人教版高中数学必修2第三章单元测试(一)- Word版含答案
最新人教版高中数学必修第二册第三单元《立体几何初步》测试(包含答案解析)(1)

一、选择题1.平面α⊥平面 β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为4π和6π,过 A 、B 分别作两平面交线的垂线,垂足为 ,A B '',则:AB A B ''等于( ).A .3∶2B .3∶1C .2∶1D .4∶3 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π 3.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( )A .323π B .86π C .36π D .323π 4.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .725.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17]B .[2,3]C .6,22]D .[17,5] 6.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD ⊥平面ABCD ,则下列说法正确的是( )A .平面PAB ⊥平面PBCB .异面直线AD 与PB 所成的角为60︒C .二面角P BC A --的大小为60︒D .在棱AD 上存在点M 使得AD ⊥平面PMB7.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM 的距离为( )A .63aB .66aC .22aD .12a 8.已知平面α,β,γ和直线l ,下列命题中错误的是( )A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥9.在长方体1111ABCD A B C D -中,P 为BD 上任意一点,则一定有( )A .1PC 与1AA 异面B .1PC 与1A C 垂直 C .1PC 与平面11ABD 相交 D .1PC 与平面11AB D 平行10.棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱11C D 和11C B 的中点,则经过点,,B E F 的平面截正方体所得的封闭图形的面积为( )A .92B .310C .32D 10 11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=8,AB =3,AD =8,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CM N ,则线段C 1P 长度的取值范围是( )A .17,5⎡⎤⎣⎦B .[4,5]C .[3,5]D .3,17⎡⎤⎣⎦12.一个几何体的三视图如图所示,则该几何体的表面积为( )A .186+B .206+C .2010+D .1810+ 13.已知三棱锥S ABC -的体积为4,且4AC =,2224SA BC +=,30ACB ∠=︒,则三棱锥S ABC -的表面积为( )A .103B .123C .76或123D .96或103 14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图,三棱柱111ABC A B C -的棱长均相等,113CC B π∠=,平面ABC ⊥平面11BCC B ,,E F 分别为棱11A B 、BC 的中点.(1)求证://BE 平面11A FC ;(2)求二面角111F AC B --的大小.16.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB .(1)求证:AD ⊥平面BDE ;(2)点M 是线段DA 的中点,求三棱锥D MEC -的体积.18.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,∠ABD =∠BCD =90°,EC =2,AB =BD =2,直线EC 与平面ABC 所成的角等于30°.(1)证明:平面EFC ⊥平面BCD ;(2)求点F 到平面CDE 的距离.19.如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16AC CC ==,M 是棱1CC 的中点.(1)求证:平面1AB M ⊥平面11ABB A ;(2)求1A M 与平面1AB M 所成角的正弦值.20.ABC 是正三角形,线段EA 和DC 都垂直于平面ABC .设2,EA AB a DC a ===,且F 为BE 的中点,如图.(1)求证://DF 平面ABC ;(2)求证:AF BD ⊥;(3)求平面BDF 与平面ABC 所成锐二面角的大小.21.如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90//22ADE AF DE DE DA AF ∠====,,.(1)求证:AC ⊥平面BDE ;(2)求证://AC 平面BEF ;(3)若AC 与BD 相交于点O ,求四面体BOEF 的体积.22.如图,在梯形ABCD 中,//BC AD ,E 在AD 上,且2BC BE ED ===.沿BE 将ABE △折起,使得AB CE .(1)证明:AD CE ⊥;(2)若在梯形ABCD 中,π3ADC ∠=,折起后π3ABD ∠=,点A 在平面BCDE 内的射影H 为线段BD 的一个四等分点(靠近点B ),求三棱锥D ABC -的体积. 23.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.24.如图四棱锥P ABCD -,底面ABCD 是等腰梯形,//CD AB ,AC 平分BAD ∠且AC BC ⊥,PC ⊥平面ABCD ,平面PAB 与平面ABCD 所成角为60°.(1)求证:PA BC ⊥.(2)求二面角D PA C --的余弦值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(1)证明:1B C AB ⊥;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求三棱柱111ABC A B C -的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】结合题意分别在直角三角形中求出各边之间的数量关系,从而计算出结果【详解】在Rt ABB '∆中,cos42AB AB AB π'=⋅= 在Rt ABA '∆中,1sin62AA AB AB π'=⋅=,在Rt AA B ''∆中,12A B AB ''==, 所以:2:1AB A B ''=故选C【点睛】本题运用线面角来解三角形的边长关系,较为基础 2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.D解析:D【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可.【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=,所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题. 4.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥. 易知23AE x =+23ED y =+ 在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =. 在Rt SED ∆中,212SE x =+22933ED y x =+=+. 所以221110834522SED S SE ED x x ∆=⋅=++. 因为22221081083336x x x x+≥⋅=, 当且仅当6x =6y =19364522SED S ∆≥+=. 故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.D解析:D【分析】根据线面垂直,异面直线所成角的大小以及二面角的求解方法分别进行判断即可.【详解】解:对于D ,取AD 的中点M ,连PM ,BM ,侧面PAD 为正三角形,PM AD ∴⊥,又底面ABCD 是60DAB ∠=︒的菱形,∴三角形ABD 是等边三角形,AD BM ∴⊥,PM BM M =,PM ⊂平面PBM ,BM ⊂平面PBMAD ∴⊥平面PBM ,故D 正确,对于B ,AD ⊥平面PBM ,AD PB ∴⊥,即异面直线AD 与PB 所成的角为90︒,故B 错误,对于C ,底面ABCD 为菱形,60DAB ∠=︒,平面PAD ⊥平面ABCD ,AD ⊥平面PBM ,//AD BC ,BC PB ∴⊥,BC BM ⊥,”则PBM ∠是二面角P BC A --的平面角,设1AB =,则3BM =,3PM =, 在直角三角形PBM 中,tan 1PM PBM BM∠==, 即45PBM ∠=︒,故二面角P BC A --的大小为45︒,故C 错误,对于A ,AD ⊥平面PBM ,//AD BC ,所以BC ⊥平面PBM ,BC ⊂平面PBC ,所以面PBC ⊥平面PBM ,显然平面PAB 与平面PBC 不垂直,故A 错误; 故选:D . 【点睛】本题主要考查空间直线和平面位置关系以及二面角的求解,根据相应的判断和证明方法是解决本题的关键.综合性较强,属于中档题.7.A解析:A【分析】根据等体积法有11A CDM C A DM V V --=得解.【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h ,在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为32a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.8.D解析:D【分析】根据面面垂直的判定定理即可判断A 正确;根据线面平行的判定定理可知B 正确; 根据面面垂直的性质定理可知C 正确;根据线面垂直的判定定理可知D 错误.【详解】对于A ,因为αβ⊥,所以存在直线a ⊂α,使a ⊥β,又β∥γ,所以a ⊥γ,有α⊥γ,正确;对于B ,α⊥β,设α∩β=m ,则在平面α内存在不同于直线m 的直线l ,满足l ∥m , 根据线面平行的判定定理可知,l ∥β,正确;对于C ,过直线l 上任意一点作直线m ⊥γ,根据面面垂直的性质定理可知,m 既在平面α又在平面β内,所以直线l 与直线m 重合,即有l ⊥γ,正确;对于D ,若α⊥β,l ∥α,则l ⊥β不一定成立,D 错误.故选:D .【点睛】本题主要考查线面位置关系的判断,考查学生的逻辑推理能力,属于中档题. 9.D解析:D【分析】取P 为BD 的中点可判断A 、B 、C 选项的正误;证明平面1//BC D 平面11AB D ,可判断D 选项的正误.【详解】如下图所示:对于A 选项,当点P 为BD 的中点时,1PC ⊂平面11AAC C ,则直线1PC 与1AA 相交,A 选项错误;对于B 选项,当点P 为BD 的中点时,1AC P ∠为锐角,1PC 与1A C 不垂直,B 选项错误;对于C 选项,当点P 为BD 的中点时,连接11A C 、11B D 交于点O ,则O 为11A C 的中点, 在长方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,则四边形11AAC C 为平行四边形,11//AC AC ∴且11AC A C =, O 、P 分别为11A C 、AC 的中点,则1//AP OC 且1AP OC =,∴四边形1OAPC 为平行四边形,1//PC AO ∴,AO ⊂平面11AB D ,1PC ⊄平面11AB D ,1//PC ∴平面11AB D ,C 选项错误; 对于D 选项,在长方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,则四边形11BB D D 为平行四边形,11//BD B D ∴,BD ∴⊄平面11AB D ,11B D ⊂平面11AB D ,//BD ∴平面11AB D ,同理可证1//BC 平面11AB D ,1BD BC B ⋂=,∴平面1//BC D 平面11AB D ,1PC ⊂平面1BC D ,1//PC ∴平面11AB D .D 选项正确.故选:D.【点睛】本题考查空间中直线与直线、直线与平面位置关系的判断,考查推理能力,属于中等题. 10.A解析:A【分析】画出所截得的封闭图形,根据正方体的性质可求.【详解】如图所示,经过点,,B E F 的平面截正方体所得的封闭图形为四边形BDEF .,E F 分别是棱11C D 和11C B 的中点,//EF BD ∴,且12EF BD =. 正方体棱长为2,22,2BD EF ∴==∴四边形BDEF 是一个等腰梯形.在1Rt BB F 中,22215BF =+= 223252⎛⎫-= ⎪ ⎪⎝⎭. 所以梯形BDEF 的面积为322+229222=. 故选:A .【点睛】本题考查正方体的性质,属于基础题. 11.A解析:A【分析】取A 1D 1中点E ,取DD 1中点F ,连接EF 、C 1E 、C 1F ,则平面CM N ∥平面C 1EF ,推导出P ∈线段EF ,当P 与EF 的中点O 重合时,线段C 1P 长度取最小值PO ,当P 与点E 或点F 重合时,线段C 1P 长度取最大值PE 或PF ,由此能求出线段C 1P 长度的取值范围.【详解】解:取A 1D 1中点E ,取DD 1中点F ,连接EF 、C 1E 、C 1F ,则//,EF MN EF ⊄面MNC ,MN ⊂面MNC ,所以//EF 面MNC ,同理1//EC 面MNC ,又1EFEC E =,则平面MNC ∥平面C 1EF ,∵P 是侧面四边形内一动点(含边界),C 1P ∥平面MNC ,∴P ∈线段EF ,∵在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=8,AB =3,AD =8, 则2211345C E C F ==+=,所以1EC F ∆为等腰三角形,∴当P 与EF 的中点O 重合时,线段C 1P 长度取最小值PO ,当P 与点E 或点F 重合时,线段C 1P 长度取最大值PE 或PF ,∴1max 115C P C E C F ===,224442EF =+=, ()222min 111252217C P C O C E EO ==-=-=.∴线段C 1P 长度的取值范围是17,5⎡⎤⎣⎦.故选:A .【点睛】本题考查线段的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力与运算求解能力,属于中档题.12.B解析:B【分析】根据所给三视图,还原出空间几何体,即可求得几何体的表面积.【详解】根据三视图,还原空间几何体如下图所示:在正方体中,去掉三棱锥111B A C M -,正方体的棱长为2,M 为1BB 的中点,则111111111B MC A B C A B M A C M S S S S S S =---+正方体()()22211116212221222522222⎛⎫=⨯-⨯⨯-⨯⨯-⨯⨯+⨯⨯- ⎪ ⎪⎝⎭206=+,故选:B.【点睛】 本题考查了空间几何体三视图的简单应用,关键是能够正确还原出空间几何体,属于中档题.13.B解析:B【分析】设h 为底面ABC 上的高,,SA m BC n ==,根据体积可得12nh =,结合222m n mn +≥及基本不等式等号成立条件,可得12m n h ===,进而可得SA ⊥面ABC ,再通过计算求出每个面的面积即可.【详解】解:如图:h 为底面ABC 上的高,设,SA m BC n ==,则1114sin 304332S ABC ABC V S h n h -==⨯⨯⨯⨯︒⨯=, 得12nh =, ,12m h mn ≥∴≥,又22242m n mn =+≥,得12mn ≤,所以12mn =,故12m n h ===,SA ∴⊥面ABC ,在ABC 中22341224124AB =+-⨯=,则2AB =, 在Rt ABS 中22124SB =+=,在Rt ACS 中121628SC =+=所以在SBC 中,222SC SB BC =+,则SBC 为直角三角形,三棱锥S ABC -的表面积11111=223+423+423+423=12322222S ⨯⨯⨯⨯⨯⨯⨯⨯⨯. 故选:B.【点睛】本题考查棱锥表面积的计算,关键是通过基本不等式的等号成立条件得到SA ⊥面ABC ,是中档题.14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)4π. 【分析】(1)要证明线面平行,根据判断定理,需证明线线平行,取11A C 的中点G ,连接,EG FG ,通过构造平行四边形,证明//BE FG ;(2)根据二面角的定义,可证明1FGB ∠就是二面角11F A C B --的平面角,1FGB 中,根据边长求角.【详解】证明:(1)取11A C 的中点G ,连接,EG FG ,于是111//2EG B C ,又111//2BF B C , 所以//BF EG ,所以四边形BFGE 是平行四边形,所以//BE FG ,而BE ⊄面11A FC ,FG ⊆面11A FC ,所以直线//BE 平面11A FC ;(2)连接11,FB B G ,∵ 四边形11BCC B 为菱形,01160CC B ∠=,F 为BC 的中点,∴111FB B C ⊥,∵平面ABC ⊥平面11BCC B ,且平面//ABC 平面111A B C ,∴平面111A B C ⊥平面11BCC B ,且平面111A B C 平面1111BCC B B C =,∴1FB ⊥平面111A B C ,又111B G AC ⊥,∴11FG AC⊥, ∴1FGB ∠就是二面角11F A C B --的平面角,设棱长为2,则11FB BG ==∴14FGB π∠=, ∴二面角11F A C B --的大小为4π. 【点睛】方法点睛:本题考查了线面平行的判断定理,以及二面角的求法,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行.16.(1)证明见解析;(2)14. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.17.(1)证明见解析;(2)23. 【分析】 (1)先利用勾股定理得出AE BE ⊥,再利用面面垂直的性质定理得到BE ⊥平面ADE ,进而得到AD BE ⊥,利用线面垂直的判定定理即可得证;(2)利用1122D MEC M DEC A DEC D AEC V V V V ----===,取AE 的中点O ,连接DO ,用面面垂直的性质定理得到DO ⊥平面ABCE ,利用体积公式求解即可.【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒,∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥,又平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)∵M 是线段DA 的中点,∴1122D MEC M DEC A DEC D AEC V V V V ----===, 取AE 的中点O ,连接DO ,∵DA DE =∴DO AE ⊥,又平面DAE ⊥平面ABCE ,∴DO ⊥平面ABCE ,又2DO =,1sin13522AEC S AE EC =⨯⨯⨯︒=,∴123D AEC V -=⨯=∴3D MEC V -=. 【点睛】方法点睛:证明线面垂直的常用方法:利用线面垂直的判定定理;利用面面垂直的性质定理;利用面面平行的性质;利用垂直于平面的传递性.18.(1)证明见解析;(2 【分析】(1)要证明面面垂直,需证明线面垂直,根据垂直关系证明EF ⊥平面BCD ;(2)首先作辅助线,取AC 的中点M ,连结EM ,首先证明ECM ∠是直线EC 与平面ABC 所成的角,再利用等体积转化求点到平面的距离.【详解】(1)F 是斜边BD 的中点,∴FC=12BD=1 ∵E ,F 是AD 、BD 的中点,∴EF=12AB=1,又∵ ∵EF 2+FC 2=EC 2 ∴EF ⊥FC又∵AB ⊥BD ,EF ∥AB∵EF ⊥BD ,又BD∩FC=F∴EF ⊥平面BCD∴平面EFC ⊥平面BCD(2)取AC 的中点M ,连结EM∵AB=BD=2且∠ABD=90°,∴AD=22∵2=12AD , ∴ΔACD 为直角三角形且∠ACD=90°, ∴DC ⊥AC ,又DC ⊥BC ,∴AC∩BC=C ,又∵AC ,BC ⊂面ABC ,∴DC ⊥面ABC ,又E ,M 分别为AC ,AD 中点,∴EM ∥CD∴EM ⊥平面ABC ,∴∠ECM 为EC 与平面ABC 所成的夹角,∠ECM=30°,∴ME=12CE=22∴2S ΔFCD =11122222⨯= ∵V E-FCD =13EF×S ΔFCD =1111236⨯⨯=,在RtΔECD 中,2, ∴S ΔECD =133222=,设点F 到平面CDE 的距离为h , ∵V E-FCD =V F-ECD ,11363=,解得3即点F 到平面CDE 3. 【点睛】 方法点睛:本题考查面面垂直和点到平面的距离,意在考查空间想象能力和计算能力,属于基础题型,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.19.(1)证明见解析;(2)105. 【分析】 (1)连接1A B 交1AB 于O ,连接MO ,证明1MO AB ⊥,1MO A B ⊥,然后得到MO ⊥平面11ABB A 即可;(2)首先证明1A O ⊥平面1AB M ,然后可得1A MO ∠即为1A M 与平面1AB M 所成的角,然后利用111sin A O MO MA A ∠=算出答案即可. 【详解】(1)证明:连接1A B 交1AB 于O ,连接MO ,易得O 为1A B ,1AB 的中点∵1CC ⊥平面ABC ,AC ⊂平面ABC∴1CC AC ⊥又M 为1CC 中点,16AC CC ==∴223635AM =+=同理可得135B M =∴1MO AB ⊥连接MB ,同理可得135A M BM ==1MO A B ∴⊥又11AB A B O ⋂=,1AB ,1A B ⊂平面11ABB A∴MO ⊥平面11ABB A又MO ⊂平面1AB M∴平面1AB M ⊥平面11ABB A(2)解:易得11A O AB ⊥又由(1)平面1AB M ⊥平面1ABB A平面1AB M 平面111ABB A AB =,1AO ⊂平面11ABB A ∴1A O ⊥平面1AB M∴1A MO ∠即为1A M 与平面1AB M 所成的角在11Rt AA B △中,22111663222AB AO ==+= 在1Rt AOM 中,1113210sin 535AO MO A A M ∠=== 故1A M 与平面1AB M 所成角的正弦值为10 【点睛】方法点睛:几何法求线面角的步骤:(1)作:作出辅助线,构成三角形;(2)证:利用线面角的定义证明作出的角即为所求角;(3)求:在直角三角形中求解即可.20.(1)证明见解析;(2)证明见解析;(3)45︒.【分析】(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;(2)利用线面、面面垂直的判定和性质定理即可证明;(3)延长ED 交AC 延长线于G ′,连BG ′,只要证明BG ′⊥平面ABE 即可得到∠ABE 为所求的平面BDE 与平面ABC 所成二面角,在等腰直角三角形ABE 中即可得到.【详解】(1)证明:如图所示,取AB 的中点G ,连接,CG FG .∵,EF FB AG GB ==,//FG EA ∴,1=2FG EA 又//DC EA ,1=2DC EA ,//FG DC ∴,=FG DC , ∴四边形CDFG 为平行四边形,故//DF CG .∵DF ⊄平面,ABC CG ⊂平面ABC ,∴//DF 平面ABC .(2)证明:∵EA ⊥平面ABC ,∴EA CG ⊥.又ABC 是正三角形,∴CG AB ⊥.∴CG ⊥平面AEB .∴CG AF ⊥.又∵//DF CG ,∴DF AF ⊥.又AE AB =,F 为BE 中点,∴AF BE ⊥.又BE DF F ⋂=,∴AF ⊥平面BDE .∴AF BD ⊥.(3)延长ED 交AC 延长线于G ',连接BG '. 由12CD AE =,//CD AE 知D 为EG '中点, ∴//FD BG '.由CG ⊥平面,//ABE FD CG ,∴BG '⊥平面ABE .∴EBA ∠为所求二面角的平面角.在等腰直角三角形AEB 中,易求45ABE ∠=︒.【点睛】熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键.21.(1)证明见解析;(2)证明见解析;(3)23. 【分析】(1)证明DE AC ⊥,AC BD ⊥,AC ⊥平面BDE 即得证;(2)设AC BD O =,取BE 中点G ,连接FG ,OG ,证明//AO 平面BEF ,即证//AC 平面BEF ;(3)先求出四面体BDEF 的体积43V =,再根据12BOEF BDEF V V =求解. 【详解】(1)证明:平面ABCD ⊥平面ADEF ,90ADE ∠=︒, DE ∴⊥平面ABCD ,DE AC ∴⊥. ABCD 是正方形,AC BD ∴⊥,因为,BD DE ⊂平面BDE ,BD DE D ⋂=,AC ∴⊥平面BDE .(2)证明:设AC BD O =,取BE 中点G ,连接FG ,OG , OG 为BDE 的中位线1//2OG DE ∴ //AF DE ,2DE AF =,//AF OG ∴,∴四边形AFGO 是平行四边形,//FG AO ∴.FG ⊂平面BEF ,AO ⊂/平面BEF ,//AO ∴平面BEF ,即//AC 平面BEF . 3()平面ABCD ⊥平面ADEF ,AB AD ⊥,AB ∴⊥平面.ADEF 因为//9022AF DE ADE DE DA AF ∠=︒===,,, DEF ∴的面积为122DEF S ED AD =⨯⨯=, ∴四面体BDEF 的体积1433DEF V S AB =⋅⨯= 又因为O 是BD 中点,所以1223BOEF BDEF V V == 2.3BOEF V ∴= 【点睛】方法点睛:求几何体的体积的方法:方法一:对于规则的几何体一般用公式法.方法二:对于非规则的几何体一般用割补法.方法三:对于某些三棱锥有时可以利用转换的方法. 22.(1)证明见解析;(2)3V =. 【分析】(1)设BD 与EC 交于点O ,连接AO ,由四边形BCDE 为菱形,可得BD EC ⊥,再利用线面垂直的判定定理即可证明.(2)求出四棱锥A BCDE -的高为32,即三棱锥A BCD -的高,再利用等体积法即可求解.【详解】(1)设BD 与EC 交于点O ,连接AO .因为BC BE ED ==,//BC DE ,所以四边形BCDE 为菱形,所以BD EC ⊥,又AB EC ⊥,AB BD B =,所以EC ⊥平面ABD ,因为AD ⊂平面ABD ,所以EC AD ⊥. (2)因为在菱形BCDE 中,π3EDC ∠=,2BC BE ==, 所以2CE =,23BD =因为H 为线段BD 的一个四等分点(靠近点B ),所以134BH BD ==. 因为AH ⊥平面BCDE ,所以AH ⊥ BD , 又π3ABD ∠=,所以3tan 2AH BH ABD =∠=,所以四棱锥A BCDE -的高为32. 即三棱锥D ABC -的高为32. 易得BCD 的面积11231322BCD S BD OC =⋅=⨯=, 所以三棱锥D ABC -的体积133332A BCD D ABC V V --=== 【点睛】方法点睛:本题考查了证明异面直线垂直以及求三棱锥的体积,常用方法如下:(1)证明线线垂直的常法:①利用特殊图形中的垂直关系;②利用等腰三角形底边中线的性质;③利用勾股定理的逆应用;④利用直线与平面垂直的性质.(2)求体积的常用方法:①直接法;②割补法;③等体积法.23.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B .(2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴, ∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 24.(1)证明见解析;(2)34. 【分析】(1)根据PC ⊥平面ABCD ,得PC BC ⊥,又BC AC ⊥,得BC ⊥平面PCA ,得证. (2)以C 为原点建立空间直角坐标系,求平面ABCD 法向量,设()0,0,P a ,设平面PAB 法向量,根据平面PAB 与平面ABCD 所成角为60°得到a ,可得平面PAC 和平面PAD 的法向量,利用向量公式可得结果.【详解】(1)证明:因为PC ⊥平面ABCD ,所以PC BC ⊥.又因为BC AC ⊥,PC AC C ⋂=,所以BC ⊥平面PCA , PA ⊂平面PCA ,所以BC PA ⊥.(2)证明:等腰梯形ABCD 中,设1BC =.因为BC AC ⊥且AC 平分BAD ∠,12BAC DAC CBA ∠=∠=∠, 13+=+==9022CBA BAC CBA CBA CBA ∠∠∠∠∠︒,则=60CBA∠︒,30CAB ∠=︒, 所以2AB =,3AC =.30BAC DCA CAD ∠=∠=∠=︒,则DCA △中1CD AD ==.以C 为原点,以CB ,CA ,CP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.()0,0,0C ,()1,0,0B ,()0,3,0A ,13,,022D ⎛⎫- ⎪ ⎪⎝⎭,()0,0,P a ,平面ABCD 法向量()00,0,1n =,设平面PAB 法向量为()1,,n x y z =,()1,0,PB a =-,()1,3,0AB =-有1100n PB n AB ⎧⋅=⎪⎨⋅=⎪⎩,即030x az x y -=⎧⎪⎨-=⎪⎩,令3z =, 所以()1=33n a a ,,,12231cos60cos ,243n n a ︒===+,所以32a =, 平面PAC 法向量()21,0,0n =,133,,222PD ⎛⎫=-- ⎪ ⎪⎝⎭,30,3,2PA ⎛⎫=- ⎪⎝⎭,平面PAD 法向量()3111,,n x y z =, 3300n PD n PA ⎧⋅=⎪⎨⋅=⎪⎩,即1111113302223302x y z y z ⎧-+-=⎪⎪⎪-=⎪⎩,令12z =,所以()3-3,3,2n =. 233cos ,4934n n ==++, 所以二面角D PA C --的余弦值为34.【点睛】本题考查利用线面垂直证明线线垂直,考查利用空间向量求二面角的夹角的余弦值,考查空间思维能力和转化能力,属于中档题.25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =, ∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)217. 【分析】(1)连接1BC ,则O 为1B C 与1BC 的交点,证明1B C ⊥平面ABO ,可得1B C AB ⊥; (2)作OD BC ,垂足为D ,连接AD ,作OH AD ⊥,垂足为H ,证明1CBB 为等边三角形,求出1B 到平面ABC 的距离,即可求三棱柱111ABC A B C -的高.【详解】(1)证明:连接1BC ,则O 为1B C 与1BC 的交点,侧面11BB C C 为菱形,11BC B C ∴⊥,AO ⊥平面11BB C C ,1AO B C ∴⊥,1AO BC O =,AO ⊂平面ABO ,1BC ⊂平面ABO1B C ∴⊥平面ABO ,AB ⊂平面ABO ,1B C AB ⊥∴;(2)解:作OD BC ,垂足为D ,连接AD ,作OH AD ⊥,垂足为H , BC AO ⊥,BC OD ⊥,AO OD O ⋂=,AO ⊂平面AOD ,OD ⊂平面AOD BC ∴⊥平面AOD ,OH BC ∴⊥,OH AD ⊥,BC AD D ⋂=,BC ⊂平面ABC ,AD ⊂平面ABC OH ∴⊥平面ABC ,160CBB ∠=︒,1CBB ∴△为等边三角形,1BC =,3OD ∴=, 1AC AB ⊥,11122OA B C ∴==,由OH AD OD OA =,可得227AD OD OA =+=,21OH ∴=, O 为1B C 的中点,1B ∴到平面ABC 的距离为217, ∴三棱柱111ABC A B C -的高21.【点睛】本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.。
(2021年整理)高一数学必修2第三章测试题及答案解析

高一数学必修2第三章测试题及答案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修2第三章测试题及答案解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修2第三章测试题及答案解析的全部内容。
数学必修二第三章综合检测题一、选择题1.若直线过点(1,2),(4,2+错误!)则此直线的倾斜角是() A.30°B.45° C.60° D.90°2.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于( )A.2 B.3 C.9 D.-93.过点(1,2),且倾斜角为30°的直线方程是()A.y+2=错误!(x+1) B.y-2=错误!(x-1)C。
错误!x-3y+6-错误!=0 D.错误!x-y+2-错误!=04.直线3x-2y+5=0与直线x+3y+10=0的位置关系是( )A.相交 B.平行 C.重合 D.异面5.直线mx-y+2m+1=0经过一定点,则该定点的坐标为() A.(-2,1) B.(2,1) C.(1,-2) D.(1,2)6.已知ab<0,bc<0,则直线ax+by+c=0通过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限7.点P(2,5)到直线y=-错误!x的距离d等于()A.0 B.错误!C。
错误! D.错误!8.与直线y=-2x+3平行,且与直线y=3x+4交于x轴上的同一点的直线方程是( )A.y=-2x+4 B.y=12x+4C.y=-2x-错误!D.y=错误!x-错误!9.两条直线y=ax-2与y=(a+2)x+1互相垂直,则a等于( )A.2 B.1 C.0 D.-110.已知等腰直角三角形ABC的斜边所在的直线是3x-y+2=0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是( )A.3x-y+5=0,x+2y-7=0B.2x+y-4=0,x-2y-7=0C.2x-y+4=0,2x+y-7=0D.3x-2y-2=0,2x-y+2=011.设点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB相交,则l的斜率k的取值范围是( )A.k≥错误!或k≤-4 B.-4≤k≤错误!C.-错误!≤k≤4 D.以上都不对12.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A.1条 B.2条 C.3条 D.4条二、填空题13.已知点A(-1,2),B(-4,6),则|AB|等于________.14.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于________.15.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为________或________.16.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2错误!,则m的倾斜角可以是①15°②30°③45°④60°⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(解答应写出文字说明,证明过程或演算步骤)17.求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?19.在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程.20.过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.21.已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC边上的高BD所在直线方程;(2)BC边的垂直平分线EF所在直线方程;(3)AB边的中线的方程.22.当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1。
人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)

一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.古代数学名著《数学九章》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈即10尺)( ) A .30尺 B .32尺 C .34尺 D .36尺 3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 4.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+5.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β6.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM的距离为( )A .6aB .6aC .2aD .12a 7.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.3P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( )A .73 B 287 C 1919 D .193π 9.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 10.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622+. 其中正确结论的个数是( )A .1B .2C .3D .412.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B .455C 5D .2513.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m 14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个 二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线116.如图所示的四棱锥E-ABCD中,底面ABCD为矩形,AE=EB=BC=2,AD⊥平面ABE,且CE上的点F满足BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥C-AEB的体积.17.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=∠=,ADC︒C,105 ==,现将四边形ABCD沿BD折起,使得平面ABD⊥平面BDC (如图乙),设2AB BD点E,F分别是棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)求三棱锥A BEF -的体积.18.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.19.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.20.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 21.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.24.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.C解析:C【分析】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长,画出图形,即可求出葛藤长.【详解】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长. 如图所示矩形ABCD 中,30AD =尺,2816AB =⨯=尺, 所以葛藤长2222301634AC AD AB =+=+=尺.故选:C .【点睛】本题考查圆柱的侧面展开图,考查学生的空间想象能力,属于基础题. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN . 在1H C G 中,2212222C G =+=2212222C H =+=22GH =,所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】 本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.5.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.6.A解析:A 【分析】根据等体积法有11A CDM C A DM V V --=得解. 【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h , 在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为3a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.7.D解析:D 【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出11222HI CD a == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上, 正方体1111ABCD A B C D -中的棱长为a , 1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题.8.B解析:B 【分析】根据三棱锥的体积求出S △ABC 33,在三角形ABC 中,根据余弦定理和正弦定理求出△ABC 外接圆的半径r 的最小值,从而可求出外接球半径的最小值和外接球体积的最小值. 【详解】设AB =c ,BC =a ,AC =b 313×S △ABC ×2,解得S △ABC 33. 因为∠ABC =120°,S △ABC 3312ac sin 120°,所以ac =6, 由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =2.设△ABC 外接圆的半径为r ,则sin120b=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6.如图,设O 1为△ABC 外接圆的圆心,D 为PA 的中点,R 为球的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,易得OO 1=1,R 2=r 2+OO =r 2+1,当r min =6时,2min R =6+1=7,R min =7,故球O 体积的最小值为43π3min R =437)3287. 故选:B 【点睛】本题考查了三棱锥的体积公式,考查了球的体积公式,考查了正弦定理,考查了余弦定理,属于中档题.9.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=6R =, 故截面面积的最大值为2263πππ2R ==⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,122OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.10.C解析:C 【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果. 【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误; 对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C . 【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD =+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.12.C解析:C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.13.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.B解析:B 【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假. 【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①. 所以一共两个命题正确. 故选:B 【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2)85【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果. 【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =, 所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN , 所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅17554417252+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解. 【详解】 (1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG , ∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点, ∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又BF ⊥平面ACE ,则AE ⊥BF , ∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△.【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). 17.(1)证明见解析;(2)312. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ; (2)利用等体积法进行转化计算即可. 【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥,图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =, ∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥, 又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=, 又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ; (2)因为点E ,F 分别是棱AC ,AD 的中点, 所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.18.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =,由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.19.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.20.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又tan tan AD BC ABD BAC AB AB∠==∠== ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()(),,0,2,0,0,0,B C D P t ,则()BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =, 则00n BD n DP ⎧⋅=⎨⋅=⎩,即2020y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为1,3,n t ⎛= ⎪ ⎪⎝⎭,所以cos ,48PC n PC n PC n⋅==因为22144515175t t +++=≥,当且仅当t = 所以5c 3353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题21.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.22.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案;【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA .∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥,又二面角E GH B --的大小为90°,∴90AOE ∠=︒,即EO AO ⊥,∴EO ⊥平面ABCD ,∴EO BD ⊥,又AB BC =,∴AO BD ⊥, AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF ,由(1)知BD ⊥平面EOA ,∴BD QF ⊥,∴QF ⊥平面EBD ,∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,10EB =,2BM =,6EM =,30AE =, 由()222222(2)22QB AE AB BE QB +=+⇒=, 62QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形,所以//AG MN .又因为22213PM PA AM =+=+=22123MC MB BC =+=+= 所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥.又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD .(2)设点B 到平面MNC 的距离为h ,因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】 关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键.24.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 ,又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中121,2C C OC ==∴在1Rt C OC ∆中,11tan 2C C C OC OC∠== 故二面角1C BD C --的正切值为2 .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题. 25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。
数学必修2第三章测试题和答案

必修二第三章综合检测题一、选择题 ( 本大题共 12 个小题,每题 5 分,共 60 分,1.若直线过点 (1,2) ,(4,2+ 3) 则此直线的倾斜角是 ()A.30°B.45°C.60°D.90°2.若三点A(3,1) ,B( -2,b),C(8,11)在同向来线上,则实数 b 等于() A.2 B . 3C.9D.- 93.过点 (1,2),且倾斜角为 30°的直线方程是 ()3A.y+2=3 ( x+1)B.y-2= 3( x-1)x-3y+6-3=0x-y+2-3=04.直线 3x-2y+5=0 与直线x+3y+10=0 的地点关系是 ()A.订交B.平行C.重合D.异面5.直线mx-y+2m+1=0 经过必定点,则该定点的坐标为 ()A.( -2,1)B.(2,1)C.(1 ,- 2)D.(1,2)6.已知ab<0,bc<0,则直线ax+by+c=0 经过 ()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限7.点P(2,5)到直线 y=-3x的距离d等于 ()A.08.与直线y=- 2x+3 平行,且与直线y=3x+4交于 x 轴上的同一点的直线方程是 ()1A.y=- 2x+4B.y=2x+4818C.y=- 2x-3D.y=2x-39.两条直线y=ax-2 与y=( a+2) x+1 相互垂直,则a等于 ()A.2B.1C.0D.- 110.已知等腰直角三角形ABC的斜边所在的直线是C(3,-2),则两条直角边 AC,BC的方程是( A.3x-y+5=0,x+2y-7=0B.2x+y-4=0,x-2y-7=0)3x-y+2=0,直角极点是C.2x-y+4=0,2 x+y-7=0D.3x-2y-2=0,2x-y+2=011.设点A(2 ,-3) ,B( - 3,-2) ,直线l过点P(1,1)且与线段 AB订交,则l的斜率 k 的取值范围是()33A.k≥4或k≤- 4B.- 4≤k≤43C.-4≤k≤4D.以上都不对12.在座标平面内,与点A(1,2)距离为 1,且与点B(3,1)距离为 2 的直线共有()A.1 条B.2 条C.3 条D.4 条二、填空题 ( 本大题共 4 个小题,每题 5 分,共 20 分,把正确答案填在题中横线上 )13.已知点A( -1,2) ,B( -4,6) ,则 | AB| 等于 ________.14.平行直线l1:x-y+1=0 与l2: 3x- 3y+1=0 的距离等于 ________.15.若直线l经过点P(2,3) 且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为 ________或________.16.(2009 ·高考全国卷Ⅰ ) 若直线m被两平行线l1:x-y+1=0 与l2:x-y +3=0 所截得的线段的长为 2 2,则m的倾斜角能够是① 15° ②30° ③45° ④60° ⑤75°,此中正确答案的序号是 ________.( 写出全部正确答案的序号 )三、解答题 ( 本大题共 6 个大题,共 70 分,解答应写出文字说明,证明过程或演算步骤 )17.( 本小题满分 10 分) 求经过点A( -2,3) ,B(4 ,- 1) 的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(12 分)(1)当 a 为什么值时,直线 l 1:y=- x+2a 与直线 l 2:y=( a2-2) x+2平行?(2)当 a 为什么值时,直线 l 1:y=(2 a-1) x+3与直线 l 2:y=4x-3垂直?19.( 本小题满分 12 分) 在△ABC中,已知点A(5 ,- 2) ,B(7,3) ,且边AC 的中点 M在 y 轴上,边 BC的中点 N在 x 轴上,求:(1)极点 C的坐标;(2)直线 MN的方程.20.( 本小题满分 12 分) 过点P(3,0) 作向来线,使它夹在两直线l 1:2x-y-2=0 和l2:x+y+3=0 之间的线段AB恰被P点均分,求此直线方程.21.( 本小题满分 12 分) 已知△ABC的三个极点A(4 ,-6) ,B( -4,0) ,C( -1,4) ,求(1)AC边上的高 BD所在直线方程;(2)BC边的垂直均分线 EF所在直线方程;(3)AB边的中线的方程.2222.( 本小题满分 12 分) 当m为什么值时,直线 (2 m+m-3) x+( m-m) y=4m-1.(1)倾斜角为 45°;(2)在 x 轴上的截距为 1.详解答案1[ 答案 ]A[ 分析 ]2+ 3 -23斜率 k ==,∴倾斜角为 30°.4-13[ 分析 ] 由条件知 k BC =k AC ,b -11 11-1∴-2-8= 8-3 ,∴ b =- 9. 2[ 答案 ] D 3[ 答案 ] Cy -2=tan30 °( x -1) ,[ 分析 ] 由直线方程的点斜式得整理得 3x -3y +6- 3=0. 4[ 答案 ] A [ 分析 ] ∵A 1B 2- A 2B 1=3×3-1×( -2) =11≠0, ∴这两条直线订交. 5[ 答案 ] A[ 分析 ] 直线变形为 m ( x +2) -( y -1) =0,故不论 m 取何值,点 ( -2,1) 都在 此直线上,∴选 A. 6[ 答案 ] A[ 分析 ] ∵ab <0,bc <0,∴ a ,b ,c 均不为零,在直线方程 ax +by +c =0 中,c c 2令 x =0 得,y =-b >0,令 y =0 得 x =- a ,∵ab <0,bc <0,∴ab c >0,∴ac >0,c∴- a <0,∴直线经过第一、二、三象限,应选 A.7[ 答案 ]B[分析 ]直线方程2 3+5y =-3x化为一般式3x +y =0,则 d =2 .8[ 答案 ]C[ 分析 ] 直线 y =- 2x +3的斜率为- 2,则所求直线斜率 k =- 2,直线方程 y44=3x +4 中,令 y =0,则 x =- 3,即所求直线与 x 轴交点坐标为 ( -3,0) .故4 8 所求直线方程为 y =- 2( x +3) ,即 y =- 2x -3.9[ 答案 ] D[ 分析 ] ∵两直线相互垂直,∴ a ·( a +2) =- 1, ∴a 2+2a +1=0,∴ a =- 1. 10[ 答案 ] B [ 分析 ] ∵两条直角边相互垂直,∴其斜率k ,k2应知足 k k =- 1,清除 A 、C 、D ,应选 B.11 211[ 答案 ]A[ 分析 ]PA PB33k =-4,k =4,绘图察看可知k≥4或 k≤-4.12[ 答案 ]B[ 分析 ]由平面几何知,与 A 距离为1的点的轨迹是以 A 为圆心,以1为半径的⊙ A,与 B 距离为2的点的轨迹是半径为 2 的⊙B,明显⊙A和⊙B订交,符合条件的直线为它们的公切线有 2 条.13[ 答案 ]5[ 分析 ]| AB| =-1+42+ 2-62=5.14[ 答案 ]231[ 分析 ]直线 l 2的方程可化为 x-y+3=0,1|1 -3|2则 d=12+-1 2 =3.15[ 答案 ]x+y-5=0 x-y+1=0x y| a|=| b| ,[ 分析 ]设直线 l23解得 a=5,b=5或的方程为a+b=1,则a+b=1,x y x ya=-1,b=1,即直线 l 的方程为5+5=1或-1+1=1,即 x+y-5=0或 x-y+1=0.16[ 答案 ]①⑤[ 分析 ]两平行线间的距离为|3-1|d==2,1+1由图知直线 m与 l 1的夹角为30°, l 1的倾斜角为45°,因此直线 m的倾斜角等于30°+45°=75°或45°-30°=15°.[ 评论] 此题考察直线的斜率、直线的倾斜角、两条平行线间的距离,考察数形联合的思想.是高考在直线知识命题中不常见的较为复杂的题目,可是只需基础扎实、方法灵巧、思想深刻,这一问题仍是不难解决的.因此在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统率知识才能在考试中以不变应万变.y+1x-417[ 分析 ]过AB两点的直线方程是3+1=-2-4.2点斜式为: y+1=-3( x-4)2 5斜截式为: y=-3x+3x y截距式为:5+5=1.2318[ 分析 ] (1)直线 l 1的斜率 k1=-1,直线 l 2的斜率 k2=a2-2,由于 l 1∥l 2,2因此 a -2=-1且2a≠2,解得: a=-1.因此当 a=-1时,直线 l 1:y=- x (2)直线 l 1的斜率 k1=2a-1,l 2的斜率 k2=4,由于 l 1⊥l 2,因此 k1k2=-1,33即4(2 a-1) =- 1,解得a=8. 因此当a=8时,直线l1:y=(2 a-1) x+3 与直线l2:y=4x-3 垂直.x+519[ 分析 ](1) 设C( x,y) ,由AC的中点M在y轴上得,2=0,解得x=-5.3+y由BC中点 N在 x 轴上,得2=0,∴y=-3,∴ C(-5,-3)5(2) 由A、C两点坐标得M(0 ,-2) .由 B、C两点坐标得N(1,0).y5=1. 即 5x-2y-5=0.∴直线 MN的方程为 x+-220[ 分析 ] 设点A的坐标为 ( x,y ) ,由于点P是AB中点,则点B坐标为 (6 -x ,- y11和 l) ,由于点A、B分别在直线l上,有1112-1-=112x1x1=3y 2 0解得166-x1-y1+3=0y1=3由两点式求得直线方程为8x-y-24=0.21[ 分析 ]-6-4=- 2(1) 直线AC的斜率k=4--1AC即: 7x+y+3=0( -1≤x≤0) .1∴直线 BD的斜率 k BD=2,1∴直线 BD的方程为 y=2( x+4),即 x-2y+4=04-04(2) 直线BC的斜率k BC=-1--4=33∴EF的斜率 k EF=-45线段 BC的中点坐标为(-2,2)3 5∴EF的方程为 y-2=-4( x+2)即6x+8y-1=0.(3)AB的中点 M(0,-3),y+3 x∴直线 CM的方程为:4+3=-1,22[ 分析 ](1) 倾斜角为 45°,则斜率为 1.22m+m-3∴-2=1,解得m=-1,m=1(舍去)m-m直线方程为2x-2y-5=0 切合题意,∴m=- 1(2) 当y=0时, x=4m-1=1,22m+m-31解得 m=-2,或 m=21当 m=-2,m=2时都切合题意,1∴m=-2或2.新课标第一网系列资料。
高一数学必修2第三章测试题及答案解析

数学必修二第三章综合检测题一、选择题1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是( )A .30°B .45°C .60°D .90° 2.若三点A (3,1),B (-2, b ),C (8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-93.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1)C.3x -3y +6-3=0D.3x -y +2-3=04.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( )A .相交B .平行C .重合D .异面 5.直线mx -y +2m +1=0经过一定点,则该定点的坐标为( ) A .(-2,1) B .(2,1) C .(1,-2) D .(1,2) 6.已知ab <0,bc <0,则直线ax +by +c =0通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 7.点P (2,5)到直线y =-3x 的距离d 等于( )A .0 B.23+52C.-23+52D.-23-528.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )A .y =-2x +4B .y =12x +4C .y =-2x -83D .y =12x -839.两条直线y =ax -2与y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-1 10.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角顶点是C (3,-2),则两条直角边AC ,BC 的方程是( )A.3x-y+5=0,x+2y-7=0B.2x+y-4=0,x-2y-7=0C.2x-y+4=0,2x+y-7=0D.3x-2y-2=0,2x-y+2=011.设点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB相交,则l的斜率k的取值范围是( )A.k≥34或k≤-4 B.-4≤k≤34C.-34≤k≤4 D.以上都不对12.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A.1条 B.2条 C.3条 D.4条二、填空题13.已知点A(-1,2),B(-4,6),则|AB|等于________.14.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于________.15.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为________或________.16.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是①15°②30°③45°④60°⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(解答应写出文字说明,证明过程或演算步骤)17.求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x -3垂直?19.在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程.20.过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.21.已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC边上的高BD所在直线方程;(2)BC边的垂直平分线EF所在直线方程;(3)AB边的中线的方程.22.当m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. (1)倾斜角为45°;(2)在x 轴上的截距为1.数学必修二第三章综合检测题1A 斜率k =2+3-24-1=33,∴倾斜角为30°.2 D 由条件知k BC =k AC ,∴b -11-2-8=11-18-3,∴b =-9.3C 由直线方程的点斜式得y -2=tan30°(x -1),整理得3x -3y +6-3=0.4A ∵A 1B 2-A 2B 1=3×3-1×(-2)=11≠0,∴这两条直线相交. 5A 直线变形为m (x +2)-(y -1)=0,故无论m 取何值,点(-2,1) 都在此直线上。
必修2第3章单元测试题及答案(两套)

必修2第3章(1)一、选择题1. 直线l 经过原点和点(11)-,,则它的倾斜角是( )A.34π B.54π C.4π或54π D.4π- 2. 斜率为2的直线过(3,5),(a ,7),(-1,b )三点,则a ,b 的值是( ) A.4a =,0b = B.4a =-,3b =- C.4a =,3b =- D.4a =-,3b =3. 设点(23)A -,,(32)B --,,直线过(11)P ,且与线段AB 相交,则l 的斜率k 的取值范围是( ) A.34k ≥或4k -≤ B.344k -≤≤ C.344k -≤≤ D.以上都不对4. 直线(2)(1)30a x a y ++--=与直线(1)(23)20a x a y -+++=互相垂直,则a =( ) A.1-B.1C.1±D.32-5. 直线l 过点()12A ,,且不过第四象限,那么直线l 的斜率的取值范围是( ) A.[]02,B.[]01,C.102⎡⎤⎢⎥⎣⎦,D.102⎛⎫ ⎪⎝⎭,6. 到两条直线3450x y -+=与512130x y -+=的距离相等的点()P x y ,必定满足方程( ) A.440x y -+= B.740x y +=C.440x y -+=或4890x y -+= D.740x y +=或3256650x y -+= 7. 已知直线3230x y +-=和610x my ++=互相平行,则它们之间的距离是( )A.4 8. 已知等腰直角三角形ABC 的斜边所在的直线是320x y -+=,直角顶点是(32)C -,,则两条直角边AC ,BC 的方程是( )A.350x y -+=,270x y +-= B.240x y +-=,270x y --= C.240x y -+=,270x y +-= D.3220x y --=,220x y -+=9. 入射光线线在直线1l :230x y --=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,则直线3l 的方程为( )A.230x y -+= B.230x y -+= C.230x y +-= D.260x y -+=10.已知x ,y 满足⎪⎩⎪⎨⎧≥++≤≥+-0305k y x x y x ,且z =2x +4y 的最小值为-6,则常数k =( )A.2 B.9 C.3 D.0 二、填空题11. 已知三点(23)-,,(43),及(5)2k,在同一条直线上,则k 的值是 .12. 在y 轴上有一点m,它与点(连成的直线的倾斜角为120þ,则点m 的坐标为 .13. 设点P 在直线30x y +=上,且P 到原点的距离与P 到直线320x y +-=的距离相等,则点P 坐标是 .14. 直线l 过直线240x y -+=与350x y -+=的交点,且垂直于直线12y x =,则直线l 的方程是 .15.若x ,y 满足⎪⎩⎪⎨⎧≤--≥+-≥-+0530103y x y x y x ,设kx y =,则k 的取值范围是 .三、解答题16. 已知ABC ∆中,点A(1,2),AB 边和AC 边上的中线方程分别是0335=--y x 和0537=--y x ,求BC 所在的直线方程的一般式。
人教版高中数学必修二第三章单元测试(一)- Word版含答案
2018-2019学年必修二第三章训练卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )A .k 1<k 3<k 2B .k 3<k 1<k 2C .k 1<k 2<k 3D .k 3<k 2<k 12.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A .0B .-20C .0或-20D .0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A .-3B .2C .-3或2D .3或-24.下列说法正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示C .不经过原点的直线都可以用方程x a +yb=1表示 D .经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A .x -2y +3=0 B .2x -y -3=0 C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0B .2x +3y +7=0C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( )A .x +y =0B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________.此卷只装订不密封班级 姓名 准考证号 考场号 座位号16.与直线3x+4y+1=0平行且在两坐标轴上截距之和为73的直线l的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.18.(12分)直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y +6=0截得的线段长度为5,求直线l的方程.2018-2019学年必修二第三章训练卷直线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D 【解析】所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知,O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |.因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0.【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB|=5,所以2232374191=25 1111k k k kk k k k--⎡--⎤⎛⎫⎛⎫⎛⎫-+---⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦.解得k=0,即所求直线为y=1.综上所述,所求直线方程为x=3或y=1.。
(完整word版)人教版必修二数学第三章测试题及解析,文档
第三章直线与方程一、选择题1.以下直线中与直线x-2y+ 1=0 平行的一条是 () .A. 2x- y+1= 0B.2x- 4y+ 2= 0C. 2x+ 4y+ 1= 0D. 2x- 4y+1= 02.两点 A( 2, m) 与点 B( m, 1) 之间的距离等于13 ,那么实数 m= () .A.- 1 B . 4C.-1或 4D.-4 或 13.过点 M( - 2,a) 和 N( a, 4) 的直线的斜率为1,那么实数 a 的值为() .A. 1 B . 2C.1或 4D.1或2 4.若是 AB> 0, BC> 0,那么直线Ax―By― C= 0 不经过的象限是 () .A.第一象限 B .第二象限C.第三象限 D .第四象限5.等边△ ABC 的两个极点A( 0, 0) , B( 4, 0) ,且第三个极点在第四象限,那么BC边所在的直线方程是 () .A. y=- 3 x B.y=- 3 ( x- 4)C. y= 3 ( x- 4)D. y= 3 ( x+ 4)6.直线 l: mx- m2y- 1= 0 经过点 P( 2, 1) ,那么倾斜角与直线l 的倾斜角互为补角的一条直线方程是 () .A. x― y― 1= 0B.2x― y― 3=0C. x+ y- 3= 0D. x+ 2y- 4= 07.点 P( 1,2) 关于 x 轴和 y 轴的对称的点依次是() .A. ( 2,1) ,( -1,- 2)B.( -1,2) ,( 1,- 2)C.( 1,- 2) ,( -1,2)D.( -1,- 2) ,( 2, 1)8.两条平行直线l1 : 3x+ 4y+ 5= 0, l 2 : 6x+ by+ c=0 间的距离为3,那么 b+ c=() .A.- 12B.48C.36D.-12 或 48 9.过点 P( 1, 2) ,且与原点距离最大的直线方程是() .A. x+ 2y-5= 0B.2x+ y- 4=0C. x+ 3y- 7=0D. 3x+ y- 5= 010. a, b 满足 a+ 2b= 1,那么直线 ax+ 3y+b= 0 必过定点 () .A.-1,1B.1,-1C.1,1D.1,-1 62262662二、填空题11.直线AB 与直线 AC 有相同的斜率,且A( 1, 0) , B( 2, a) ,C( a, 1) ,那么实数a 的值是 ____________.12.直线x- 2y+ 2k= 0 与两坐标轴所围成的三角形的面积不大于1,那么实数k 的取值范围是 ____________ .13.点 ( a,2)( a> 0) 到直线 x- y+ 3= 0 的距离为1,那么 a 的值为 ________.14.直线ax+ y+ a+2= 0 恒经过一个定点,那么过这必然点和原点的直线方程是____________________ .15.实数x, y 满足 5x+ 12y= 60,那么x2+ y2的最小值等于 ____________ .三、解答题3 ,且与坐标轴所围成的三角形的周长是12 的直线方程.16.求斜率为417.过点 P( 1, 2) 的直线 l 被两平行线 l1 : 4x+ 3y+ 1= 0 与 l 2 : 4x+ 3y+ 6= 0 截得的线段长 | AB| = 2 ,求直线 l 的方程.18.方程 ( m2― 2m― 3) x+ ( 2m2+m- 1) y+ 6- 2m= 0( m∈R ) .( 1) 求该方程表示一条直线的条件;( 2) 当 m 为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;( 3) 方程表示的直线l 在 x 轴上的截距为-3,求实数m 的值;( 4) 假设方程表示的直线 l 的倾斜角是45°,求实数m 的值.19.△ ABC 中, C( 2,5) ,角 A 的均分线所在的直线方程是y= x,BC 边上高线所在的直线方程是y= 2x- 1,试求极点 B 的坐标.参照答案一、选择题1.D剖析:利用 A1B2-A2B1= 0 来判断,消除 A , C,而 B 中直线与直线重合.2. C剖析:因为 | AB| =( 2 - m) 2+( m-1) 2=13 ,所以 2m2- 6m+ 5= 13.解得 m=- 1 或 m= 4.3.A4 - a剖析:依条件有=1,由此解得a= 1.4. B剖析:因为 B≠0,所以直线方程为y=Ax-C,依条件 A >0,C>0.即直线的斜B B B B率为正当,纵截距为负值,所以直线但是第二象限.5. C剖析:因为△ ABC 是等边三角形,所以BC 边所在的直线过点B,且倾斜角为π,3所以 BC 边所在的直线方程为y= 3 ( x- 4) .6. C剖析:由点 P 在 l 上得 2m― m2―1= 0,所以 m= 1.即 l 的方程为x― y―1= 0.所以所求直线的斜率为-1,显然 x+ y- 3=0 满足要求.7. C剖析:因为点 ( x, y) 关于 x 轴和 y 轴的对称点依次是 ( x,- y) 和 ( - x, y) ,所以 P( 1, 2) 关于 x 轴和 y 轴的对称的点依次是 ( 1,- 2) 和( - 1, 2) .8.D剖析:将 l 1 : 3x+ 4y+ 5= 0 改写为 6x+ 8y+ 10= 0,因为两条直线平行,所以b= 8.由10- c或 c= 40.所以 b+ c=- 12或 48.=3,解得 c=- 2062+829.A剖析:设原点为O,依条件只需求经过点P 且与直线OP 垂直的直线方程,因为 k OP=2,所以所求直线的斜率为-1,且过点 P.2所以满足条件的直线方程为y- 2=-1( x- 1) ,即 x+ 2y- 5= 0.210.B剖析:方法 1:因为 a+ 2b=1,所以 a= 1- 2b.所以直线 ax+ 3y+ b= 0 化为 ( 1- 2b) x+ 3y+ b=0.整理得 ( 1- 2x) b+ ( x+ 3y) = 0.所以当 x=1, y=-1时上式恒成立.26所以直线 ax+ 3y+ b= 0 过定点1 ,-1.26方法 2:由 a+ 2b=1 得 a- 1+ 2b= 0.进一步变形为a×1+ 3× -1+ b= 0.26这说明直线方程 ax+ 3y+b= 0 当 x=1, y=-1时恒成立.26所以直线 ax+ 3y+ b= 0 过定点1 ,-1.26二、填空题11. 1 5 .2剖析:由得a-0=1-0,所以 a2―a― 1= 0.解得 a=15 .2 - 1 a - 1212.- 1≤k≤ 1 且k≠ 0.剖析:依条件得1· | 2k | · | k | ≤1,其中k≠ 0( 否那么三角形不存在) .2解得- 1≤k≤ 1 且k≠ 0.13. 2 -1.a - 2 + 32 -1(舍去).剖析:依条件有= 1.解得 a= 2 - 1, a=-12+1214. y= 2x.剖析:直线变形为y+ 2=- a( x+ 1) ,所以直线恒过点( ―1,― 2) .故所求的直线方程是y+ 2= 2( x+ 1) ,即 y= 2x.15.60.13剖析:因为实数x, y 满足 5x+ 12y= 60,所以x2+ y2表示原点到直线5x+12y= 60 上点的距离.所以x2+ y2的最小值表示原点到直线5x+12y= 60 的距离.简单计算 d=60= 60.即所求x2+y2的最小值为60.25+ 1441313三、解答题16.解:设所求直线的方程为y=3x+ b,4令 x=0,得 y=b,所以直线与y 轴的交点为( 0,b);令 y=0,得 x=-4b,所以直线与x 轴的交点为-4b,0 .33由,得 | b| +-4b +b2+-42b= 12,解得 b=± 3.33故所求的直线方程是y=3x± 3,即 3x- 4y±12= 0.417.解:当直线 l 的方程为x= 1 时,可考据不吻合题意,故设l 的方程为 y-2=k( x-1),由y= kx+ 2 - k解得 A3k- 7 ,- 5k + 8 ;4 x + 3 y+ 1= 03k+ 43k+ 4由y= kx+ 2 - k解得 B3k - 12 , 8 - 10k.4 x + 3 y+ 6= 03k + 4 3 k+ 425k 2因为|AB|= 2 ,所以5+= 2 .3k + 43k + 4整理得 7k2-48k- 7= 0.解得k121.= 7或 k=-7故所求的直线方程为x+ 7y- 15=0 或 7x― y― 5= 0.18.解: ( 1) 当 x, y 的系数不相同时为零时,方程表示一条直线,令 m2― 2m― 3= 0,解得 m=- 1, m=3;令 2m2+ m- 1= 0,解得 m=- 1, m=1. 2所以方程表示一条直线的条件是m∈ R,且 m≠- 1.1此时的方程为x = 4,它表示一条垂直于x 轴的直线.3( 3) 依题意,有2m - 6=- 3,所以 3m 2- 4m - 15= 0.m 2 - 2m - 3所以 m =3,或 m =- 5 ,由 ( 1) 知所求 m =- 5.33( 4) 因为直线 l 的倾斜角是 45o ,所以斜率为 1.故由-m 2 - 2m - 3= 1,解得 m = 4或 m =- 1( 舍去 ) .2m 2 + m -13所以直线 l 的倾斜角为45°时, m = 4.319.解 :依条件,由y = 2x - 1解得 A( 1,1) .y = x因为角 A 的均分线所在的直线方程是y = x ,所以点 C( 2,5) 关于 y =x 的对称点 C'( 5,2) 在 AB 边所在的直线上.AB 边所在的直线方程为y - 1=2- 1( x -1) ,整理得5-1x - 4y + 3=0.又 BC 边上高线所在的直线方程是y =2x - 1,所以 BC边所在的直线的斜率为-1.(第 19题)2BC 边所在的直线的方程是 y =― 1( x - 2) + 5,整理得x +2y - 12= 0.2联立 x - 4y + 3=0 与 x + 2y -12= 0,解得 B 7,5.2。
人教版高中数学必修第二册第三单元《立体几何初步》检测题(包含答案解析)(1)
根据线面平行的判定定理可知,l∥β,正确;
对于C,过直线l上任意一点作直线m⊥γ,根据面面垂直的性质定理可知,
m既在平面α又在平面β内,所以直线l与直线m重合,即有l⊥γ,正确;
对于D,若α⊥β,l∥α,则l⊥β不一定成立,D错误.
【详解】
在正四面体 中,设棱长为2,
设 为底面三角形 是中心,则 平面 .
取 边的中点 ,连结 ,如图.
则易证 ,又 .
所以 平面 ,又 平面 ,
所以 .
所以异面直线 与 所成的角为 .
又 平面 .
所以直线 与平面 所成的角为
在 中, ,
所以 .
取边 的中点 ,连结 ,
则有 ,
所以二面角 的平面角为 ,
(1)证明: ;
(2)求二面角 的大小;
(3)求点 到平面 的距离.
19.如图,在四棱锥 中, 平面 , , , , .
(1)求证:平面 平面 ;
(2) 长为何值时,直线 与平面 所成角最大?并求此时该角的正弦值.
20.如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直, .
(1)求证: 平面BDE;
在 中,
由余弦定理有: ,
即 ,
所以 ,
故选:D.
【点睛】
本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题.
3.D
解析:D
【分析】
根据题意得到三棱柱的高是内切球的直径,也是底面三角形内切圆的直径,根据等边三角形的性质得到内切球和外接球的半径,计算表面积的比值.
A.若 , ,则 B.若 , ,则
word完整版人教版必修二第三章测试题含答案推荐文档
第三章测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.在下列四个命题中,正确的共有().(1)坐标平面内的任何一条直线均有倾斜角和斜率;(2)直线的倾斜角的取值范围是0, n ;(3)若两直线的斜率相等,则他们平行;(4)直线y=kx+b与y轴相交,交点的纵坐标的绝对值叫截距A . 0个B . 1个C . 2个D . 3个2. 如图:直线l1的倾斜角1=30° ,直线l1 I2 ,贝y¥12的斜率为().i L-A B . ——c. 43 D .罷兀333. 已知ab0,bc 0 ,则直线ax by c通过().-A.第一、二二、三象限 B.第一、二、四象限C.第一、三三、四象限 D. 第二、三、四象限4. 已知直线ax by 10在y轴上的截距为1,且它的倾斜角是直线J3x y0的倾斜角的2倍,则( ).A a ^, b 1B. a V3,b 1C. a J3,b 1D. a V3,b 15. 如果直线I: x+ ay + 2= 0平行于直线2x—y+ 3= 0,则直线I在两坐标轴上截距之和是().A.6B. 2C. —1 D . —26. 不论a为何实数,直线(a 3)x(2 a 1)y 7'0恒过( )A. 第一象限B.第二象限C.第三象限 D . 第四象限7. 若直线x2ay 10与(a 1)x ay 1 0平行,则a的值为(A. 1B.1或0 C . 0 D . 222&点(-1, 1 )关于直线x- y-1=0的对称点().A. (-1, 1)B.(1, - 1) C . (-2, 2) D . (2, -2)9. 等腰三角形两腰所在直线方程分别为x+y=2与x-7 y-4=0,原点在等腰三角形的底边上,则底边所在的直线斜率为()10.点P (x, y)在直线4x + 3y = 0上,且满足—14W x—y w 7,则点P到坐标原点距离的取值范围是(A. [0, 5]B. [0 , 10]C. [5, 10]D. [5, 15]11.等腰三角形两腰所在直线的方程分别为0与x 7y 4 0,原点在等腰三角形的底边上, 则底边所在直线的斜率为(12.如图, h、J、I3是同一平面内的三条平行直线, h与12间的距离是1 ,12与13间的距离是2,正三角形ABC的三顶点分别在11、12、13上, 则"ABC的边长是A . 2 .'3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13•与直线7x 24y 5平行,并且距离等于3的直线方程是14 •若直线m被两平行线11 : x y 1 0与12 : x y 3 0所截得的线段的长为2 2 ,则m的倾斜角可以是:①15o:②30°:③45°:④60°:⑤75°,其中正确答案的序号是 ____________ .(写出所有正确答案的序号)15. 已知A(1, 2), B(3, 4),直线11: x 0, I2 : y 0 和13 : x 3y 1 0 .设R 是h(i 1, 2, 3)上与A、B两点距离平方和最小的点,贝U △ RP2B的面积是 ________ .16. 如图,在平面直角坐标系x°y中,设三角形ABC 的顶点分别为A(0,a), B(b,0),C(c,0),点P(0, p)在线段AO上的一点(异于端点),这里a, b,c, p均为非零实数,设直线BP,CP分别与边AC, AB交于点E,F,某同学已正确求得直线OE的方程为(1 l)x (1 l)y 0,b c p a 请你完成直线OF的方程:( )x (—1)y 0.P a三、解答题17. ( 10分)已知三角形ABC的顶点是A(-1, -1),B (3, 1) ,C (1 , 6).直线L 平行于AB , 且分别交AC,BC于E,F,三角形CEF的面积1是三角形CAB面积的—.求直线L的方程.418. ( 12分)过点(2,3 )的直线L被两平行直线L i:2 x—5 y +9 = 0与L 2:2 x—5 y—7 = 0所截线段AE的中点恰在直线x—4 y—1 = 0上,求直线L的方程.19. (12分)已知点A的坐标为(4,4),直线I的方程为3x+ y —2= 0,求:(1)点A关于直线I的对称点A'的坐标;(2)直线I关于点A的对称直线I的方程.20. (12 分)在△ABC 中,A ( m, 2) , B (-3, -1) , C (5, 1),若BC 的中点M 到AB 的距离大于M到AC的距离,试求实数m的取值范围.21. (12分)光线从A (-3, 4)点出发,至U x轴上的点B后,被x轴反射到y轴上的C 点,又被y轴反射,这时反射光线恰好过 D (-1, 6)点,求直线BC的方程.22. (12分)有定点P (6, 4)及定直线l:y=4x,点Q是在直线I上第一象限内的点,直线PQ 交x 轴的正半轴于 M ,则点Q 在什么位置时,△OMQ 的面积最小?参考答案、选择题1.选A.垂直于x 轴的直线斜率不存在;倾斜角的范围是0, n ;两直线斜率相等,它们可能平行,也可能垂直;直线 y=kx+b 与y 轴相交,交点的纵坐标叫直线在 y 轴上的截距.2.选 C . k 1 3,Qk 1 k 23 1, k 233. 选 C . ya c x , k a0,- 0 , 所以通过第- -、三、四象限 .b bb b4.选 D. 由 ax+by-1=0, 得ya x 1当x=0时,1 1 y= ; 1,得 b=-1bb b b又,3x y ,3 0的倾斜角为60,所以 a、、3, a .3.b5.B.选由两直线平行,得 a =-0. 5,所以直线方程为 x-0.5y+2=0,当x=0时,y=4;当 y=0 时,x=-2.故 4+(-2)=2.6. 选 B.由方程(a+3) x+(2a-1)y+7=0,得:(x+2y ) a+3x-y+7=0 ,故 x+2y=0 且 3x-y+7=0. 解得x=-2, y=1.即该直线恒过(-2, 1)点,则恒过第二象限.7.选A.当a 0时,两直线重合,不合题意;当a 0时,「丄,解之得a 丄.a 2a21(不符合题意舍去),所以k 3. 310. 选B.根据题意可知点 P 在线段4x+3y=0( — 14<x — y < 7)上,有线段过原点,故点P 到原点最短距离为零,最远距离为点 P ( 6,8)到原点距离且距离为 10,故选B.11.选A.l 「x y 2 0飞 1 , l 2:x 7y 4 0,k 2扌,设底边所在直线的斜率为&选D.设对称点为(a , b ),则依题意,0,解得:1,a 2,b 2.9 .选A .设底面所在直线斜率为k ,则由到角公式得1 k1 ( 1) k 十,解得k1 - kk ,由题意,13与11所成的角等于12与11所成的角,于是有:k i k k k 2 k 1 7k 1 1 k 1k 1 __k 2k k~1 ~7~3,再将A 、B 、C 、D 代入验证得正确答案是 A.12.选D .过点C 作l 2的垂线l 4,以l 2、14为x 轴、y 轴建立平面直角坐标系. 设A(a,1)、二、填空题13. 设所求直线方程为7x+24y+C=0,由两平行线间的距离公式得: 解得C=-80或70. 【答案】7x 24y 80 0 或 7x 24y 70 014.两平行线间的距离为 d |3 1| 2 ,由图知直线m 与l 1的夹角为30° ,丨1的倾斜J1 1角为45°,所以直线 m 的倾斜角等于30 ° +45° =75 °或45° -30° =15 ° .故填写①⑤.【答案】①⑤15. 设R(0,b), F 2(a,0),丘仪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年必修二第三章训练卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )A .k 1<k 3<k 2B .k 3<k 1<k 2C .k 1<k 2<k 3D .k 3<k 2<k 12.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A .0B .-20C .0或-20D .0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A .-3B .2C .-3或2D .3或-24.下列说法正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示C .不经过原点的直线都可以用方程x a +yb=1表示 D .经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A .x -2y +3=0 B .2x -y -3=0 C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0B .2x +3y +7=0C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( )A .x +y =0B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________ 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________.此卷只装订不密封班级 姓名 准考证号 考场号 座位号16.与直线3x+4y+1=0平行且在两坐标轴上截距之和为73的直线l的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.18.(12分)直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y +6=0截得的线段长度为5,求直线l的方程.2018-2019学年必修二第三章训练卷直线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D 【解析】所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况.16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1), 得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +y b =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD ,∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P ,若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7), ∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.。