回溯算法实验报告
回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。
二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。
其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。
通过这种方法,可以找到问题的所有解,或者找到最优解。
四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。
(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。
(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。
回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
实验四 回溯算法

三、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
提高题一:用回溯法求解跳马问题
一、实验要求 1、 掌握回溯法的基本原理。 2、 使用回溯法编程,求解跳马问题 二、实验内容 1、 问题描述: 在 N*N 棋盘上有 N2 个格子, 马在初始位置 (X0, Y0) , 按照象棋中马走 “日” 的规则,使马走遍全部格子且每个格子仅经过一次。编程输出马的走法。 2、 给出算法描述。 编程实现,给出 N=5, (X0,Y0)=(1,1)时的运行结果。 二、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
四、实验总结与体会
教师评 价
优
良
中
及格
不及格
教师签名
日期
中国矿业大学计算机学院实验报告
课程名称 算法设计与分析 实验名称 2.实验内容 5.流程图 实验四 回溯算法 3:1.实验目的 4.运行结果
基本题一:符号三角形问题
一、实验目的 1、掌握符号三角形问题的算法; 2、初步掌握回溯算法; 二、实验内容 下面都是“-” 。 下图是由 14 个“+”和 14 个“-”组成的符号三角形。2 个同号下面都是 “+” ,2 个异号下面都是“-” 。 + + - + - + + + - - - - + - + + + - + + - + - + 在一般情况下,符号三角形的第一行有 n 个符号。符号三角形问题要求对于给定的 n,计 算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。
三、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
基本题二:0—1 背包问题
回溯算法实验报告

回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
算法实验六回溯法

实验报告实验项目实验六回溯法实验日期 2023.6.6 一、预习内容【实验目的】1.理解回溯法的设计思想;2.掌握回溯法的设计方法。
【实验内容及要求】实验内容:①素数环问题【题目描述】有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。
为了简便起见,我们规定每个素数环都从1开始。
例如,下图就是4的一个素数环。
【输入格式】有多组测试数据,每组输入一个n(0<n<=20),n=0表示输入结束。
【输出格式】如果存在满足题意叙述的素数环,从小到大输出所有的素数环。
否则输出No Circle。
【输入示例】【输入格式】皇后的个数n。
【输出格式】n皇后问题的解。
【输入示例】皇后的个数n:6【输出示例】第1个解:(1,2) (2,4) (3,6) (4,1) (5,3) (6,5)第2个解:(1,3) (2,6) (3,2) (4,5) (5,1) (6,4)第3个解:(1,4) (2,1) (3,5) (4,2) (5,6) (6,3)第4个解:(1,5) (2,3) (3,1) (4,6) (5,4) (6,2)要求:①求解的问题需用回溯法实现;②对算法进行时间和空间复杂度分析;③实验内容任选两个。
二、实验过程三、实验结果与分析教师评阅意见(1)实验预习 (30分)成绩:□预习认真、熟练掌握方法与步骤(30~28) □有预习、基本掌握方法与步骤(27~22)□有预习、但未能掌握方法与步骤(21~18) □没有预习,不能完成实验(17~0)(2)操作过程 (40分)成绩:□遵规守纪、操作熟练、团结协作 (40~37) □遵规守纪、操作正确、有协作 (36~29) □遵规守纪、操作基本正确、无协作 (28~24) □不能遵规守纪、操作不正确、无协作(23~0) (3)结果分析 (30分)成绩:□结果详实、结论清晰、讨论合理(30~28) □结果正确、讨论适当(27~22)□结果正确、没有分析讨论(21~18) □结果不正确、没有分析讨论(17~0) 其它意见:教师签名:年月日。
实验4 回溯算法

《算法设计与分析》实验报告实验4 回溯算法一、实验目的:掌握回溯算法的设计思想与设计方法。
二、实验环境1、硬件环境CPU:Intel(R) Celeron(R) CPU 1007U @ 1.5GHz内存:4G硬盘:500G2、软件环境操作系统:Windows7编程环境:Visual C++ 6.0编程语言:C三、实验内容1、问题有一个背包,最大限重为C,有n个物品,重量分别为W=<w1, w2, …, w n>,要求找出一个装载方案,使得放入背包物品的重量最大。
输出装载方案和该方案下的背包所装物品总重量。
2、数据结构(1)解的结构一维数据(1)<0 1 0 1 1 1 1>(2) <0 0 1 0 1 1 0>(2)搜索空间的结构3、算法伪代码ReBack(i)1、If i>n then<x1,x2,x3,...xn>是解2、Else while Si≠∅do3、Xi Si中最小值4、SiSi-{Xi}5计算Si+16ReBack(i+1)4、算法分析时间复杂度:O(2n)空间复杂度:O(n)5、关键代码(含注释)#include<stdio.h>int n,c,bestp;//物品的个数,背包的容量,最大重量int w[10000],x[10000],bestx[10000];//w[i]物品的重量,x[i]暂存物品的选中情况,bestx[i]物品的选中情况void Backtrack(int i,int cw){ //cw当前包内物品重量int j;if(i>n)//回溯结束{if(cw>bestp){bestp=cw;for(i=0;i<=n;i++) bestx[i]=x[i];}}elsefor(j=0;j<=1;j++){x[i]=j;if(cw+x[i]*w[i]<=c){cw+=w[i]*x[i];Backtrack(i+1,cw);cw-=w[i]*x[i];}}}6、实验结果(1)输入:C=152,n=7,W=<90, 80, 40, 30, 20, 12, 10> 输出:(2)输入:C=954,n=7,W=<2, 23, 163, 241, 311, 479, 487> 输出:四、实验总结(心得体会、需要注意的问题等)回溯算法也称试探法,是一种系统的搜索问题的解的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(c[cur]==c[j]||cur-c[cur]==j-c[j]||cur+c[cur]==j+c[j])//同列、同正对角线、同负对角线
{
ok=0;
break;
}/这个for循环检测是否与前cur-1行的皇后有冲突
四、算法实现
具体代码:
#include <iostream>
n皇后问题的回溯算法实验
■必修 □选修
□演示性实验 □验证性实验■操作性实验 □综合性实验
实验地点
W202
实验仪器台号
指导教师
赵晓平
实验日期及节次
2012-2-20
一、问题描述
n后问题是指在一个n*n的棋盘上放置n个皇后,使得它们彼此不受攻击。而一个皇后可以攻击与它处在同一行或同一列或同一斜线上的任何棋子。故n后问题可以理解为:在一个n*n的棋盘内放置n个皇后,使任意两个皇后不处在同一行或同一列或同一斜线上。
我用递归来做这问题。要求皇后所在的位置必须和其他皇后的位置不在同一行、列和斜线上,所以这个限定条件可以用来判断一个皇后是否能放在当前位置。既然是用递归来解决问题那就要把这个问题分成一个个相同的小问题来实现。
这小问题是什么呢?不难发现我们要在n*n的方格里放好n个皇后那我们就要知道在n(列)*n-1(行)是怎么放的,再有我们事先写好的判断条件放好最后行就搞定了。以此类推我们要知道8*7的怎么方的我们就要知道8*6是怎么样的就好了。所以我们是以一行怎么放作为一个单元,每一行有n个位置可以放,每一个位置我们都要去判断一下所以我们就用循环来搞定。在这个循环里面我们让c[cur]=i也就是从这一行的第一个开始判断。先尝试放再去判断是否符合条件。如果符合条件我们就在调用这个函数本身向下一行搜索
outfile<<"第"<<++count<<"个解为:"<<endl;
for(int i=1;i<=n;i++)//在文件中输出结果:o表示皇后在,x表示皇后不在
{
for(int j=1;j<=n;j++)
{
if(c[i]==j)
outfile<<"o";
else
outfile<<"x";
}
outfile<<endl;
在进行判断下一行之前我们要判断一下cur是不是大于n也就是已经是最后一行了,如果是最后一行了我们就可以将其进行输出。打印n*n的矩阵皇后的位置用o表示出来没有的用x表示。
三、算法描述
分析:每个皇后在一行。做个n重循环,把每个皇后安排在每行的每个位置都试一遍。
1、棋盘是n*n数组,定义n+1个空棋盘。
}
五、程序测试及分析
结果输出:
六、总结
回溯法是一种最一般的算法设计方法,特别适用于求解那些涉及到寻求一组解的问题或者求满足某些约束条件的最优解的问题。我解决n皇后问题用的算法正是基于回溯算法的思想提出的一种递归算法,并且找出了八皇后问题的92个真正不同的解,此算法具有结构清晰,容易理解且可读性强等优点,并且通过稍加变通也可以适用于其他类似问题,例如汉诺塔等。与非递归算法设计相比,它往往更容易一些,但是会耗费更多的时间和空间,执行效率不高。
}
}
void main()
{
c=new int[n+1];
ofstream outfile;
outfile.open("output.txt",ios::app);//创建output文件
outfile<<n<<"皇后问题"<<endl;
search(1);//由第一行开始搜索
outfile.close();
#include<fstream>
using namespace std;
#define n 8 //控制皇后个数
int *c; //指向n*n的数组指针
void search(int cur)
{
void show();
int i,j;
if(cur==n+1)
show();//只要走到这,就一定可以有一组解并将它们输出
{
ok=0;
break;
}
if(ok)
search(cur+1);//不冲突,继续搜索
}
}
void show()
{
ofstream outfile;
outfile.open("output.txt",ios::app);//打开output文件
staticint count=0;//静态变量计算解的个数
else
for(i=1;i<=n;i++)//按列搜索
{
bool ok=1;
c[cur]=i; //尝试将第cur行的皇后放入第i列
for(j=1;j<cur;j++)//检测是否与前cur-1行的皇后有冲突
if(c[cur]==c[j]||cur-c[cur]==j-c[j]||cur+c[cur]==j+c[j])//同列、同正对角线、同负对角线
2、第一个皇后从1行1列到1行n列循环。
3、第二个皇后从2行1列到2行8列循环。
用c[cur]==c[j]||cur-c[cur]==j-c[j]||cur+c[cur]==j+c[j]来判断是否与前面放置的皇后冲突若本点不符合,则此点能放棋子,继续搜索。否则退出循环
4、以此类推
在算法中#define n 8控制皇后个数int *c;指向n*n的数组指针search函数是搜索下一行中哪列符合条件
本科学生综合性实验报告
姓名刘春云刘春云学号0103918___
专业软件工程班级_软件103班__
实验项目名称_n皇后问题的回溯算法实验
指导教师及职称_赵晓平__教授__
开课学期2011至_2012学年_三_学期
上课时间2012年2月20日
学生实验报告03918
同组人:无
实验项目
在这个问题中,我用了一个n*n的数组来存储棋盘,由于n后问题的典型是8皇后问题,所以我做的是8皇后问题。得出的解以以下形式出现在文件中:
8皇后问题
第1个解为:
oxxxxxxx
xxxxoxxx
xxxxxxxo
xxxxxoxx
xxoxxxxx
xxxxxxox
xoxxxxxx
xxxoxxxx
二、解题思路
根据条件可以知道皇后肯定是每行都有且只有一个所以我们创建一个数组c[cur]让数组角标表示八皇后的行,用这个角标对应的数组值来确定这个皇后在这行的那一列。