是多少千克?(3)若小宇按6元/千克进行苹果销售,平均运费为4元/千克,则小宇第一周销售苹果一共收入多少元?19.周至猕猴桃是西安的特产,质地柔软,口感香甜,当前网络销售日益盛行,陕西某主播为了助农增收,在其直播间直播销售周至猕猴桃,计划每天销售10000千克,但实际每天的销售量与计划量相比有增减,超过计划量记为正,不足计划量记为负.如表是该主播在直播带货期间第一周销售猕猴桃的情况:星期一二三四五六日猕猴桃销售情况(单位:千克)+400 -300 -200 +100 -600 +1100 +500 (1)该主播在直播带货期间第一周销售猕猴桃最多的一天比最少的一天多销售多少千克?(2)与该主播在直播带货期间第一周计划总量相比,猕猴桃总销量超过或不足多少千克?(3)若该主播在直播期间按5元/千克进行猕猴桃销售,平均快递运费及其它费用为1元/千克,则该主播第一周直播带货销售猕猴桃为当地农民一共创收多少元?参考答案1.A2.D3.C4.D5.C6.B7.D8.D9.千分10.>.11.-1或-712.1:2013.x+y+z14.(1)解:原式=−2−5+8=−7+8=1 .(2)解:原式=−11+7+9+12 =−4+21=17 .(3)解:原式=−120×(16−512+310)=−120×16−120×(−512)−120×310=−20+50−36=−6 .(4)解:原式=−15+4−42 =−11−42=−53 .15.解:16.解:∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A∴他又东走了5m,记为点B,点B表示的数是3+5=8数轴如图所示:∴接着他又向西走了10m到点C,点C表示表示的数是:8+(﹣10)=﹣2∴当小明到点C时,要回家,小明应向东走2米即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2米17.(1)解:整数集合{ ①④⑦⑧⑨}(2)解:正分数集合{ ③⑤}(3)解:负分数集合{ ②⑥}(4)解:负数集合{ ②⑥⑧⑨}18.(1)解:由题意得:小宇第一周销售苹果最多的一天比最少的一天多销售13−(−7)=13+7=20kg 答:小宇第一周销售柚子最多的一天比最少的一天多销售20千克;(2)解:4+(−3)+(−2)+9+(−7)+13+5+100×7=4−3−2+9−7+13+5+700=719kg答:小宇第一周实际销售柚子的总量是719千克;(3)解:719×(6−4)=719×2=1438(元).答:小宇第一周销售柚子一共收入1438元.19.(1)解:1100−(−600)=1700(千克)答:该主播在直播带货期间第一周销售猕猴桃最多的一天比最少的一天多销售1700千克.(2)解:400−300−200+100−600+1100+500=1000(千克)答:与该主播在直播带货期间第一周计划总量相比,猕猴桃总销量超过1000千克.(3)解:(5−1)×(10000×7+1000)=284000(元)答:该主播第一周直播带货销售猕猴桃为当地农民一共创收284000元。

深圳中学七年级数学上册第一单元《有理数》-选择题专项测试卷(含解析)

深圳中学七年级数学上册第一单元《有理数》-选择题专项测试卷(含解析)

一、选择题1.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|D 解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.2.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.3.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.4.6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B 解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数D 解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.7.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.8.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.9.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C.|a|+|b|=0 D.|a|+b=0A 解析:A【解析】a,b互为相反数0a b⇔+=,易选B.10.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.11.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-abD解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.13.下列正确的是()A.5465-<-B.()()2121--<+- C.1210823-->D.227733⎛⎫--=--⎪⎝⎭A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 14.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .16.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D根据a b 判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b < ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 17.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C 解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C . 18.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.19.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】901.5=9.015×102.故选:C .【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++ 7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 21.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17,∴这个数是17-或17. 故选C.【点睛】 熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.22.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.23.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.24.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C解析:C【分析】 先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 25.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.26.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.27.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab=故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.28.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.29.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 30.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A 解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.。

深圳中学七年级数学上册第一单元《有理数》-解答题专项测试卷(含解析)

深圳中学七年级数学上册第一单元《有理数》-解答题专项测试卷(含解析)

一、解答题1.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.3.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.4.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 5.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.6.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.7.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.8.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.9.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5-- 如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.10.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 11.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.12.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.13.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算. 14.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来; (3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案; (2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.15.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律. 【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0; (2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况, 经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键. 17.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M 所对应的数为24或-6. 【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9. 【详解】 设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9, ∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24, ∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9, ∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6, ∴点M 所对应的数为x-6-x=-6; 综上,点M 所对应的数为24或-6. 【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键. 19.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8. 【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可. 【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5, ∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0, 所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6, 所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8. 【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 20.计算: (1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5 【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23 =9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×1 9=﹣1+(﹣3)﹣1=﹣5.【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.21.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t ;1+2t ;5+5t ;②BC -AB 的值为2,不随着时间t 的变化而改变. 【分析】(1)先根据b 是最小的正整数,求出b ,再根据c 2+|a +b |=0,即可求出a 、c ; (2)由(1)得B 和C 的值,通过数轴可得出B 、C 的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A 、B 、C ; ②先求出BC =3t +4,AB =3t +2,从而得出BC -AB =2. 【详解】解:(1)∵b 是最小的正整数, ∴b =1.∵(c -5)2+|a +b |=0, ∴a =-1,c =5; 故答案为:-1;1;5;(2)由(1)知,b =1,c =5,b 、c 在数轴上所对应的点分别为B 、C , B 、C 两点间的距离为4;(3)①点A 以每秒1个单位长度的速度向左运动,运动了t 秒,此时A 表示的数为-1-t ; 点B 以每秒2个单位长度向右运动,运动了t 秒,此时B 表示的数为1+2t ; 点C 以5个单位长度的速度向右运动,运动了t 秒,此时C 表示的数为5+5t . ②BC -AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =5+5t –(1+2t )=3t +4,AB =1+2t –(-1-t )=3t +2, ∴BC -AB =(3t +4)-(3t +2)=2. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 23.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 25.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 26.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 28.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--() 2117 =÷-2117=-;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯⎪⎝⎭255104=-⨯+54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2 ++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.。

深圳松岗东升学校七年级数学上册第一单元《有理数》检测卷(答案解析)

深圳松岗东升学校七年级数学上册第一单元《有理数》检测卷(答案解析)

一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个2.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度3.若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b a B .<a<a-b a+b C .a<<a-b a+bD .<a<a+b a-b4.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .246.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105B .15×103C .1.5×104D .1.5×1057.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)8.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a9.-1+2-3+4-5+6+…-2011+2012的值等于 A .1B .-1C .2012D .100610.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2 D .4,3 11.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .412.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.23(2)0x y -++=,则x y 为______. 14.若230x y ++-= ,则x y -的值为________. 15.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 16.计算:3122--=__________;︱-9︱-5=______.17.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1ba=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.18.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .19.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值. 22.计算(1)2125824(3)3-+-+÷-⨯(2)71113()2461224-+-⨯23.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 24.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.25.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表: 与标准质量的偏差(单位:克)10-5- 0 5+10+15+袋数15 5531(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 26.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.2.C解析:C 【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可. 【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度 故选C . 【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.D解析:D 【分析】根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.5.B解析:B 【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大. 【详解】∵乘积最大时一定为正数 ∴-1,-3,4的乘积最大为12 故选B . 【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【解析】 【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可. 【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.8.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.9.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.10.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.11.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.A解析:A 【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可. 【详解】解:从图上可以看出,b <﹣1<0,0<a <1, ∴a+b <0,故选项A 符合题意,选项B 不合题意; a ﹣b >0,故选项C 不合题意; ab <0,故选项D 不合题意. 故选:A . 【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.二、填空题13.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8 【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可. 【详解】解:∵23(2)0x y -++=, ∴x-3=0,y+2=0, 解得:x=3,y=﹣2, ∴x y =3(2)-=﹣8, 故答案为:﹣8. 【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.14.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可. 【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =, ∴235-=--=-x y , 故答案为: 5.- 【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.15.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b -解析:1615 -5 123 【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可; (3)由题意列出式子进行计算,即可得到答案. 【详解】解:(1)根据题意,则221616()()351515---=--=;(2)∵|a +2|+|b -3|=0,∴20a +=,30b -=, ∴2a =-,3b =, ∴235a b -=--=-; (3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.16.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4 【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算. 【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4. 【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则.17.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④ 【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可. 【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误; ②0ab 时,a ,b 互为相反数,但是对于等式1ba=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确. 综上,正确的有④. 故答案为:④. 【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.18.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50 【分析】根据题意,列出式子,然后计算即可. 【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100 =(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.19.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 22.(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.24.数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.25.(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.26.(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13;(2)原式=52364[(12)(12)(12)] 1234-++⨯--⨯--⨯-=64(589)-++-++=6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。

人教版七年级数学上《第1章有理数》单元测试含答案解析

人教版七年级数学上《第1章有理数》单元测试含答案解析

25± 0.1)㎏,它的质量最多相差(

A . 0.8 ㎏ B . 0.6 ㎏ 【考点】正数和负数.
C. 0.2 ㎏
D .0.4 ㎏
【分析】一袋面粉的质量在 24.9kg﹣ 25.1kg 之间,用最大质量减去最小质量即可.
【解答】解: 25.1﹣ 24.9=0.2kg .
故选 C.
【点评】 此题主要考查了正负数的意义, 解题关键是理解 “正 ”和“负 ”的相对性, 明确什么是一对具有
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上
反数是负数,一个负数的相反数是正数, 0 的相反数是 0.
“﹣ ”号;一个正数的相
3.A 为数轴上表示﹣ 1 的点,将点 A 在数轴上向右平移 3 个单位长度到点 B ,则点 B 所表示的实数
为(

A . 3 B. 2 C.﹣ 4 D. 2 或﹣ 4 【考点】实数与数轴.
《第 1 章 有理数》
一、精心选一选把所选答案的字母填在题后括号里
1.如果水位下降 3 米记作﹣ 3 米,那么水位上升 4 米,记作(

A . 1 米 B. 7 米 C. 4 米 D.﹣ 7 米
2.3 的相反数是(

A . 3 B.﹣ 3 C.
D .﹣
3.A 为数轴上表示﹣ 1 的点,将点 A 在数轴上向右平移 3 个单位长度到点 B ,则点 B 所表示的实数
第 1 页(共 12 页)
11.最小的自然数是 是 ,非负数有最
,最大的负整数是
,绝对值最小的数是
,任意一个数的绝对值都
(填大或小)值,非正数有最
(填大或小)值.
12.已知 | a+3|+| b﹣ 1| =0,则 a+b+ab 的值是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b a B .<a<a-b a+b C .a<<a-b a+b D .<a<a+b a-b2.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .23.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是 A .B .C .D .4.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a 5.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)-6.下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数7.在数轴上距原点4个单位长度的点所表示的数是( ). A .4B .-4C .4或-4D .2或-2 8.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32 B .(﹣3)2和32 C .(﹣2)3和﹣23 D .|﹣2|3和|﹣23| 9.计算-3-1的结果是( )A .2B .-2C .4D .-410.若1<x <2,则|2||1|||21x x x x x x---+--的值是( ) A .﹣3B .﹣1C .2D .111.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >012.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日B .11月5日C .11月6日D .11月7日二、填空题13.23(2)0x y -++=,则x y 为______.14.数轴上表示有理数-3.5与4.5两点的距离是___________.15.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.16.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.17.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出18.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______. 19.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________. 20.若2(1)20a b -+-=,则2015()a b -= _______________.三、解答题21.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒. -1.2+0.7-1-0.3+0.20.3+0.522.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.23.计算:(﹣1)2014+15×(﹣5)+8 24.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.25.计算:(1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 26.计算:()22216232⎫⎛-⨯--⎪⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.2.C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.3.A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.4.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.A解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A符合题意,-=,故选项B不符合题意,|1|1-+=,故选项C不符合题意,(2)752-=,故选项D不符合题意,(1)1故选:A.【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可. 【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意. 故选:D . 【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.C解析:C 【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C .8.A解析:A 【分析】各项中两式计算得到结果,即可作出判断. 【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数, 故选:A . 【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.9.D解析:D 【解析】 试题-3-1=-3+(-1)=-(3+1)=-4. 故选D.10.D解析:D 【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号. 【详解】 解:12x <<,20x ∴-<,10x ->,0x >, ∴原式1111=-++=,故选:D . 【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.11.C解析:C 【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误. 故选C .12.C解析:C 【分析】运用减法算出每一天的温差,再进行比较即可. 【详解】11月4日的温差为19415-=(℃); 11月5日的温差为12(3)15--=(℃); 11月6日的温差为20416-=(℃); 11月7日的温差为19514-=(℃). 所以温差最大的一天是11月6日. 故选C . 【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.二、填空题13.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8 【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可. 【详解】解:∵23(2)0x y -++=, ∴x-3=0,y+2=0, 解得:x=3,y=﹣2, ∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.14.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.15.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.16.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.17.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.18.2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021 【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论. 【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB 盖住2020或2021个整点. 故答案为:2020或2021. 【点睛】本题考查了数轴,解题的关键是找出长度为n (n 为正整数)的线段盖住n 或n +1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.19.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5 【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5. 【详解】 ∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5, 故答案为:-5. 【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1 【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案. 【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1. 【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.22.(1)-2;(2)-19 【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 23.8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定. 24.数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得. 【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键. 25.(1)9;(2)34【分析】(1)根据绝对值的性质、乘法分配律计算各项,即可求解; (2)先算乘除,再算加减,即可求解. 【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键. 26.2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

相关文档
最新文档