二叉树遍历所有代码

二叉树遍历所有代码
二叉树遍历所有代码

#include

#include

#include

#include

#include

#define SIZE 100

using namespace std;

typedef struct BiTNode //定义二叉树节点结构

{

char data; //数据域

struct BiTNode *lchild,*rchild; //左右孩子指针域

}BiTNode,*BiTree;

int visit(BiTree t);

void CreateBiTree(BiTree &T); //生成一个二叉树

void PreOrder(BiTree); //递归先序遍历二叉树

void InOrder(BiTree); //递归中序遍历二叉树

void PostOrder(BiTree); //递归后序遍历二叉树

void InOrderTraverse(BiTree T); //非递归中序遍历二叉树

void PreOrder_Nonrecursive(BiTree T);//非递归先序遍历二叉树

void LeverTraverse(BiTree T);//非递归层序遍历二叉树

//主函数

void main()

{

BiTree T;

char j;

int flag=1;

//---------------------程序解说-----------------------

printf("本程序实现二叉树的操作。\n");

printf("叶子结点以空格表示。\n");

printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。\n");

//----------------------------------------------------

printf("\n");

printf("请建立二叉树。\n");

printf("建树将以三个空格后回车结束。\n");

printf("例如:1 2 3 4 5 6 (回车)\n"); CreateBiTree(T); //初始化队列

getchar();

while(flag)

{

printf("请选择: \n");

printf("1.递归先序遍历\n");

printf("2.递归中序遍历\n");

printf("3.递归后序遍历\n");

printf("4.非递归中序遍历\n");

printf("5.非递归先序遍历\n");

printf("6.非递归层序遍历\n");

printf("0.退出程序\n");

scanf(" %c",&j);

switch(j)

{

case '1':if(T)

{

printf("递归先序遍历二叉树:"); PreOrder(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

case '2':if(T)

{

printf("递归中序遍历二叉树:"); InOrder(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

case '3':if(T)

{

printf("递归后序遍历二叉树:"); PostOrder(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

case '4':if(T)

{

printf("非递归中序遍历二叉树:"); InOrderTraverse(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

{

printf("非递归先序遍历二叉树:");

PreOrder_Nonrecursive(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

case '6':if(T)

{

printf("非递归层序遍历二叉树:");

LeverTraverse(T);

printf("\n");

}

else printf("二叉树为空!\n");

break;

default:flag=0;printf("程序运行结束,按任意键退出!\n"); }

}

}

//建立二叉树

void CreateBiTree(BiTree &T)

{

char ch;

scanf("%c",&ch); //读入一个字符

if(ch==' ') T=NULL;

else

{

T=(BiTNode *)malloc(sizeof(BiTNode)); //生成一个新结点 T->data=ch;

CreateBiTree(T->lchild); //生成左子树

CreateBiTree(T->rchild); //生成右子树

}

}

//先序遍历的递归

void PreOrder(BiTree T)

{

if(T)

{

printf("%c ",T->data); //访问结点

PreOrder(T->lchild); //遍历左子树

PreOrder(T->rchild); //遍历右子树 }

}

//中序遍历的递归

void InOrder(BiTree T)

{

if(T)

{

InOrder(T->lchild); //遍历左子树 printf("%c ",T->data); //访问结点 InOrder(T->rchild); //遍历右子树 }

}

//后序遍历的递归

void PostOrder(BiTree T)

{

if(T)

{

PostOrder(T->lchild); //遍历左子树 PostOrder(T->rchild); //访问结点 printf("%c ",T->data); //遍历右子树 }

}

//非递归中序遍历

void InOrderTraverse(BiTree T) {

stack S;

BiTree p;

S.push(T);//跟指针进栈

while(!S.empty())

{

p=new BiTNode;

while((p=S.top())&&p)

S.push(p->lchild);//向左走到尽头 S.pop(); //空指针退栈

if(!S.empty())

{

p=S.top();

S.pop();

cout<data<<" ";

S.push(p->rchild);

}

}

}

//先序遍历的非递归

void PreOrder_Nonrecursive(BiTree T) {

stack S;

BiTree p;

S.push(T);//根指针进栈

while(!S.empty())//栈空时结束

{

while((p=S.top())&&p)

{

cout<data<<" ";

S.push(p->lchild);

}//向左走到尽头

S.pop();//弹出堆栈

if(!S.empty())

{

p=S.top();

S.pop();

S.push(p->rchild);//向右走一步

}

}

}

void LeverTraverse(BiTree T)

{//非递归层次遍历

queue Q;

BiTree p;

p = T;

if(visit(p)==1)

Q.push(p);

while(!Q.empty())

{

p = Q.front();

Q.pop();

if(visit(p->lchild) == 1)

Q.push(p->lchild);

if(visit(p->rchild) == 1)

Q.push(p->rchild); }

}

int visit(BiTree T) {

if(T)

{

printf("%c ",T->data); return 1;

}

else

return 0;

}

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

二叉排序树的建立及遍历的实现

课程设计任务书 题目: 二叉排序树的建立及遍历的实现 初始条件: 理论:学习了《数据结构》课程,掌握了基本的数据结构和常用的算法; 实践:计算机技术系实验室提供计算机及软件开发环境。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、系统应具备的功能: (1)建立二叉排序树; (2)中序遍历二叉排序树并输出排序结果; 2、数据结构设计; 3、主要算法设计; 4、编程及上机实现; 5、撰写课程设计报告,包括: (1)设计题目; (2)摘要和关键字; (3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、设计体会等; (4)结束语; (5)参考文献。 时间安排:2007年7月2日-7日(第18周) 7月2日查阅资料 7月3日系统设计,数据结构设计,算法设计 7月4日-5日编程并上机调试7月6日撰写报告 7月7日验收程序,提交设计报告书。 指导教师签名: 2007年7月2日 系主任(或责任教师)签名: 2007年7月2日 排序二叉树的建立及其遍历的实现

摘要:我所设计的课题为排序二叉树的建立及其遍历的实现,它的主要功能是将输入的数据 组合成排序二叉树,并进行,先序,中序和后序遍历。设计该课题采用了C语言程序设计,简洁而方便,它主要运用了建立函数,调用函数,建立递归函数等等方面来进行设计。 关键字:排序二叉树,先序遍历,中序遍历,后序遍历 0.引言 我所设计的题目为排序二叉树的建立及其遍历的实现。排序二叉树或是一棵空树;或是具有以下性质的二叉树:(1)若它的左子树不空,则作子树上所有的结点的值均小于它的根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)它的左,右子树也分别为二叉排序树。对排序二叉树的建立需知道其定义及其通过插入结点来建立排序二叉树,遍历及其输出结果。 该设计根据输入的数据进行建立排序二叉树。对排序二叉树的遍历,其关键是运用递归 调用,这将极大的方便算法设计。 1.需求分析 建立排序二叉树,主要是需要建立节点用来存储输入的数据,需要建立函数用来创造排序二叉树,在函数内,需要进行数据比较决定数据放在左子树还是右子树。在遍历二叉树中,需要建立递归函数进行遍历。 该题目包含两方面的内容,一为排序二叉树的建立;二为排序二叉树的遍历,包括先序遍历,中序遍历和后序遍历。排序二叉树的建立主要运用了循环语句和递归语句进行,对遍历算法运用了递归语句来进行。 2.数据结构设计 本题目主要会用到建立结点,构造指针变量,插入结点函数和建立排序二叉树函数,求深度函数,以及先序遍历函数,中序遍历函数和后序遍历函数,还有一些常用的输入输出语句。对建立的函明确其作用,先理清函数内部的程序以及算法在将其应用到整个程序中,在建立排序二叉树时,主要用到建立节点函数,建立树函数,深度函数,在遍历树是,用到先序遍历函数,中序遍历函数和后序遍历函数。

汇编二叉树的遍历

一、软件背景介绍 树的遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算的基础。 从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作: ⑴访问结点本身(N), ⑵遍历该结点的左子树(L), ⑶遍历该结点的右子树(R)。 所以二叉树的遍历也包括三种:先序遍历,中序遍历,和后序遍历。

图1:程序显示结果 二、核心算法思想 二叉树的存储: 在内存中为数组binary分配一个大小为63(0,0,0)的存储空间,所有数组元素初始化为0,用来存放二叉树。每三个连续的数组地址存放一个节点:第一个地址存放节点的值;第二个地址存放有无左孩子的信息,如果有则将其置为1,否则为0;第三个地址存放有无右孩子的信息,如果有则将其置为1,否则为0。将binary的首址偏移赋给si,cx初始化为0用来计数,用回车代表输入的为空,即没有输入。按先根存储的方式来存二叉树,首先输入一个字符,若为回车则退出程序,否则cx+3且调用函数root。然后该结点若有左孩子,调用leftchild函数,置该结点标志即第二个地址中的0为1,该结点进栈,再存储左孩子结点,递归调用左右,若没有左孩子,看有没有右孩子,若有,则调用rightchild置该结点标志位即上第三个地址中的0为1,然后该结点进栈,再存储右孩子结点,递归调用左右,整个用cx计数,数组binary中每多一个节点,cx加3。此存储方式正好符合先序遍历思想。遍历二叉树的执行踪迹: 三种递归遍历算法的搜索路线相同,具体线路为:从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。 二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。 在搜索路线中,若访问结点均是第一次经过结点时进行的,则是前序遍历;若访问结点均是在第二次(或第三次)经过结点时进行的,则是中序遍历(或后序遍历)。只要将搜索路线上所有在第一次、第二次和第三次经过的结点分别列表,即可分别得到该二叉树的前序序列、中序序列和后序序列。 先序遍历,中序遍历,后序遍历这三种序列都是线性序列,有且仅有一个开始结点和一个终端结点,其余结点都有且仅有一个前驱结点和一个后继结点。为了区别于树形结构中前驱(即双亲)结点和后继(即孩子)结点的概念,对上述三种线性序列,要在某结点的前驱和后继之前冠以其遍历次序名称。 二叉树的遍历具体步骤: 先序遍历:将binary的首址偏移赋给si,cx用来计数。每显示输出一个节点,则cx加3直接把数组元素下标为0,3,6,……用si遍历下来,每遍历一个结点,要判断si所指数组元素是否是0,是0,结束遍历;不是0,则输出,至到si所指元素为0,则没有结点,此时结束先序遍历。 中序遍历:用数组地址初始化si,然后加cx加3,若结点的第二个地址中的元素为0,打印si,再判断右子树标志位,为1继续,si继续进栈,再用数组地址初始化si,然后加cx,cx再继续加3,否则si出栈,结束中序过程;若结点的第二个地址中的元素不为0,则si 进栈,si加cx,cx继续加3,直到结点的第二个地址中的元素为0,再判断左子树标志位,为1继续,si继续进栈,再用数组地址初始化si,然后加cx,cx再继续加3,否则si出栈,结束中序过程。 后序遍历:后序遍历和中序遍历类似,只是先遍历左孩子,后遍历右孩子,再打印,递归。具体过程,先用数组地址初始化si,然后加cx加3,若结点的第二个地址中的元素为0,打印si,再判断左子树标志位,为1继续,si继续进栈,再用数组地址初始化si,然后加cx,cx再继续加3,否则si出栈,结束中序过程;若结点的第二个地址中的元素不为0,则si 进栈,si加cx,cx继续加3,直到结点的第二个地址中的元素为0,再判断右子树标志位,为1继续,si继续进栈,再用数组地址初始化si,然后加cx,cx再继续加3,否则si出栈,

数据结构课程设计_线索二叉树的生成及其遍历

数据结构课程设计 题目: 线索二叉树的生成及其遍历 学院: 班级: 学生姓名: 学生学号: 指导教师: 2012 年12月5日

课程设计任务书

摘要 针对以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。 关键词二叉树,中序线索二叉树,中序线索二叉树的遍历

目录 摘要 ............................................ 错误!未定义书签。第一章,需求分析................................. 错误!未定义书签。第二章,概要设计 (1) 第三章,详细设计 (2) 第四章,调试分析 (5) 第五章,用户使用说明 (5) 第六章,测试结果 (5) 第七章,绪论 (6) 第八章,附录参考文献 (7)

线索二叉树的生成及其遍历 第一章需求分析 以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。主要任务: 1.建立二叉树; 2.将二叉树进行中序线索化; 3.编写程序,运行并修改; 4.利用中序线索遍历二叉树 5.书写课程设计论文并将所编写的程序完善。 第二章概要设计 下面是建立中序二叉树的递归算法,其中pre为全局变量。 BiThrNodeType *pre; BiThrTree InOrderThr(BiThrTree T) { /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/ BiThrTree head; head=(BitThrNodeType *)malloc(sizeof(BiThrType));/*设申请头结点成功*/ head->ltag=0;head->rtag=1;/*建立头结点*/ head->rchild=head;/*右指针回指*/ if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/ else{head->lchild=T;pre=head; InThreading(T);/*中序遍历进行中序线索化*/ pre->rchild=head; pre->rtag=1;/*最后一个结点线索化*/ head->rchild=pre; }; return head; } void InThreading(BiThrTree p) {/*通过中序遍历进行中序线索化*/ if(p)

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

二叉树的建立及其遍历实验报告

数据结构实验报告 ———二叉树的建立及其遍历 一、实验目的 1、了解二叉树的建立的方法及其遍历的顺序,熟悉二叉树的三种遍历 2、检验输入的数据是否可以构成一颗二叉树 二、实验的描述和算法 1、实验描述 二叉树的建立首先要建立一个二叉链表的结构体,包含根节点和左右子树。因为耳熟的每一个左右子树又是一颗二叉树,所以可以用递归的方法来建立其左右子树。二叉树的遍历是一种把二叉树的每一个节点访问完并输出的过程,遍历时根结点与左右孩子的输出顺序构成了不同的遍历方法,这个过程需要按照不同的遍历的方法,先输出根结点还是先输出左右孩子,可以用选择语句实现。 2、算法 #include #include #define OVERFLOW 0 #define OK 1 #define ERROR 0 typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree CreateBiTree(BiTree T)

{ scanf("%c",&e); if(e==' ') T=NULL; else { if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) exit(OVERFLOW); T->data=e; T->lchild=CreateBiTree(T->lchild); T->rchild=CreateBiTree(T->rchild); } return T; } /************************前序遍历***********************/ char PreOrderTraverse(BiTree T,char (* Visit)(char e)) { if(T) { if(Visit(T->data)) if(PreOrderTraverse(T->lchild,Visit)) if(PreOrderTraverse(T->rchild,Visit)) return OK; return ERROR; } else return OK; } char Visit(char e) { printf("%5c",e); return OK; } main() {

数据结构——二叉树的操作(遍历及树形输出)

/*实验三:二叉树遍历操作验证*/ #include #include #include #include #include #include #include using namespace std; #define OK 1 #define ERROR 0 #define OVERFLOW -2 int LeafNum;//叶子结点个数 //定义结构体 typedef struct BiTNode{ char data; //存放值 struct BiTNode *lchild,*rchild; //左右孩子 }BiTNode,*BiTree; //先序输入二叉树结点的值,空格表示空树 void createBiTree(BiTree &T) { char ch; //输入结点时用 scanf("%c",&ch); if(ch==' ') //若输入空格,该值为空,且没有左右孩子 { T=NULL; }else{ T=(BiTNode *)malloc(sizeof(BiTNode)); //分配结点空间 if(!T) //分配失败 { exit(OVERFLOW); } T->data=ch; //生成根结点 createBiTree(T->lchild); //构造左子树 createBiTree(T->rchild); //构造右子树 } } //递归方法先序遍历二叉树 void preOrderTraverse(BiTree T) {

if(T) //若非空 { if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); } } //递归方法中序遍历二叉树 void inOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->rchild); } } //递归方法后序遍历二叉树 void postOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); if(T->data) { //输出 printf("%c",T->data); } } } //层序遍历二叉树 void LevelTraverse(BiTree T) { queue q;//建队 q.push(T);//根节点入队

二叉树的随机生成及其遍历

叉树的随机生成及其遍历 张 zhaohan 10804XXXXX 2010/6/12 问题重述 利用随机函数产生50个(不大于1 00且各不相同的)随机整数,用这些整数来生成一棵二叉树,分别对二叉树 进行先根遍历,中根遍历和后根遍历并输出树中结点元素序列。 程序设计 (一) 需求分析: ?问题的定义与要求: 1 、产生50个不大于100且各不相同的随机整数 (由系统的随机函数生成并 对100取模);2、先根遍历并输出结果;3、中根遍历并输出结果;4、后根遍历并输出结果;按层次浏览二叉树结 5、点; 6、退出程序。 ?俞入:所需功能,选项为1?6。 ?输出:按照用户功能选择输出结果。 ?限制:输入的功能选择在1?6之间,否则无回应。 ?模块功能及要求: RandDif(): 生成50个随机不大于100的整数,每次生成不同随机整数。 CreateBitree(): 给数据结点生成二叉树,使每个结点的左右儿子指针指向左右儿子。 NRPreOrder(): 非递归算法的先根遍历。 inOrderTraverse(): 递归算法的中根遍历。 P ostOrderTraverseO:递归算法的后根遍历。 Welcome(): 欢迎窗口。 Menu():菜单。 Goodbye():再见窗口。 (二) 概要设计:

首先要生成二叉树,由于是对随机生成的50个数生成二叉树,故可以采取顺序存储的方式,对结点的左右儿子进行赋值。生成的二叉树是完全二叉树。 先根遍历的非递归算法: 1、根结点进栈 2、结点出栈,被访问 3、结点的右、左儿子(非空)进栈 4、反复执行2、3 ,至栈空为止。 先根遍历的算法流程图:根结点进栈( a[0]=T->boot,p=a[0] ) 访问结点printf(*p) 右儿子存在则进栈a[i]=(*p).rchild; i++; 左儿子存在则进栈a[i]=(*p).rchild; i++; 栈顶降低top--:i--;p=a[i]; 栈非空while(i>-1) 返回 中根遍历的递归算法流程图: T为空 Return; inOrderTraverse(T->lchild) Printf(T->data) inOrderTraverse(T->rchild) 返回

二叉树遍历所有代码

#include #include #include #include #include #define SIZE 100 using namespace std; typedef struct BiTNode //定义二叉树节点结构 { char data; //数据域 struct BiTNode *lchild,*rchild; //左右孩子指针域 }BiTNode,*BiTree; int visit(BiTree t); void CreateBiTree(BiTree &T); //生成一个二叉树 void PreOrder(BiTree); //递归先序遍历二叉树 void InOrder(BiTree); //递归中序遍历二叉树 void PostOrder(BiTree); //递归后序遍历二叉树 void InOrderTraverse(BiTree T); //非递归中序遍历二叉树 void PreOrder_Nonrecursive(BiTree T);//非递归先序遍历二叉树 void LeverTraverse(BiTree T);//非递归层序遍历二叉树 //主函数 void main() { BiTree T; char j; int flag=1; //---------------------程序解说----------------------- printf("本程序实现二叉树的操作。\n"); printf("叶子结点以空格表示。\n"); printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。\n"); //---------------------------------------------------- printf("\n"); printf("请建立二叉树。\n"); printf("建树将以三个空格后回车结束。\n"); printf("例如:1 2 3 4 5 6 (回车)\n"); CreateBiTree(T); //初始化队列 getchar(); while(flag) {

数据结构二叉树的创建及遍历

课程名称:数据结构实验 实验项目:二叉树的创建及遍历 姓名: 专业:计算机科学与技术 班级: 学号: 计算机科学与技术学院 20 17年11 月22 日

哈尔滨理工大学计算机科学与技术学院实验报告 实验项目名称:二叉树的建立及遍历 一、实验目的 1.熟悉掌握课本二叉树相关理论知识 2.实践与理论相结合,掌握二叉树的应用程序 3.学会二叉树的创建,遍历等其他基本操作的代码实现 二、实验内容 1.二叉树的创建代码实现 2.二叉树先序、中序、后序遍历代码实现 三、实验操作步骤 1.二叉树的建立 (1)树节点的定义 由于每个节点都由数据域和指左子树和右子树的指针,故结构体封装如下: typedef struct node { int data; struct node *left; struct node *right; }Tree,*bitree; (2)建立 采用递归的思想,先建立根再建立左子树,再建立右子树。递归截止条件子树为空,用-1代表树空 *T=(struct node *)malloc(sizeof(struct node));

(*T)->data=a; printf("%d的左节点",a); create(&(*T)->left); printf("%d的右节点",a); create(&(*T)->right); 2.三种遍历的实现 (1)先序遍历 依旧采用递归的思想,先遍历根后遍历左子树再遍历右子树。 printf("%d ",T->data); Pro(T->left); Pro(T->right); (2)中序遍历 先遍历左子树再遍历根最后遍历右子树 Mid(T->left); printf("%d ",T->data); Mid(T->right); (3)后序遍历 先遍历左子树再遍历右子树最后遍历根 Later(T->left); Later(T->right); printf("%d ",T->data); (4)按层遍历 按层遍历采用队列的思想,先将第一个节点入队然后在将其出队将其左右孩子入队。依

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树的建立及遍历

数据结构实验五 课程数据结构实验名称二叉树的建立及遍历第页 专业班级学号 姓名 实验日期:年月日评分 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。 2 .编写程序生成下面所示的二叉树,并采用先序遍历的非递归算法对此二叉 树进行遍历。 四、实验步骤 (描述实验步骤及中间的结果或现象。在实验中做了什么事情,怎么做的,发生的现象和中间结果) 第一题 #include "stdafx.h" #include"iostream.h" #include"stdlib.h"

#include"stdio.h" #includelchild); int n=depth(T->rchild); ?return (m>n?m:n)+1; } } //先序,中序建树 structnode*create(char *pre,char *ord,int n) { ?struct node*T; intm; T=NULL; ?if(n<=0) ?{ ?returnNULL; } ?else ?{ ?m=0; ??T=new(struct node); T->data=*pre; ?T->lchild=T->rchild=NULL; ?while(ord[m]!=*pre) ?m++; T->lchild=create(pre+1,ord,m); ?T->rchild=create(pre+m+1,ord+m+1,n-m-1);

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

二叉树遍历源代码

#include /*导入需要用到的各种包*/ #include #include typedef struct TreeNode { //自定义二叉树结点char data; //当前结点内容 TreeNode *left; //左子树 TreeNode *right; //右子树 }TreeNode; typedef struct //创建栈 { TreeNode nd[100]; //Node是自定义的结点int top; //栈顶指针 int size; //栈内元素数量 }stack; void InitStack(stack *st) //初始化栈 { st->top=0; st->size=0; } TreeNode Pop(stack *st) //出栈 { if (st->size==0) //如果栈为空,则结束程序{ exit(-1); } st->top--; //使栈定指针减1 st->size--; return st->nd[st->top]; } TreeNode Top(stack *st) //查看栈顶元素 { if(st->size==0) { exit(-1); } return st->nd[st->top-1]; //返回栈顶元素,只查看 } bool IsEmpty(stack *st) //判断栈是否为空

{ if(st->size == 0) return true; else return false; } void Push(stack *st,TreeNode n) //入栈方法 { st->size++; st->nd[st->top++]=n; } int main(void) //主函数 { void PreOrder(TreeNode A); //声明需要使用的各个函数 void InOrder(TreeNode A); void PostOrder(TreeNode A); void PreOrderF(TreeNode A); void InOrderF(TreeNode A); void PostOrderF(TreeNode A); TreeNode a; a.data='a'; //建立各个结点 TreeNode b; b.data='b'; TreeNode c; c.data='c'; TreeNode d; d.data='d'; TreeNode e; e.data='e'; TreeNode f; f.data='f'; TreeNode g; g.data='g'; TreeNode h; h.data ='h'; a.left = &b; //给结点的左右子赋值,构建二叉树 a.right = &c; b.left = &d; b.right = &e; d.left = NULL; d.right = &g; c.left = NULL; c.right = &f; g.left =&h; g.right = NULL; e.left =NULL; e.right = NULL; f.left =NULL; f.right = NULL; h.left = NULL; h.right =NULL;

C++二叉树的创建与遍历实验报告

二叉树的创建与遍历 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归和非递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归和非递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历。 四、实验步骤 源程序代码1 #include #include using namespace std; template struct BinTreeNode //二叉树结点类定义 { T data; //数据域 BinTreeNode *leftChild,*rightChild; //左子女、右子女域 BinTreeNode(T x=T(),BinTreeNode* l =NULL,BinTreeNode* r = NULL ) :data(x),leftChild(l),rightChild(r){} //可选择参数的默认构造函数 }; //------------------------------------------------------------------------- template void PreOrder_2(BinTreeNode *p) //非递归前序遍历 { stack * > S;

相关文档
最新文档