民用飞机气动设计原理

合集下载

飞机原理 知乎

飞机原理 知乎

飞机原理知乎
飞机原理即通过利用空气动力学原理,实现物体在空气中飞行的方法和机制。

飞机的主要原理包括升力、阻力、推力和重力。

升力是支撑飞机飞行的力量,产生于翼面上下方的气流速度差异所引起的气压差。

翼面上方气流速度较快,气压较低,而翼面下方气流速度较慢,气压较高。

这种气压差使得翼面产生向上的力,即升力。

升力的大小取决于翼面的形状、面积以及飞行速度等因素。

通过调整翼面形状,可以对升力进行控制,实现起飞、飞行和着陆等操作。

阻力是空气对飞机前进方向反作用力的表现,阻碍着飞机的飞行速度。

阻力由多个因素决定,包括飞机外形、机翼形状、湍流等。

为了减小阻力,飞机通常采用流线型外形和减小阻力的设计措施,如翼尖缩小、机翼加载。

推力是使飞机向前飞行的力量,产生于推进系统,如喷气发动机或螺旋桨。

推力的大小取决于发动机的工作状态、油门的开度等因素。

飞机的推力必须大于阻力,才能保持飞行速度。

重力是使飞机下降的力量,由地球引力产生。

重力对飞机的作用可以通过升力和推力来克服,使得飞机保持在空中飞行。

除了以上主要原理外,飞机还涉及到气动力、稳定性和操纵性等因素的控制。

通过调整剖面形状、舵面、襟翼等控制装置的状态,驾驶员可以控制飞机在空中的姿态和飞行状态,实现转弯、攀升、下降等动作。

总之,飞机原理是通过升力、阻力、推力和重力等相互作用,使得飞机能够在空中飞行的一种科学理论和工程技术。

飞机的工作原理

飞机的工作原理

飞机的工作原理飞机,作为一种重要的交通工具,已经成为现代社会中不可或缺的一部分。

它的出现与发展离不开对飞机工作原理的深入研究。

本文将着重介绍飞机的工作原理,揭示飞机是如何在天空中自由翱翔的。

一、引言飞机的工作原理是基于伯努利定律和牛顿第三定律的结合应用。

伯努利定律是描述流体运动的基本原理,而牛顿第三定律则揭示物体间相互作用力的特性。

二、机翼的气动力学机翼是飞机最重要的部件之一,它的形状和设计在飞机的动力学中起着至关重要的作用。

当飞机在空中飞行时,机翼受到空气流动的压力和浮力产生的升力。

1. 空气流动飞机在空中飞行时,对空气产生了推动和阻力。

当飞机的机翼与空气流动接触时,空气分为上下两部分,上方的气流速度较快,压力较低,下方的气流速度较慢,压力较高。

根据伯努利定律,当气流速度增加时,相应的压力就会降低。

因此,在机翼上方产生了较低的气压,形成了向上的浮力。

2. 升力的产生机翼上下表面的压差造成了升力的产生。

当机翼上表面的气压低于下表面时,就会形成上升的气流,这种气流相较于飞机前进的方向产生了向上的升力。

机翼的形状和角度对升力的大小和效率具有重要影响。

三、动力系统飞机的动力系统主要包括发动机和推进器。

飞机需要利用发动机提供的动力来产生足够的推力,以克服阻力并在空中保持平衡飞行。

1. 内燃机内燃机是目前大多数飞机所采用的动力系统。

内燃机通过燃料燃烧产生高温高压气体,驱动涡轮转动,并最终将动能传递给推进器产生推力。

内燃机的效率和输出功率对于飞机的性能具有重要影响。

2. 喷气发动机喷气发动机是一种高效率的动力系统,广泛应用于现代商用飞机。

喷气发动机通过压缩气体和燃烧燃料,产生高速喷出的气流,产生巨大的推力。

这种推力能够将飞机快速推进并克服阻力,使飞机得以飞行。

四、控制系统飞机的控制系统包括操纵翼面的控制面和刹车系统,用于保持飞机在飞行中的平衡和稳定。

1. 方向舵和副翼方向舵和副翼是飞机操纵系统中的重要组成部分。

飞机气动布局简介.

飞机气动布局简介.

飞机气动布局简介想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。

其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。

大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。

俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。

下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。

各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。

这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。

世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。

我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。

常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。

常规气动布局机型——我国的ARJ21祥凤支线客机常规气动布局机型——我国的FC-1枭龙歼击机常规气动布局机型——我国的歼11B歼击机常规布局中还有一个另类——变后掠翼布局,就是主翼的后掠角度可以改变,高速飞行可以加大后掠角,相当于飞鸟收起翅膀,低速飞行时减小后掠角,展开翅膀。

飞机的工作原理

飞机的工作原理

飞机的工作原理飞机是一种能够在大气中飞行的交通工具,其工作原理主要涉及到空气动力学和推进系统。

飞机的飞行原理可以简单地概括为利用发动机产生的推力来克服阻力,同时利用机翼产生的升力来支撑飞机的重量。

下面将详细介绍飞机的工作原理。

首先,飞机的推进系统是实现飞行的关键。

通常情况下,飞机使用喷气发动机或者螺旋桨发动机来产生推力。

喷气发动机通过燃烧燃料产生高温高压的气体,然后将这些气体从喷嘴中喷出,产生反作用力推动飞机向前飞行。

而螺旋桨发动机则是通过旋转螺旋桨产生推力,从而推动飞机前进。

推进系统产生的推力可以克服飞机飞行过程中所受到的空气阻力,从而使飞机能够飞行在大气中。

其次,飞机的升力是支撑飞机飞行的重要因素。

升力是由机翼产生的,而机翼的升力产生原理是基于伯努利定律和牛顿第三定律。

当飞机在空气中飞行时,机翼的上表面和下表面之间的气压差会导致产生升力。

机翼的形状和斜度会影响升力的大小,通过控制机翼的形状和斜度,飞行员可以控制飞机的升力大小,从而实现飞机的升降和姿态调整。

此外,飞机的稳定性和操纵性也是飞机工作原理的重要部分。

飞机通过尾翼、副翼和方向舵等控制面来调整姿态和方向,从而保持飞行的稳定性和可操纵性。

飞行员通过操纵飞机的控制面,可以实现飞机的转弯、爬升、下降等飞行动作,从而实现飞机的操纵和导航。

总的来说,飞机的工作原理涉及到推进系统、升力产生、稳定性和操纵性等多个方面。

飞机的设计和制造需要考虑这些因素,以实现飞机在大气中安全、高效地飞行。

通过对飞机工作原理的深入理解,可以更好地认识飞机的飞行原理,为飞机设计和飞行操作提供理论支持。

现代飞机常见气动外形特点及发展

现代飞机常见气动外形特点及发展

摘要我们看到任何一架飞机,首先注意到的就是气动布局。

飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。

关系到飞机的飞行特征及性能。

故将飞机外部总体形态布局与位置安排称作气动布局。

简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。

飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。

现代作战飞机的气动外形有很多种,平直机翼布局、后掠翼布局、变后掠翼布局、无尾翼布局、鸭式布局、三翼面布局、前掠翼布局等。

而以巡航姿态为主的运输机等大型飞机,其气动布局就相对比较单一,主要以常规布局为主关键词:翼型;尾翼;气动外形;空气动力目录引言 (1)一、现代飞机常见气动外形 (2)(一)作战飞机气动外形 (2)(二)非作战飞机气动外形 (7)二、国内飞机常见气动外形 (7)(一)作战飞机气动外形 (7)(二)非作战飞机气动外形 (9)三、飞机气动外形发展 (11)(一)作战飞机气动外形的发展 (11)(二)非作战飞机气动外形的发展 (11)四、我国大飞机气动布局设计的发展建议 (15)致谢 (17)参考文献 (18)引言自从莱特兄弟发明第一架飞机以来,航空科技一直伴随着科技革命的推进迅速发展,由于该行业属于技术密集型,因此也使得航空科技一直云集着该时代最先进的科技成果,和众多的行业精英。

因此航空技术往往代表着一个时代的科技水平,也促进和引领着科技进步。

而一个时代的航空科技水平则主要体现在该时期的航空器上,飞机作为数量最多、最为常见的航空器,当然代表着一个时代航空科技的水平。

而一个时代飞机的技术水准,则直观的体现在飞机的气动外形上。

从飞机的气动外形我们就可以看出:这个时代航空科技的总体水平,这个时代的设计理念,甚至这个时代的军事政治战略格局等等。

因此,研究飞机的气动外形及其发展,对于我们学习航空科技进而了解世界科技、历史、军事、政治等方面知识有着深远的意义。

喷气式飞机的工作原理

喷气式飞机的工作原理

喷气式飞机的工作原理喷气式飞机是一种使用喷射式发动机推动的飞行器,它通过将燃料燃烧产生的高温高压气体喷出,产生反作用力推动飞行器前进。

本文将详细介绍喷气式飞机的工作原理,包括发动机的工作过程、喷气推力的产生以及飞机的飞行稳定性等方面。

一、喷气式发动机的工作过程喷气式发动机是喷气式飞机的核心部件,它将燃料与空气混合并燃烧,产生高温高压气体,然后将气体喷出以产生推力。

喷气式发动机一般由压气机、燃烧室和涡轮组成。

1. 压气机压气机是喷气式发动机中的关键部件,它起到将空气压缩的作用。

当飞机起飞时,外界空气经过进气口进入发动机的压气机,然后被多级叶轮压缩。

在压缩的过程中,气体的温度和压力会显著上升。

2. 燃烧室压缩后的空气被引导进入燃烧室,在其中与燃料混合并燃烧。

燃料的燃烧产生的高温高压气体会迅速膨胀,从而驱动喷气式发动机的涡轮。

3. 涡轮喷气式发动机的涡轮由高温高压气体驱动,它连接着压气机和燃烧室。

当气体膨胀后通过涡轮,涡轮会自身旋转并带动压气机的叶轮进行压气作业,形成循环。

涡轮的运转既提供了压气机所需的动力,也为燃烧室提供了氧气用于燃料的燃烧。

二、喷气推力的产生喷气式飞机的推力主要来自于喷气式发动机向后喷出的高速气流。

根据牛顿第三定律,喷气式发动机向后喷出气流的同时,会产生一个等大反向的推力,推动飞机向前飞行。

1. 喷气速度喷气式发动机通过向后喷出气流产生推力,而气流的速度越大,推力就越大。

为了提高喷气速度,喷气式发动机会通过多级喷嘴将气体加速排出,从而增加喷气速度,提供更强的推力。

2. 质量流速除了气流速度,质量流速也是决定喷气式发动机推力的关键因素。

质量流速是指气流单位时间通过引擎喷嘴的质量。

为了提高质量流速,喷气式发动机需要在单位时间内提供更多的气体,因此需要有更高的燃烧效率和更大的流量。

三、飞机的飞行稳定性除了推力产生的问题,喷气式飞机的飞行稳定性也是需要考虑的重要因素。

飞机的稳定性取决于多个因素,其中包括飞机的重心位置、翼面积和机身的形状等。

飞行的原理和应用知识点

飞行的原理和应用知识点

飞行的原理和应用知识点1. 简介飞行是指物体在大气中通过空气动力学原理实现在空中的移动。

飞行已经成为现代文明中不可或缺的一部分,广泛应用于民航、军事航空、航天等领域。

本文将介绍飞行的基本原理和应用的知识点。

2. 飞行原理飞行原理是指飞行器起飞、维持和改变飞行状态的科学原理。

主要涉及以下几个方面:•气动力学: 气动力学研究空气在物体表面上的作用力和物体在空气中运动的关系。

主要包括升力、阻力、势能和动能等概念。

•机翼设计: 机翼是飞行器最重要的部件之一,充当飞行中生成升力的关键组件。

机翼的形状、曲率、悬挂角度等参数对飞行性能产生重要影响。

•推进系统: 推进系统通过提供动力使飞行器前进。

常见的推进系统包括螺旋桨、喷气发动机、火箭发动机等。

•操纵系统: 操纵系统是控制飞行器方向和姿态的关键部件。

它包括舵面、操纵杆、自动驾驶系统等。

3. 飞行器的种类和应用飞行器根据不同的功能和应用可以分为多个类别,下面介绍几种常见的飞行器和其应用。

3.1 飞机飞机是一种主要依靠机翼产生升力并通过推进系统前进的飞行器。

根据用途和功能,飞机可以分为军用飞机和民用飞机两大类。

军用飞机包括战斗机、轰炸机、侦察机等,用于军事目的。

民用飞机用于民航运输、货运、救援和航空旅游等领域。

3.2 直升机直升机是一种通过旋转主旋翼产生升力并通过尾桨提供推进力的飞行器。

其特点是垂直起降能力和悬停能力。

直升机广泛应用于军事、民航、医疗救援等领域。

3.3 无人机无人机是一种不需要人操控的飞行器,通过遥控或自主导航系统进行飞行。

无人机在军事侦查、航空摄影、农业喷洒、气象观测等方面有着广泛的应用。

3.4 航天器航天器是指进入外层空间的飞行器,包括卫星、航天飞机、火箭等。

航天器常用于通信、气象监测、科学研究和太空探索等领域。

4. 飞行安全和应用技术飞行安全是飞行中最重要的问题之一。

为了保证飞行安全,飞行员需要经过专业的培训,并遵守飞行规章制度。

同时,飞行器的设计、制造和维护也要符合相关标准。

飞行器的设计原理及制造

飞行器的设计原理及制造

飞行器的设计原理及制造飞行器作为人类探索天空的途径,已经成为人们日常生活中不可或缺的一部分。

无论是民用飞机、军用武器,还是火箭、卫星等高科技产品,都需要飞行器这个载体来实现它们的飞行任务。

那么,飞行器从设计到制造,究竟经历了哪些过程呢?它又是通过何种原理来实现在空中的翱翔呢?下面,我们就来深入了解一下飞行器的设计原理及制造过程。

一、飞行器的基本原理作为追求高效、便捷、安全的现代交通工具,飞行器需要经过各种原理的支持来进行航行。

其中,空气动力学是最关键的原理之一。

它主要研究在空气中运动物体的运动、转动、阻力等问题,从而为飞行器的设计和优化提供科学依据。

另外,飞行器的稳定性原理、控制原理、动力系统、材料科学等方面也是不可或缺的。

1、空气动力学原理空气动力学是航空工程领域中所涉及的空气流动和机体之间的相互作用的研究。

这个原理要求飞行器必须具备一定的空气动力性能,如升力、阻力、稳定性等,才能实现在空中的平稳飞行。

因此,在飞行器的设计和制造过程中,空气动力学原理是最基础的原理之一。

2、飞行器的稳定性原理稳定性是一个平衡、控制和飞行性能的组合。

这个原理可以帮助我们理解飞行器在空中平稳地飞行是如何实现的。

正确地设置飞行器的几何形状、重心位置和控制面的大小等因素,可以使其在空中保持稳定的角度,减少飞行时的不稳定现象。

3、控制原理控制原理包括控制面和排气口等控制设备的原理,以及控制系统的设计原理。

控制系统主要由自动控制系统和飞行员控制系统两部分组成。

它们可以控制飞行器的方向和角度,以及控制器等各部件的工作状态,从而保证飞行器在飞行中保持平衡和稳定。

4、动力系统动力系统是飞行器的核心,它可以提供飞行器在空中运动所需要的动力,通常包括发动机、电池、燃料电池等。

这个原理的设计和选择要根据不同型号和用途的飞行器需求而定,一般会通过各种实验和模拟分析来确定。

5、材料科学材料设备是构成一架飞行器的重要组成部分。

特种材料可以保证飞行器的高温、高压、高速等特殊条件下的稳定工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

民用飞机气动设计原理
民用飞机可以随时转为军用。

海湾战争期间,美国曾动员民用
飞机用于军事运输。

预警机、加油机等军事用途飞机也往往由民用飞机改型而成。

下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。

宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体
现在哪里?(Dan)
超临界翼型设计的本质是弱激波翼型的设计。

超临界翼型相较
于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。

即提高了临界马赫数。

同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。

因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。

超临界翼型与传统翼型对比
对于窄体飞机,其巡航马赫数范围在0.78-0.80之间,通常巡
航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。

而宽体飞机的巡航马赫数则通常在0.85-0.90之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。

更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。

控制律载荷一体化技术能改善飞机什么性能?有何效
益?(Zhijie)
放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升力,使飞机的机动能力提高;
边界控制技术减轻了驾驶员的工作负担并保证飞机安全;
阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到
减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性;
机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根
处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程;
颤振模态控制技术通过改变翼面的非定常的气动力分部,从而
降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。

A320阵风载荷减缓控制系统
说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的
一致性问题(Shaoyun)
风洞试验是指在风洞中安装试验模型,研究气体流动及其与模
型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。

F22飞机风洞模型
风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试
验段长度等,二是风洞的试验风速,一般地,0~0.3M范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。

由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器
的气动特性。

风洞试验通过采用相似准则来尽可能地使试验特性同真
实特性一致,通常根据试验的目的不同会选择不同的相似准则,但一般都会满足的重要准则包括:
几何相似性,模型几何特征同真实飞行器尽可能等比例的放大或缩小;
M数相似,风洞试验M数和飞行器实际使用M数保持一致;
雷诺数相似,风洞试验环境和真实环境下,惯性力同粘性力的比率保持一致。

影响风洞试验结果的一致性问题主要包括两个方面:一是风洞试验的重复性精度,及同一模型同一状态下多次风洞试验结果的一致性问题;二是风洞试验的雷诺数效应,即风洞试验同真实环境雷诺数差异造成的试验结果同真实情况的不一致问题。

现有典型的湍流减阻技术主要有哪些?分别利用了什么原
理?(Li)
现有典型湍流技术分为主动控制和被动控制两种方式,主动控制包括吹吸气、壁面振动、电磁力、避免加热推迟转捩,聚合物减阻;被动控制包括小肋、涡流发生器和Vortexspoiler。

主要原理如下:吹气通过降低表面粗糙度改变壁面附近流动剖面,达到减低摩阻的效果;小孔吸气通过吸除低动量流体来阻止流动转捩和分离;
壁面振动:通过壁面振动破坏条带与流向涡,从而减阻;
电磁力:在流场中产生行波破坏底层的粘性结构,周期体积力破坏流向条带等相干结构,从而起到减阻效果;
壁面加热推迟转捩:通过加热改变湍流边界层特性,形成逆转捩现象,推迟转捩;
聚合物减阻:通过注入聚合物改变粘性,表面附着物可以抑制引起层流转捩的基本过程;
小肋:影响湍流脉动与雷诺效应,当流向涡被顶入肋条上端有减阻效果;
涡流发生器:通过产生的高能翼尖涡,与其下游的低能量附面层流动混合后,把能量传递给附面层流动,以防止气流在逆压梯度下分离,达到减阻目的。

增升装置涡流发生器原理
由于日趋严厉的适航法规和市场竞争压力,低噪声设计已成为民机的重要特征之一,因此,民机应该将噪声设计得越低越
好?(Caihua)
民机降噪需求不仅是为了满足日趋严苛的适航条例与法规的要求,更是对客户提供噪声的保证,从而增强产品的市场竞争力。

在实现民机噪声控制的课题上,发动机制造商和飞机制造商在付出不懈的努力,不断地开发使民机变“安静”的新技术。

例如,对于发动机降噪,采用了更高涵道比的涡扇发动机,在短舱中使用了新型的吸声材料,采用特殊形状的尾喷管等;对于机体噪声控制,在后缘噪声、增升装置噪声和起落架噪声抑制上采用新的技术。

这些静音技术看似应用到极致越好,然而事实并非如此。

民机噪声指标和降噪技术的应用需要考虑其他设计参数的综合平衡。

包括
飞机的巡航阻力、重量、气动性能、研发和维修的成本、对现有设计的改动等,这些因素都对降噪技术进行了限制。

举个例子,隔音措施可以降低舱内噪声,但需要提高舱壁的质量、刚度或者阻尼。

而只是大量地增加舱壁质量、刚度或者阻尼,会使飞机变得笨重,飞机的质量指标得不到保证,飞机的经济性就很差。

可取的做法是,综合考虑飞机设计的其他指标,适当的实施隔音措施,而不只单从降噪需求出发。

如果飞机金属机翼换成符合材料,在静气动弹性方面如何考虑?等刚度设计方法是否可以采用?(Mu)
相对于金属材料,复合材料密度小,强度高,在力学性能上各向异性,因此可以根据机翼各部位的刚度要求使用复合材料进行有针对性的设计,以满足设计要求,进而使机翼弹性变形性能朝着有利方向发展。

在静气动弹性方面要考虑飞行载荷变化,外形变化,气动弹性约束和结构顶层设计。

其中复合材料铺层角和铺层序列对气动弹性有很大影响。

复合材料机翼等刚度设计方法不可取。

由于金属材料和复合材料存在密度差异,如果仅仅满足刚度一致,那么所带来的结构载荷是不一样的。

此外金属材料各向同性,复合材料各向异性,两种材料制成的机翼的运动力学特性也不一致,故不能采用等刚度设计方法。

相关文档
最新文档