机械优化设计MATLAB程序
完整版优化设计Matlab编程作业

化设计hl4HU©0⑥ 3 hlu 凹内r d X1州fci-rU-fFF卢F ♦ 忡下¥为+1 —*— S-ll-« F41:Si —MATLABoftiHMirjirCfiffliiiiJ PHI■1**■ 温不平?」11,・—喜M - 〜FT 文词一时y 片 34ml 3F*L9TR0i. Jill!-LkftLgWf 1S1CSI掰f 1 ■ >A A A »W I % :k Dnfl w I ■ J k^lXMprfaMk tjn nn Alflhw初选 x0=[1,1] 程序:Step 1: Write an Mfle objfunl.m.function f1=objfun1(x)f1=x(1)人2+2*x(2)入2-2*x(1)*x(2)-4*x(1);Step 2: Invoke one of the unconstrained optimization routinesx0=[1,1];>> options = 0Ptimset('LargeScale','off);>> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options)运行结果: x =4.0000 2.0000 fval = -8.0000exitflag =1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007algorithm: 'medium-scale: Quasi-Newton line search message: [1x85 char]非线性有约束优化1. Min f(x)=3 x : + x 2+2 x 1-3 x 2+5 Subject to:g 2(x)=5 X 1-3 X 2 -25 < 0 g (x)=13 X -41 X 2 < 0 3 12g 4(x)=14 < X 1 < 130无约束优化 min f(x)=X 2 + x 2-2 x 1 x 2-4 x 1g5 (x)=2 < X 2 < 57初选x0=[10,10]Step 1: Write an M-file objfun2.mfunction f2=objfun2(x)f2=3*x(1)人2+x(2)人2+2*x(1)-3*x(2)+5;Step 2: Write an M-file confunl.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18;5*x(1)-3*x(2)-25;13*x(1)-41*x(2)人2;14-x(1);x(1)-130;2-x(2);x(2)-57];% Nonlinear inequality constraints ceq=[];Step 3: Invoke constrained optimization routinex0=[10,10]; % Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options)运行结果:x =3.6755 -7.0744 fval =124.14952.min f (x) =4x2 + 5x2s.t. g 1(x) = 2X] + 3x2- 6 < 0g (x) = x x +1 > 0初选x0=[1,1]Step 1: Write an M-file objfun3.m function f=objfun3(x) f=4*x(1)人2 + 5*x(2)人2Step 2: Write an M-file confun3.m for the constraints. function [c,ceq]=confun3(x) %Nonlinear inequality constraints c=[2*x(1)+3*x(2)-6;-x(1)*x(2)-1];% Nonlinear equality constraints ceq口;Step 3: Invoke constrained optimization routinex0=[1,1];% Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)运行结果:Optimization terminated: no feasible solution found. Magnitude of search direction less than2*options.TolX but constraints are not satisfied.x =11fval =-13实例:螺栓连接的优化设计图示为一压气机气缸与缸盖连接的示意图。
机械优化设计

机械优化设计matlab优化设计程序学校:班级:学号:姓名:指导老师:一.进退法求最优点所在区间1.算例:函数:f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;初始参数:x0=0,step=0.01,st=[0,0],sd=[1,1];2.编程代码:function [lb,ub]=jintuifa(x0,step0,st,sd)% lb为区间下限,up为区间上限% x0初始探测点,step0是初始探测步长,st初始搜索点,sd是初始搜索方向step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;end3.运行结果二.黄金分割法求最求最优值1.eg:函数:f=x^2+2*x;初始参数:a=-3,b=5,e=0.0001;2.编程代码:function [ans,sp]=golden(a,b,e)%[a,b]初始区间,e为最小区间长度要求%ans为最优解,sp为所需迭代次数a(1)=a;b(1)=b;L=e;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;m(1)=feval('f1',t(1));n(1)=feval('f1',u(1));while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endm(k+1)=feval('f1',t(k+1));n(k+1)=feval('f1',u(k+1));ans=feval('f1',t(k+1));k=k+1;endans=(a(k)+b(k))/2;sp=k-1;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y=f1(x)y=x^2+2*x;end3.运行结果三.无约束优化方法——坐标轮换法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9];2.编程代码:function [x,f]=lunhuan(x0)%输入初始点x0[8,9]%输出最优解点x,与最优解值fp=1;h=0.000001;x=x0;while(p>h)%做精度比较w=x(1);q=x(2);d1=[1,0];a1=golden('objfun',x,d1);%黄金分割法求最佳步长 x=x+a1*d1;d2=[0,1];a2=golden('objfun',x,d2);x=x+a2*d2;p=sqrt((x(1)-w)^2+(x(2)-q)^2);endf=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)%函数名f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)%进退法函数x0=0;step0=0.000001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd); %进退法求最佳步长区间a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endt(k)=0;u(k)=0;m(k)=0;n(k)=0;p=[a',b',t',u',m',n'];ans=(a(k)+b(k))/2;end3.运行结果四.无约束优化方法——鲍威尔法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9],初始搜索方向[0,1],[1,0];2.编程代码:function [x,f]=powill(x0,d1,d2)%输入x0为初始点,d1,d2为两个线性无关向量for k=1:2w=x0(1);q=x0(2);a1=golden('objfun',x0,d1);x1=x0+a1*d1;a2=golden('objfun',x1,d2);x2=x1+a2*d2;d1=d2;d2=x2-x0;a3=golden('objfun',x2,d2);x3=x2+a3*d2;x0=x3;endx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)x0=0;step0=0.0001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd);a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endend3.运行结果五.有约束优化方法——复合形法1.eg:函数:min f(x)=x1^2+x2^2-x1*x2-10*x1-4*x2+60 St:g1(x)=-x1≤0g2(x)=-x2≤0g3(x)=x1-6≤0g4(x)=x2-8≤0g5(x)=x1+x2-11≤02.编程代码:function fuhexing(n,b,h,xb1,xb2)%元素数n,初始可行点b,精度h,xb1横坐标上下界,xb2为纵坐标上下界if (rem(n,2)==0)k=n+n/2;elsek=n+(n+1)/2;end%取k值A=kexingdian(k,xb1,xb2,b');%确定可行点A=mubiao(A,n,k,h);%求出目标函数并排序比较,得出最优解End %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=mubiao(A,n,k,h)for i=1:kA(3,i)=objfun(A(:,i));endB=A';%根据目标函数值排序A=sortrows(B,3)';p=0;for j=1:kx=(objfun(A(:,j))-objfun(A(:,1)))^2;p=p+x;endo=sqrt(p/(k-1));%收敛条件if(o<h)%判断所求点是否为最优点disp('最优点为')xz(1)=A(1,1);xz(2)=A(2,1);disp(xz);disp('其函数值为')f=A(3,1);disp(f);elsexr=Xcpanduan(A,k,n,h,1.3);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=kexingdian(k,xb1,xb2,b)A=zeros(3,k);A(1,1)=b(1);A(2,1)=b(2);for i=2:kA(1,i)=xb1(1)+rand(1)*(xb1(2)-xb1(1));A(2,i)=xb2(1)+rand(1)*(xb2(2)-xb2(1));%产生j个顶点endt=0;for j=1:kif(A(1,j)+A(2,j)<=11&&A(1,j)<=6&&A(2,j)<=8)%判断是否有不可行点t=t+1;T(:,t)=A(:,j);endendif(t<k)%计算出可行点的中心位置xcxc=zhongxindian(T,t);endt=0;for j=1:k%利用中心点将原不可行点逼近为可行点while(A(1,j)+A(2,j)>11||A(1,j)>6||A(2,j)>8)A(:,j)=xc+0.5*(A(:,j)-xc);endendendx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=objfun(x)f= x1^2+x2^2-x1*x2-10*x1-4*x2+60;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=Xcpanduan(A,k,n,h,a)for i=1:k-1T(:,i)=A(:,i);endxc=zhongxindian(T,k-1);%计算除最坏点以外的可行点中心坐标if(xc(1)+xc(2)<=11&&xc(1)<=6&&xc(2)<=8)%判断xc是否可行xr=Xrpanduan(xc,A,a,n,k,h);A(:,k)=xr;else%不可行时,即重新确定初始可行点fuhexing(n,h,A(:,1),xr);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=zhongxindian(T,t)xc=[0;0;0];for i=1:txc=xc+T(:,i);endxc=xc/t;%求解中心点end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xr=Xrpanduan(xc,A,a,n,k,h)xr=xc+a*(xc-A(:,k));while(xr(1)+xr(2)>11||xr(1)>6||xr(2)>8)%判断xr 是否可行若不可行,则持续迭代a=0.5*a;xr=xc+a*(xc-A(:,k));endxr=ercipanduan(a,xr,A(:,k),A,n,k,xc,h,xr);%可行时进入下一判断end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xr=ercipanduan(a,p,b,A,n,k,xc,h,t)if(objfun(p)>=objfun(b))%判断反射点和最坏点函数值的大小if(a<=1e-10)A(:,k)=A(:,k-1);xr=Xcpanduan(A,k,n,h,a);disp(xr);elsea=0.5*a;xr=Xrpanduan(xc,A,a,n,k,h);%返回中心点判断,持续迭代endelseA(:,k)=p;%以反射点取代最坏点进行循环mubiao(A,n,k,h);xr=t;endend3.运行结果五.有约束优化方法——混合惩罚法1.eg:函数:min f(x)=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;St:g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);2.编程代码function [x,f]=hunhechengfa(x0,r0,c,h1,h2)k=1;z=0;A(:,1)=x0;r(1)=r0;while (z==0)k=k+1;x=lunhuan(x0,r(k-1));A(:,k)=x;r(k)=c*r(k-1);z=shoulian(A,r,h1,h2,k);if(z==1)break;endx0=x;enddisp('最优解点x=');disp(x);disp('最优值=');f=fhanshu(x);disp(f);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z=shoulian(A,r,h1,h2,k)%判断收敛条件U=abs(objfun(A(:,k),r(k))-objfun(A(:,k-1),r(k-1))/obj fun(A(:,k-1),r(k-1)));V=0;for i=2:kV=V+(A(1,k)-A(1,k-1))^2;endV=sqrt(V);if(U<=h1&&V<=h2)z=1;elsez=0;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function p=objfun(x,r)%φ函数g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);j=sqrt(r);u=r*(1/g1+1/g2+1/g3+1/g4);v=(g1^2+g2^2+g3^2+g4^2)/j;p=fhanshu(x)-u+v;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=fhanshu(x)%目标函数f=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function x=lunhuan(x0,r)%轮换法p=1;h=0.01;d=zeros(6,6);a=zeros(6,1);x=x0;for i=1:6for j=1:6if(i==j)d(i,j)=1;endendendwhile(p>h)t=x;v=0;for k=1:6a(k)=golden(x,d(:,k),r);c=d(:,k);x=x-a(k)*c';v=v+(x(k)-t(k))^2;endp=sqrt(v);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(st,sd,r)%黄金分割法求最佳步长 [g,h]=jintuifa(st,sd,r);a(1)=g;b(1)=h;L=0.01;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd';q=st+u(1)*sd';m(1)=objfun(p,r);n(1)=objfun(q,r);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd';z=st+u(k+1)*sd';m(k+1)=objfun(w,r);n(k+1)=objfun(z,r);k=k+1;endans=(a(k)+b(k))/2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd,r)%代入步长f=objfun(st+a.*sd',r);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd,r)%进退法求最佳步长区间x0=0;step0=0.001;step=step0;f0=jintui(x0,st,sd,r);x1=x0+step0;f1=jintui(x1,st,sd,r);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd,r);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd,r);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2; f1=f0; f0=f2;endendend3.运行结果。
利用Matlab求解机械设计方案优化问题的分析

利用MATLAB求解机械设计优化问题的分析周婷婷(能源与动力学院,油气0701>摘要:MATLAB是目前国际上最流行的科学与工程计算的软件工具,它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。
本文浅谈MATLAB在机械设计优化问题的几点应用。
关键词:MATLAB 约束条件机械设计优化引言:在线性规划和非线性规划等领域经常遇到求函数极值等最优化问题,当函数或约束条件复杂到一定程度时就无法求解,而只能求助于极值分析算法,如果借助计算器进行手工计算的话,计算量会很大,如果要求遇到求解极值问题的每个人都去用BASIC,C和FORTRAN之类的高级语言编写一套程序的话,那是非一朝一日可以解决的,但如用MATLAB语言实现极值问题的数值解算,就可以避免计算量过大和编程难的两大难题,可以轻松高效地得到极值问题的数值解,而且可以达到足够的精度。
1无约束条件的极值问题的解算方法设有Rosenbrock函数如下:f(X1,X2>=100(X2-X1*X1>2+(1-X1>2求向量X取何值时,F(x>的值最小及最小值是多少?先用MATLAB语言的编辑器编写求解该问题的程序如下:%把函数写成MATLAB语言表达式fun=’100*(X(2>-X(1>*X(1>2+(1-X(1>>2%猜自变量的初值X0=[-1 2]。
%所有选项取默认值options=[ ];%调用最优化函数进行计算。
%函数最小值存放在数组元素options(8>中%与极值点对应的自变量值存放在向量X里%计算步数存放在数组元素options(10>中[X,options]=fmins(fun,X0,options>;%显示与极值点对应的自变向量X的值。
%显示函数最小值options(8>%显示函数计算步数options(10>把上面这段程序保存为m文件,然后用“Tools”菜单中的“Run”命令行这段程序,就可以轻松的得到如下结果:X=9.999908938395383e-0019.99982742178110e-001ans=1.706171071794760e-001ans=195显然,计算结果与理论结果的误差小到e-10级,这里调用了MATLAB的最优化函数fmins(>,它采用Nelder-Mead的单纯形算法,就是因为这个函数的采用,使最小值问题的解算变得非常简单。
机械优化设计实验报告

《机械优化设计》课程实验报告M a t l a b优化工具箱一、实验目的和要求熟悉Matlab7.0软件的界面和基本功能,了解Matlab优化工具箱的常用算法;使用Matlab优化工具箱的f m i n u n c/f m i n s e a r c h函数求解多变量非线性无约束优化问题;使用Matlab优化工具箱的f m i n c o n函数求解多变量非线性约束优化问题。
二、实验设备和软件台式计算机,Matlab7.0软件。
三、实验内容求解下列优化问题的最优解。
要求:(1)编写求解优化问题的M文件,(2)在命令窗口输入求解优化问题的命令,并得出计算结果。
1、标量优化问题1) f=x2-10x+362) f=x4-5x3+4x2-6x+603) f=(x+1)(x-2)22、多变量非线性无约束优化问题1) f=4(x1-5) 2+( x2-6) 2初始点:x0=[8,9]T;2) f=(x12+x2-11)2+( x1+ x22-7)2初始点:x0=[1,1]T;3) f=[1.5- x1(1- x2)]2+[2.25- x1(1- x22)]2+[2.625- x1(1- x23)]2初始点:x0=[2,0.2]T;4) f=( x12+12 x2-1)2+(49 x1+49 x2+84 x1+2324 x2-681)2初始点:x0=[1,1]T;5) f=( x1+10 x2)2+5(x3- x4)2+( x2-2 x3)4+10(x1- x4)4初始点:x0=[3,-1,0,1]T;3、多变量非线性约束优化问题1) f=( x1-2)2+( x2-1)2g1= x12-x2≤0g2= x1+x2-2≤0初始点:x0=[3,3]T;2) f= x23[( x1-3)2-9]/273≤0g1=x2-x1/3≤0g2=-x1+x2/3≤0g3=x1+x2/3-6≤0g4=-x1≤0g5=-x2≤0初始点:x0=[1,5]T;3) f=1000- x12-2x2 2-x32-x1x2-x1x3g1=-x1≤0g2=-x2≤0g3=-x3≤0g4=x12+x22+x3 2-25=0g5=8x1+14x2+7x3-56=0初始点:x0=[2,2,2]T4)f=100(x2-x12)2+(1-x1)2+90(x4-x32)2+(1-x3)2+10[(x2-1)2+(x4-1)2]+19.8(x2-1)(x4-1)-10≤x1≤10-10≤x2≤10-10≤x3≤10-10≤0x4≤10初始点:x0=[-3,-1,-3,-1]T;四、M文件、在命令窗口输入的求解命令清单及计算结果记录>>1、(1)目标函数的M文件function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)} x =5.0000fval =11.00002、(2)目标函数的M文件function f=fun2(x)f=x^4-5*x^3+4*x^2-6*x+60调用求解命令x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun2,lb,ub,options)x =3.2796fval =22.65902、(3)目标函数的M文件function f=fun3(x)f=(x+1)*(x-2)^2调用求解命令> x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun3,lb,ub,options)x =2.0000fval =1.9953e-0113(1)目标函数的M文件function f=fun4(x)f=4*(x(1)-5)^2+(x(2)-6)^2调用求解命令x0=[8,9];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun4,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =5.00006.0000fval =1.7876e-0123(2)目标函数的M文件function f=fun5(x)f=(x(1)^2+x(2)-11)^2+(x(1)+x(2)^2-7)^2调用求解命令>> x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun5,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 2.0000fval =5.2125e-0123(3)目标函数的M文件function f=fun6(x)f=[1.5-x(1)*(1-x(2))]^2+[2.25-x(1)*(1-x(2)^2)]^2+[2.625-x(1)*(1-x(2)^3)]^2调用求解命令x0=[2,0.2];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun6,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 0.5000fval =3.9195e-0143(4)目标函数的M文件function f=fun7(x)f=(x(1)^2+12*x(2)-1)^2+(49*x(1)+49*x(2)+84*x(1)+2324*x(2)-681)^2调用求解命令x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun7,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =0.9570 0.2333fval =7.37643(5)目标函数的M文件function f=fun8(x)f=(x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4调用求解命令>> x0=[3,-1,0,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun8,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =0.0015 -0.0002 -0.0031 -0.0031fval =6.3890e-009三、3、(1)目标函数的M文件function f=fun9(x)f=(x(1)-2)^2+(x(2)-1)^2约束函数的M文件function [c,cep]=con1(x)c=[x(1)^2-x(2);x(1)+x(2)-2];cep=[]当前窗口条用求解命令x0=[3,3];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun9,x0,[],[],[],[],[],[],@con1,options)Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin12x =1.0000 1.0000fval =1.00003、(2)目标函数的M文件function f=fun10(x)f=x(2)^3*[(x(1)-3)^2-9]/27*3^(1/2)约束函数的M文件function [c,cep]=con2(x)c=[x(2)-x(1)/3^(1/2);-x(1)+x(2)/3^(1/2);x(1)+x(2)/3^(1/2)-6];cep=[]当前窗口条用求解命令x0=[1,5];lb=[0,0];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun10,x0,[],[],[],[],lb,ub,@con2,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin13x =4.5000 2.5981fval =-7.59383、(3)目标函数的M文件function f=fun11(x)f=1000-x(1)^2-2*x(2)^2-x(3)^2-x(1)*x(2)-x(1)*x(3)约束函数的M文件function [c,cep]=con3(x)c=[];cep=[x(1)^2+x(2)^2+x(3)^2-25;8*x(1)+14*x(2)+7*x(3)-56];当前窗口条用求解命令x0=[2,2,2];lb=[0,0,0];ub=[];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun11,x0,[],[],[],[],lb,ub,@con3,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.No active inequalitiesx =3.5121 0.2170 3.5522fval =961.71523、(4)目标函数的M文件function f=fun12(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10*[(x(2)-1) ^2+(x(4)-1)^2]+19.8*(x(2)-1)*(x(4)-1)约束函数的M文件function [c,cep]=con4(x)cep=[];当前窗口条用求解命令x0=[-3,-1,-3,-1,];lb=[-10,-10,-10,-10];ub=[10,10,10,10];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun12,x0,[],[],[],[],lb,ub,@con4,options)Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.No active inequalitiesx =1.0001 1.0002 0.9999 0.9997fval =2.3989e-007五、质疑和建议对于一维标量优化问题搜索,在当前窗口中调用求解命令时,[x,fval]=fminbnd(@fun1,lb,ub,options)可以改成[x,fval]=fminbnd(@fun1,-10,10)如下:function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)}x =5.0000fval =11.0000。
机械优化实例及matlab工具箱

s
f (x)
( xMi xmi )2 ( yMi ymi )2
i 1
设计实例2:
3)确定约束条件
(1)由曲柄存在条件,可得:
g1(x) l1 l2 l3 l4 0 g2 (x) l1 l3 l2 l4 0 g3(x) l1 l4 l2 l3 0
l1 ) 2
]
0
优化设计工具
优化设计工具
第1部分 MATLAB基础 第2部分 优化计算工具
第1部分 MATLAB基础
1.1 MATLAB环境简介 1.2 数据表示 1.3 数组 1.4 源文件(M-文件)
1.1 MATLAB窗口
启动MATLAB 其窗口如右
1、Command Window (命令窗口)
g3 ( x)
1
7 45
x13 x2
0
g4 ( x)
1
1 321
x1 x22
0
g5 (x) x1 0
g6 (x) x2 0
盖板优化实例
盖板优化实例
运行结果:
x = 0.6332 25.3264 fval = 101.3056
function f=myfun(x) f=3*x(1)^2+2*x(1)*x(2)+x(2)^2
%然后调用函数 fminunc x0=[1,1];
[x,fval]=fminunc(myfun,x0)
2.2 无约束非线性优化函数
[结果] x=
1.0e-008 * -0.7512 0.2479 fval = 1.3818e-016
[代码] f = [-5; -4; -6]; A = [1 -1 1;3 2 4;3 2 0]; b = [20; 42; 30]; lb = zeros(3,1); [x,fval] = linprog(f,A,b,[],[],lb)
机械优化设计Matlab-优化工具箱基本用法

Matlab 优化工具箱x = bintprog (f , A, b, Aeq, Beq , x0, options ) 0—1规划 用MATLAB 优化工具箱解线性规划命令:x=linprog(c ,A ,b ) 2、模型:命令:x=linprog(c ,A ,b ,Aeq ,beq ) 注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].min z=cX1、模型:3、模型:命令:[1]x=linprog(c,A,b,Aeq,beq,VLB,VUB)[2]x=linprog(c,A,b,Aeq,beq,VLB,VUB, X0)注意:[1] 若没有等式约束,则令Aeq=[ ],beq=[]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1 max解编写M文件小xxgh1。
m如下:c=[-0.4 —0。
28 —0.32 —0.72 -0.64 -0。
6];A=[0。
01 0.01 0.01 0.03 0。
03 0.03;0。
02 0 0 0。
05 0 0;0 0。
02 0 0 0。
05 0;0 0 0.03 0 0 0。
08];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2解: 编写M文件xxgh2.m如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表.问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
机械优化设计MATLAB程序

机械优化设计MATLAB程序
1.建立目标函数和约束条件
在机械优化设计中,目标函数是需要最小化或最大化的量,可以是机械结构的重量、成本、应力等。
约束条件是指机械结构必须满足的条件,例如最大应力、最小挠度等。
在MATLAB中通过函数来定义目标函数和约束函数。
2.选择优化算法
MATLAB提供了多种优化算法,例如遗传算法、粒子群算法、模拟退火算法等。
根据实际情况选择合适的优化算法。
3.设计参数和变量范围
机械结构的优化设计通常涉及到多个参数和变量,如尺寸、材料等。
在MATLAB中通过定义参数和变量范围来限制优化过程中的空间。
4.编写优化程序
在MATLAB中,可以使用优化工具箱的相关函数来编写机械优化设计程序。
程序的基本结构包括定义目标函数、约束函数、参数和变量范围,并选择合适的优化算法进行求解。
5.运行优化程序
在编写完成程序后,可以通过运行程序来开始优化过程。
MATLAB会根据设定的目标函数和约束条件进行,并最终得到最优解。
6.分析优化结果
优化程序运行完成后,可以通过MATLAB提供的分析工具对优化结果进行评估。
可以通过绘制图表、计算相关指标等方式对结果进行分析和比较。
7.进一步优化和改进
根据优化结果,可以对机械结构进行进一步优化和改进。
可以调整参数和变量范围,重新运行优化程序,直到得到满意的结果。
总之,以上是一种用MATLAB编写机械优化设计程序的基本流程。
通过合理地利用MATLAB提供的工具和函数,可以帮助工程师进行机械结构的优化设计,提高设计效率和准确性。
机械优化设计MATLAB程序

机械优化设计MATLAB程序机械优化设计MATLAB程序引言机械优化设计是现代工程领域中的重要课题,通过采用数值方法和优化算法,可以实现对机械产品设计的自动化和优化。
MATLAB 作为一种功能强大的科学计算软件,为机械优化设计提供了丰富的工具和函数。
本文将介绍如何使用MATLAB编写机械优化设计程序,并讨论如何应用MATLAB进行机械优化设计。
MATLAB的优势与其他科学计算软件相比,MATLAB具有许多优势:1. 丰富的工具箱:MATLAB包含了各种各样的工具箱,涵盖了数值计算、优化、曲线拟合、数据可视化等领域,这些工具箱为机械优化设计提供了强大的支持。
2. 简单易用的编程语言:MATLAB使用的编程语言是一种高级语言,语法简单易懂,对于初学者而言非常友好。
即使没有编程经验,用户也能够快速上手。
3. 丰富的函数库:MATLAB拥有丰富的函数库,用户可以直接调用这些函数来完成各种任务,无需从零开始编写代码。
4. 广泛的应用领域:MATLAB在工程、科学、金融等领域得到了广泛的应用,拥有一个庞大的用户社区。
用户可以通过查看官方文档、参与用户社区等途径获取帮助和支持。
机械优化设计的步骤机械优化设计一般包括以下几个步骤:1. 建立数学模型:首先需要建立机械系统的数学模型,该模型可以基于物理原理或实验数据。
通过建立数学模型,可以将机械系统的性能指标与设计变量进行数学描述。
2. 确定优化目标:根据机械系统的需求和限制条件,确定优化目标。
优化目标可以是多个,如最小化能量损失、最小化材料使用量等。
3. 选择优化算法:基于问题的性质选择合适的优化算法。
常用的优化算法包括遗传算法、粒子群算法、梯度下降算法等。
4. 编写MATLAB代码:根据以上步骤,编写MATLAB代码实现机械优化设计。
MATLAB提供了丰富的工具箱和函数来辅助编写优化算法的代码。
编写机械优化设计MATLAB程序的步骤以下是编写机械优化设计MATLAB程序的一般步骤:1. 导入必要的工具箱和函数库:% 导入优化工具箱import optim.% 导入其他必要的函数库import matlab.2. 建立数学模型:根据机械系统的特点和要求,建立相应的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t t t 机械优化设计作业1.用二次插值法求函数ϕ( )= ( +1)( - 2)2 极小值,精度 e=0.01。
在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下:f=inline('(t+1)*(t -2)^2','t')a=0;b=3;epsilon=0.01;t1=a;f1=f(t1);t3=b;f3=f(t3);t2=0.5*(t1+t3);f2=f(t2);c1=(f3-f1)/(t3-t1);c2=((f2-f1)/(t2-t1)-c1)/(t2-t3);t4=0.5*(t1+t3-c1/c2);f4=f(t4);k=0;while(abs(t4-t2)>=epsilon)if t2<t4if f2>f4f1=f2;t1=t2;t2=t4;f2=f4;elsef3=f4;t3=t4;endelseif f2>f4f3=f2;t3=t2;t2=t4;f2=f4;elsef1=f4;t2=t4;endendc1=(f3-f1)/(t3-t1);c2=((f2-f1)/(t2-t1)-c1)/(t2-t3);t4=0.5*(t1+t3-c1/c2);f4=f(t4);k=k+1;end%输出最优解if f2>f4t=t4;f=f(t4);elset=t2;f=f(t2);endfprintf(1,'迭代计算 k=%3.0f\n',k)fprintf(1,'极小点坐标 t=%3.0f\n',t)fprintf(1,'函数值 f=%3.4f\n',f)3.用牛顿法、阻尼牛顿法及变尺度法求函数 的极小点。
( ) ( ) ( )2112122, xxxxxf -+-= 4 2 (1)在用牛顿法在 MATLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=niudunfa(x0)syms x1 x2f=(x1-2)^4+(x1-2*x2)^2;fx=0;v=[x1,x2];df=jacobian(f,v);df=df.';G=jacobian(df,v);epson=1e -12;g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k=0;p=-G1\g1;x0=x0+p;while(norm(g1)>epson)p=-G1\g1;x0=x0+p;g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k=k+1;endx=x0;fx=subs(f,{x1,x2},{x(1,1),x(2,1)});运行结果如下:>> [x,fx,k]=niudunfa([1;1])x =1.99995544760595233814899913778970.99997772380297616907449956889483fx =0.0000000000000000039398907941382470301534502947647 k =23(2)用阻尼牛顿法在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=zuniniudunfa(x0)%阻尼牛顿法syms x1 x2f=(x1-2)^4+(x1-2*x2)^2;fx=0;v=[x1,x2];df=jacobian(f,v);df=df.';G=jacobian(df,v);epson=1e -12;%停机原则k=0;while norm(r1)>epsbeta=(r1'*r1)/(r0'*r0);p1=-r1+beta*p0;alpha=-(r1'*p1)/(p1'*A*p1);x1=x1+alpha*p1;r2=A*x1+b;p0=p1;r0=r1;r1=r2;k=k+1;endx=x1;y=0.5*x'*A*x+b'*x+c;运行结果如下:[y,x,k]=CG([3-1;-11],[-2;0],0,[2;1])y=-1x= 1.00001.0000k=1(2)用变尺度法在MATLAB的M文件编辑器中编写的M文件,如下:function[x,fx,k]=bianchidufa(A,b,c,x0)%用变尺度法求fx=0.5*x'*A*x+b'*x+c;epson=1e-12;g0=A*x0+b;G0=A;H0=eye(2);k=0;d0=-H0*g0;a0=-d0'*g0/(d0'*G0*d0);s0=a0*d0;%x(k+1)-x(k);y0=A*a0*d0;%g(k+1)-g(k);x1=x0+a0*d0;while(norm(s0)>=epson)switch kcase{10}x0=x1;g0=A*x0+b;H0=eye(2);k=0;d0=-H0*g0;a0=-d0'*g0/(d0'*G0*d0);s0=a0*d0;x1=x0+a0*d0;2 breakotherwiseg1=A*x1+b;y0=A*a0*d0;s0=a0*d0;% H1=H0+s0*s0'/(s0'*y0)-H0*y0*y0'*H0/(y0'*H0*y0); H1=H0+((1+y0'*H0*y0/(s0'*y0))*s0*s0'-H0*y0*s0'- s0*y0'*H0)/(s0'*y0);k=k+1;d1=-H1*g1;a1=-d1'*g1/(d1'*G0*d1);a0=a1;d0=d1;H0=H1;s0=a0*d0;x1=x1+a0*d0;breakendendx=x1;fx=0.5*x1'*A*x1+b'*x1+c;运行结果如下:》 [x,fx,k]=bianchidufa([3 -1;-1 1],[-2;0],0,[2;1]) H1 =0.4031 0.25780.2578 0.8945fx = -1x =1.00001.0000fx = -1k = 1故函数极小点是点(1,1)5.用鲍威尔法求函数 f (x 1, x 2 )= x 1+ 2x 2 - 4x 1 - 2x 1x 2 的极小点。
用鲍威尔法在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=bowell(A,b,c,x0)%鲍威尔法d01=[1;0];d02=[0;1];x02=[0;0];esp=1e-12;%停机原则k=0;%迭代次数while norm(x0-x02)>=espk=k+1;⎨ =+++ 535.22.. ⎪ =≥ )4,3,2,1(0 jx g01=A*x0+b;a01=-d01'*g01/(d01'*A*d01);x01=x0+a01*d01;g02=A*x01+b;a02=-d02'*g02/(d02'*A*d02);x02=x01+a02*d02;d10=x02-x0;g10=A*x02+b;a10=-d10'*g10/(d10'*A*d10);x10=x0+a01*d01;d01=d02;d02=d10;x0=x10;endx=x0;fx=0.5*x'*A*x+b'*x+c;运行结果如下:[x,fx,k]=bowell([2 -2;-2 4],[-4;0],0,[2;1])fx =-8x =42fx =-8k =36.用单纯形法求线性规划问题min f (x ) = -1.1x 1 - 2.2x 2 + 3.3x 3 - 4.4x 4⎧x 1 + x 2 + x 3 = 4 ⎪ ⎩ j 用单纯形法在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: %单纯形法 matlab 程序-danchunxingfa% 求解标准型线性规划:max c*x; s.t. A*x=b; x>=0% 本函数中的 A 是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量 b % N 是初始的基变量的下标% 输出变量 sol 是最优解, 其中松弛变量(或剩余变量)可能不为 0 % 输出变量 val 是最优目标值,kk 是迭代次数function [sol,val,kk]=danchunxingfa(A,N)[mA,nA]=size(A);kk=0; % 迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0%已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0%问题有无界解disp('have infinite solution!');flag=0;break;endendif flag%还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i;%进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i;%出基变量下标endend%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;end⎪ =++ 300103xxx ⎩ end% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);endendendendend ;令g (x ) = 1.1x 1 + 2.2x 2 - 3.3x 3 + 4.4x 4 ,则求 min f (x ) = -1.1x 1 - 2.2x 2 + 3.3x 3 - 4.4x 4 就变成求 - max g (x ),即min f (x ) = - max g (x ).运行结果如下:>> A=[1 1 1 0 4;1 2 2.5 3 5;1.12.2 -3.34.4 0];N=[3;4];[sol,val,kk]=danchunxingfa (A,N) sol =0 4.0000 1.6667 val =7.3333kk =2所以, 经两次转轴运算,得到的最优解为x 1 = x 2 = 0, x 3 = 4.0000, x 4 = 1.667, min f (x ) = -7.33337. 求解线性规划问题min z = -7x 1 -12x 2⎧9x 1 + 4x 2 + x 3 = 360 ⎪4x 1 + 5x 2 + x 4 = 200 s .t .⎨ ⎪x j ≥ 0( j = 1,2,3,4,5)用单纯形法在 MATLAB 的 M 文件编辑器中编写的 M 文件,如下: %单纯形法 matlab 程序-danchunxingfa% 求解标准型线性规划:max c*x; s.t. A*x=b; x>=0% 本函数中的 A 是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量 b % N 是初始的基变量的下标% 输出变量 sol 是最优解, 其中松弛变量(或剩余变量)可能不为 0 % 输出变量 val 是最优目标值,kk 是迭代次数function[sol,val,kk]=danchunxingfa(A,N)[mA,nA]=size(A);kk=0;%迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0%已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0%问题有无界解disp('have infinite solution!');flag=0;break;endendif flag%还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i;%进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i;%出基变量下标endend%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend%以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);endendendendend;运行结果如下:令Y=7x1+12x2,则求minz=7x1-12x2可转变为求-maxY,即minz=-maxY.>>A=[94100360;45010200;310001300;7120000];N=[3;4;5];[sol,val,kk]=danchunxingfa(A,N)sol=20248400val=420kk=3所以,经3次转轴运算,得到的最优解为x1=20,x2=24,x3=84,x4=x5=0,min z=-420.。