【大题专题训练】高考数学二轮复习《三三角数列概率统计立体几何C组》(解析版)

合集下载

【二轮推荐】三维设计2013年高考数学(理)二轮复习 专题三 详解答案 第二节 数列的综合应用 广东北京天津

【二轮推荐】三维设计2013年高考数学(理)二轮复习 专题三 详解答案 第二节 数列的综合应用 广东北京天津

000-3d)+2d.
3 - 由题意,am=4 000,即(2)m 1(3 000-3d)+2d=4 000. 解得
3m -2×1 2 d= 3m -1 2
000
1 0003m-2m 1 = . 3m-2m
+ +
1 0003m-2m 1 故该企业每年上缴资金 d 的值为 时,经过 m(m≥3) 3m-2m 年企业的剩余资金为 4 000 万元.
返回
(2)证明:由(1)得 Tn=2×2+5×22+8×23+„+(3n-1)×2n,① 2Tn=2×22+5×23+„+(3n-4)×2n+(3n-1)×2n+1.② 由①-②,得 -Tn=2×2+3×22+3×23+„+3×2n-(3n-1)×2n+1 6×1-2n = -(3n-1)×2n+1-2 1-2 =-(3n-4)×2n+1-8, 即 Tn-8=(3n-4)×2n+1. 而当 n≥2 时,an-1bn+1=(3n-4)×2n+1, 所以,Tn-8=an-1bn+1,(n∈N*,n≥2).
- 2) = ( - 1 + 4) + ( - 7 + 10) + „ + [( - 1)9· 9- 2) + ( - (3× 1)10· 10-2)]=3×5=15. (3×
返回
3.选 C
从图中观察五角星构成规律,
n=1 时,有 1 个; n=2 时,有 3 个; n=3 时,有 6 个; n=4 时,有 10 个;„ nn+1 所以 an=1+2+3+4+„+n= 2 . 4.选 A 由 S2=10,S5=55 得 a1=3,d=4, an+2-an 2d 所以 kPQ= = 2 =d=4. n+2-n
返回
冲关集训
1.选 A 由题意知,a1+a2+a3+a4=2,a5+a6+a7+a8=2,

2018年高考数学浙江专版三维二轮专题复习 重难增分训

2018年高考数学浙江专版三维二轮专题复习 重难增分训

重难增分训练(三) 数列的综合问题1.已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析:因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点,而等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10.答案:102.如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一(直接递推归纳):等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二(求通项):等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.已知数列{b n }的通项公式为b n =3×⎝ ⎛⎭⎪⎫12n -1+12,T n 为{b n }的前n 项和.若对任意n ∈N *,不等式12k12+n -2T n≥2n -7恒成立,则实数k 的取值范围为________.解析:因为b n =3×⎝ ⎛⎭⎪⎫12n -1+12,所以T n =3·⎝ ⎛⎭⎪⎫1+12+122+…+12n -1+n 2=3⎝ ⎛⎭⎪⎫1-12n 1-12+n 2=6⎝ ⎛⎭⎪⎫1-12n +n 2.因为不等式12k12+n -2T n≥2n -7,化简得k ≥2n -72n 对任意n ∈N *恒成立.设c n =2n -72n ,则c n +1-c n =n +-72n +1-2n -72n =9-2n2n +1. 当n ≥5时,c n +1≤c n ,{c n }为单调递减数列,当1≤n <5时,c n +1>c n ,{c n }为单调递增数列,116=c 4<c 5=332.所以n =5时,c n 取得最大值332. 所以,要使k ≥2n -72n 对任意n ∈N *恒成立,k ≥332.答案:⎣⎢⎡⎭⎪⎫332,+∞4.(2018届高三·浙江名校联考)已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,[x ]表示不超过x的最大整数,则(1) ⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1=________;(2) ⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 018+1=________.解析:(1)由题意得a 2=a 21+a 1=34,所以1a 1+1+1a 2+1=23+47=2621, 所以⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1=1.(2)因为a n +1=a 2n +a n , 所以1a n +1=1a 2n +a n =1a n -1a n +1, 即1a n +1=1a n -1a n +1, 所以1a 1+1+1a 2+1+…+1a 2 018+1=1a 1-1a 2+1a 2-1a 3+…+1a 2 018-1a 2 019=1a 1-1a 2 019.而a n +1=a 2n +a n >a n ,所以数列{a n }单调递增且各项均为正数, 所以1a 1+1+1a 2+1+…+1a 2 018+1=1a 1-1a 2 019<1a 1=2.又结合(1)可知1a 1+1+1a 2+1+…+1a 2 018+1>1, 所以⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 018+1=1.答案:(1)1 (2)15.已知函数f n (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,且f n (-1)=(-1)n ·n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设函数g (n )=⎩⎪⎨⎪⎧a n ,n 为奇数,g ⎝ ⎛⎭⎪⎫n 2,n 为偶数,c n =g (2n +4),n ∈N *,求数列{c n }的前n 项和T n .解:(1)依题意,得f n (-1)=-a 1+a 2-a 3+…+(-1)na n =(-1)n·n , 当n ≥2时,f n -1(-1)=-a 1+a 2-a 3+…+(-1)n -1·a n -1=(-1)n -1·(n -1),两式相减,得(-1)na n =(-1)n·n -(-1)n -1·(n -1)=(-1)n·(2n -1),即a n =2n -1.当n =1时,f 1(-1)=-a 1=-1,得a 1=1,符合上式, 所以a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)由g (n )=⎩⎪⎨⎪⎧a n ,n 为奇数,g ⎝ ⎛⎭⎪⎫n 2,n 为偶数,得c 1=g (6)=g (3)=a 3=5,c 2=g (8)=g (4)=g (2)=g (1)=a 1=1,当n ≥3时,c n =g (2n+4)=g (2n -1+2)=g (2n -2+1)=a 2n -2+1=2×(2n -2+1)-1=2n -1+1,所以当n ≥3时,T n =5+1+(22+1)+(23+1)+…+(2n -1+1)=6+-2n -21-2+(n -2)=2n+n ,当n =2时,也符合上式.于是T n =⎩⎪⎨⎪⎧5,n =1,2n +n ,n ≥2,n ∈N *.6.(2017·昆明模拟)已知数列{a n }满足a 1=12,a n +1=a 2na 2n -a n +1.证明:(1)a n +1<a n <1; (2)a 1+a 2+…+a n <1.证明:(1)a n +1-1=a 2na 2n -a n +1-1=a n -1a 2n -a n +1,由于a 2n -a n +1>0,所以a n +1-1与a n -1同号, 由a 1=12,可知a n -1<0,所以a n <1.易得a n +1=a 2na 2n -a n +1>0,则a n +1-a n =a 2na 2n -a n +1-a n =2a 2n -a 3n -a n a 2n -a n +1=-a n a 2n -2a n +a 2n -a n +1=-a n a n -2a 2n -a n +1<0,所以a n +1<a n .综上a n +1<a n <1.(2)由a n +1=a 2na 2n -a n +1,可知1a n +1=1+1-a n a 2n,所以1a n +1-1=1-a na 2n,即a n +11-a n +1=a 2n1-a n. 可得a n +11-a n +1=a 2n1-a n =-a n +a n 1-a n.所以a n =a 2n -1a 2n -1-a n -1+1<a 2n -11-a n -1=-a n -1+a n -11-a n -1=-a n -1-a n -2+a n -21-a n -2=…=-a n -1-a n -2…-a 2-a 1+a 11-a 1, 所以a 1+a 2+…+a n <a 11-a 1=1.7.已知曲线C :y 2=2x (y ≥0),A 1(x 1,y 1),A 2(x 2,y 2),…,A n (x n ,y n ),…是曲线C 上的点,且满足0<x 1<x 2<…<x n <…,一列点B i (a i,0)(i =1,2,…)在x 轴上,且△B i -1A i B i (B 0是坐标原点)是以A i 为直角顶点的等腰直角三角形.(1)求A 1,B 1的坐标 ; (2)求数列{y n }的通项公式; (3)令b n =1a n,c n =2-y n2,分别求数列{b n },{c n }的前n 项和S n ,T n . 解:(1)∵△B 0A 1B 1是以A 1为直角顶点的等腰直角三角形, ∴直线B 0A 1的方程为y =x .由⎩⎪⎨⎪⎧y =x ,y 2=2x ,y >0,得x 1=y 1=2,即点A 1的坐标为(2,2),进而得B 1(4,0).(2)根据△B n -1A n B n 和△B n A n +1B n +1分别是以A n 和A n +1为直角顶点的等腰直角三角形,可得⎩⎪⎨⎪⎧a n =x n +y n ,a n =x n +1-y n +1,即x n +y n =x n +1-y n +1.(*)∵A n 和A n +1均在曲线C :y 2=2x (y ≥0)上, ∴y 2n =2x n ,y 2n +1=2x n +1,∴x n =y 2n 2,x n +1=y 2n +12,代入(*)式得 y 2n +1-y 2n =2(y n +1+y n ),∴y n +1-y n =2(n ∈N *),∴数列{y n }是以y 1=2为首项,2为公差的等差数列, ∴其通项公式为y n =2n (n ∈N *). (3)由(2)可知,x n =12y 2n =2n 2,∴a n =x n +y n =2n (n +1), ∴b n =12n n +=12⎝ ⎛⎭⎪⎫1n -1n +1, c n =2-2n2=12n +1.∴S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1 =n n +.T n =c 1+c 2+c 3+…+c n=122+123+…+12n +1 =122⎝ ⎛⎭⎪⎫1-12n 1-12=12-12n +1.8.(2017·杭州模拟)已知数列{a n },点P (n ,a n )在函数f (x )=23x +43的图象上.(1)求数列{a n }的通项公式,并求出其前n 项和S n ;(2)若从{a n }中抽取一个公比为q 的等比数列{ak n },其中k 1=1,且k 1<k 2<…<k n <…,k n ∈N *,是否存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解?若存在,求出所有符合条件的q 值;若不存在,请说明理由.解:(1)因为点P (n ,a n )在函数f (x )=23x +43的图象上,所以a n =23n +43.当n ≥2时,a n -a n -1=23(常数),所以,数列{a n }是首项为a 1=2,公差为d =23的等差数列,所以S n =⎝ ⎛⎭⎪⎫2+23n +43n 2=n n +3.(2)存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解,求解如下: 因为ak 1=a 1=2,ak n =2k n +43=2q n -1,得k n =3q n -1-2,显然q >1,所以当q >1且q ∈N *时,所有的k n =3qn -1-2均为正整数,符合题意;要使不等式6S n >k n +1有解,即2n (n +5)>3q n-2有解,则2n n ++23qn >1有解,经检验,当q =2,q =3,q =4时,n =1都是2n n ++23q n>1的解,符合题意;下面证明当q ≥5时,2nn ++23qn >1无解.设b n =2n n ++23qn ,则b n +1-b n =-q n 2+-5qn +7-q ]3qn +1,因为5q -71-q<0,1-q <0,所以f (n )=2[(1-q )n 2+(7-5q )n +7-q ]在n ∈N *上单调递减, 又f (1)<0,则f (n )<0恒成立,可得b n +1-b n <0, 所以b n ≤b 1恒成立, 又当q ≥5时,b 1<1, 所以当q ≥5时,2nn ++23qn >1无解,不符合题意.综上所述,存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解,且q 的所有取值为2,3,4. 9.(2017·嘉兴模拟)已知无穷数列{a n }满足:a 1=12 018,a 2n -2a n +2a n -1=0(n ≥2).(1)试判断数列{a n }的单调性;(2)求证:①0<a n <12;②12-a 1+12-a 2+…+12-a n<2 018. 解:(1)由a 2n -2a n +2a n -1=0(n ≥2)得a 2n =2(a n -a n -1)≥0,∴a n ≥a n -1,而a n =a n -1时,得a n =0与a 1=12 018矛盾,故a n >a n -1,所以数列{a n }为递增数列. (2)证明:①由a 2n -2a n +2a n -1=0(n ≥2)得a 2n -2a n +1=1-2a n -1,则(a n -1)2=1-2a n -1≥0, ∴a n -1≤12,当a n -1=12时有a n =1,这显然矛盾,∴a n <12,由a n >a n -1得a n >a 1>0, ∴0<a n <12.②由a 2n -2a n +2a n -1=0(n ≥2)得2a n -1=a n (2-a n ), 则1a n -1=2a n-a n =1a n +12-a n, ∴12-a n =1a n -1-1a n(n ≥2), ∴12-a 1+12-a 2+…+12-a n=12-a 1+⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1-1a n=12-a 1+1a 1-1a 2+1a 2-1a 3+…+1a n -1-1a n =12-a 1+1a 1-1a n, ∵a 1=12 018,由①可知0<a n <12, ∴2-a 1>a n ,12-a 1-1a n <0,∴12-a 1+12-a 2+…+12-a n =12-a 1+1a 1-1a n<1a 1=2 018,即12-a 1+12-a 2+…+12-a n<2 018. 10.(2017·绍兴模拟)已知数列{a n }满足:a 1=a ∈(0,1),且0<a n +1≤a 2n -a 3n ,设b n =(a n -a n+1)a n +1.(1)比较a 1-a 2和a 2a 1的大小; (2)求证:b 1b 2…b na 1a 2…a n>a n +1;(3)设T n 为数列{b n }的前n 项和,求证:T n <a 25.解:(1)因为a 1-a 2-a 2a 1=a 21-a 1a 2-a 2a 1≥a 31-a 1a 2a 1=a 21-a 2≥a 31>0,所以a 1-a 2>a 2a 1. (2)证明:因为a n >0, 所以0<a n +1a n ≤a n -a 2n =-⎝⎛⎭⎪⎫a n -122+14≤14,即a n +1≤14a n <a n .所以0<a n <a 1<1,a n +1≤a 2n -a 3n <a 2n ,所以b n =(a n -a n +1)a n +1>(a n -a 2n )a n +1≥a 2n +1a n ,即b n a n >a 2n +1a 2n,故b 1b 2…b n a 1a 2…a n >a 2a 1·a 3a 2·…·a n +1a n =a n +1a 1>a n +1.(3)证明:由a n +1≤14a n 可知,a n +1-14a n ≤0,a n +1-34a n <0,所以b n -316a 2n =(a n -a n +1)a n +1-316a 2n=-⎝ ⎛⎭⎪⎫a n +1-14a n ⎝ ⎛⎭⎪⎫a n +1-34a n ≤0, 所以b n ≤316a 2n .因此T n≤316(a21+a22+…+a2n)≤316⎝⎛⎭⎪⎫a21+116a21+…+116n-1a21≤316·a2⎝⎛⎭⎪⎫1-116n1-116<a25.。

2019届高考数学二轮复习大题分层练一三角数列概率统计立体几何A组(文)

2019届高考数学二轮复习大题分层练一三角数列概率统计立体几何A组(文)

大题分层练(一)三角、数列、概率统计、立体几何(A组)1.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos=,·=3.(1)求△ABC的面积.(2)若c=1,求a的值.【解析】(1)cos A=2cos2-1=2×-1=,又A∈(0,π),sin A==,而·=||·||·cos A=bc=3,所以bc=5,所以△ABC的面积为;bcsin A=×5×=2.(2)由(1)知bc=5,而c=1,所以b=5,所以a===2.2.已知{a n}是等差数列,{b n}是各项均为正数的等比数列,且b1=a1=1,b3=a4, b1+b2+b3=a3+a4.(1)求数列{a n},{b n}的通项公式.(2)设c n=a n b n,求数列{c n}的前n项和T n.【解析】(1)设数列{a n}的公差为d,{b n}的公比为q,依题意得解得d=1,q=2, 所以a n=1+(n-1)=n,b n=1×2n-1=2n-1.(2)由(1)知c n=a n b n=n·2n-1,则T n=1·20+2·21+3·22+…+n·2n-1①2T n=1·21+2·22+…+(n-1)·2n-1+n·2n②①-②得;-T n=1·20+1·21+1·22+…+1·2n-1-n·2n=-n·2n=(1-n)·2n-1.所以T n=(n-1)·2n+1.3.天然气是较为安全的燃气之一,它不含一氧化碳,也比空气轻,一旦泄露,立即会向上扩散,不易积累形成爆炸性气体,安全性较高,其优点有;①绿色环保;②经济实惠;③安全可靠;④改善生活. 某市政府为了节约居民天然气,计划在本市试行居民天然气定额管理,即确定一个居民年用气量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用气量的分布情况,现采用抽样调查的方式,获得了n位居民某年的用气量(单位;立方米),样本统计结果如图表.(1)分别求出n,a,b的值.(2)若从样本中年均用气量在[50,60](单位;立方米)的5位居民中任选2人作进一步的调查研究,求年均用气量最多的居民被选中的概率(5位居民的年均用气量均不相等).【解析】(1)用气量在[20,30)内的频数是50,频率是0.025×10=0.25,则n==200.用气量在[0,10)内的频率是=0.125,则b==0.012 5.用气量在[50,60]内的频率是=0.025,则a==0.002 5.(2)设A,B,C,D,E代表用气量从多到少的5位居民,从中任选2位,总的基本事件为AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个;包含A的有AB,AC,AD,AE共4个,所以P==.4. 如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到△PAD的位置,得到四棱锥P-ABCD.点M为线段PC的中点,且BM⊥平面PCD.(1)求证;平面PAD⊥平面PCD.(2)若直线PC与AB所成角的正切值为,设AB=1,求四棱锥P-ABCD的体积. 【解析】(1)取PD的中点N,连接AN,MN,则MN∥CD,MN=CD,又因为AB∥CD,AB=CD,所以MN∥AB,MN=AB,则四边形ABMN为平行四边形,所以AN∥BM,又BM⊥平面PCD,所以AN⊥平面PCD,又因为AN⊂平面PAD,所以平面PAD⊥平面PCD.(2)取AD的中点O,连接PO,因为AN⊥平面PCD,所以AN⊥PD,AN⊥CD.由ED=EA即PD=PA及N为PD的中点,可得△PAD为等边三角形,所以∠PDA=60°,PO⊥AD,又∠EDC=150°,所以∠CDA=90°,所以CD⊥AD,所以CD⊥平面PAD,CD⊂平面ABCD,所以平面PAD⊥平面ABCD.所以AD=平面PAD∩平面ABCD,PO⊂平面PAD,PO⊥AD,所以PO⊥平面ABCD,所以PO是四棱锥P-ABCD的高.因为AB∥CD,所以∠PCD为直线P C与AB所成的角,由(1)可得∠PDC=90°,所以tan∠PCD==, 所以CD=2PD,由AB=1,可知CD=2,PA=AD=AB=1,则V P-ABCD=PO·S四边形ABCD=.。

最新高考数学文科二轮复习大题分层练三三角数列概率统计立体几何C组含答案

最新高考数学文科二轮复习大题分层练三三角数列概率统计立体几何C组含答案

大题分层练(三)三角、数列、概率统计、立体几何(C组)1.在△ABC中,角A,B,C的对边分别为a,b,c,且(2a-b)·cos C=c·cos B.(1)求角C的大小.(2)若c=2,△ABC的面积为,求该三角形的周长.【解析】(1)在△ABC中,由正弦定理知===2R,又因为(2a-b)·cos C=c·cos B,所以2sin Acos C=sin Bcos C+cos Bsin C,即2sin Acos C=sin A.因为0<A<π,所以sin A>0,所以cos C=.又0<C<π,所以C=.(2)因为S△ABC=absin C=ab=,所以ab=4.又c2=a2+b2-2abcos C=(a+b)2-3ab=4,所以(a+b)2=16,所以a+b=4,所以周长为6.2.在数列{a n}中,a1=4,na n+1-(n+1)a n=2n2+2n.(1)求证:数列是等差数列.(2)设数列的前n项和为S n,问是否存在正整数N,使得当n>N时,总有<,若存在,求出N的最小值,否则,说明理由.【解析】(1)na n+1-(n+1)a n=2n2+2n的两边同时除以n(n+1),得-=2(n∈N*),所以数列是首项为4,公差为2的等差数列.(2)由(1)得=2n+2,所以a n=2n2+2n,故==·=·,所以S n=++…+=.所以由不等式=<,解得n>1 008,所以存在N≥1 008,使得当n>N时,总有<,所以N的最小值为1 008.3.某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x的平均数.(2)将y表示为x的函数.(3)根据直方图估计利润y不少于4 000元的概率.【解析】(1)由频率分布直方图得:需求量为[100,120)的频率=0.005×20=0.1,需求量为[120,140)的频率=0.01×20=0.2,需求量为[140,160)的频率=0.015×20=0.3,需求量为[160,180)的频率=0.012 5×20=0.25,需求量为[180,200]的频率=0.007 5×20=0.15.则平均数=110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元,所以当100≤x≤160时,y=30x-10×(160-x)=40x-1 600;当160<x≤200时,y=160×30=4 800,所以y=(3)因为利润不少于4 000元,所以40x-1600≥4 000,解得x≥140.所以由(1)知利润不少于4 000元的概率P=1-0.3=0.7.4.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为B C的中点.(1)证明:PE⊥DE.(2)如果异面直线AE与PD所成的角的大小为,求PA的长及点A到平面PED的距离. 【解析】(1)连接AE,由AB=BE=1,得AE=,同理得,DE=,AE2+DE2=4=AD2,由勾股定理得∠AED=90°,DE⊥AE,因为PA⊥平面ABCD,所以PA⊥DE.又因为PA∩AE=A,所以DE⊥平面PAE,所以PE⊥DE.(2)取PA的中点M,AD的中点N,连接MC,NC,MN,AC.所以NC∥AE,MN∥PD,所以∠MNC的大小等于异面直线PD与AE所成的角或其补角的大小,即∠MNC=或(或者由观察可知,∠MNC=,不需分类讨论).设PA=x,则NC=,MN=,MC=.若∠MNC=,由cos∠MNC==-,得PA=2.所以V A-PDE=V P-DAE=××××2=.在Rt△PED中,PE=,DE=,所以S△PED=××=.所以点A到平面PED的距离为=.若∠MNC=,由cos∠MNC==,显然不适合题意.综上所述,PA=2,点A到平面PED的距离为.。

【二轮推荐】三维设计2013年高考数学(理)二轮复习_专题六_概率与统计、推理与证明、复数、算法(带解析)

【二轮推荐】三维设计2013年高考数学(理)二轮复习_专题六_概率与统计、推理与证明、复数、算法(带解析)

2013年高考数学(理)二轮复习专题六概率与统计、推理与证明、复数、算法(带解析)概率与统计应以随机变量及其分布列为中心,求解时应抓住建模、解模、用模这三个基本点.排列组合是求解概率的工具,利用排列组合解题时应抓住特殊元素或特殊位置,注意元素是否相邻及元素是否定序,同时还应注意题中是否还涉及两个计数原理.随机变量的均值和方差是概率初步的关键点,解决概率应用问题时,首先要熟悉几种常见的概率类型,熟练掌握其计算公式;其次还要弄清问题所涉及的事件具有什么特点、事件之间有什么联系;再次要明确随机变量所取的值,同时要正确求出所对应的概率.统计的主要内容是随机抽样、样本估计总体、变量的相关性,复习时应关注直方图、茎叶图与概率的结合,同时注意直方图与茎叶图的数据特点.第一节排列、组合、二项式定理 1.熟记两个公式 (1)排列数公式: Am n =n(n -1)…(n -m +1)=n !n -m !.(2)组合数公式: Cm n =Am n Am m =n n -1 … n -m +1 m !=n !m ! n -m !. 2.把握二项式定理的四个基本问题(1)二项式定理: (a +b)n =C0n anb0+C1n an -1b +…+Cr n an -rbr +…+Cn n bn. (2)通项与二项式系数: Tr +1=Cr n an -rbr ,其中Cr n (r =0,1,2,…,n)叫做二项式系数. (3)各二项式系数之和: ①C0n +C1n +C2n +…+Cn n =2n. ②C1n +C3n +…=C0n +C2n +…=2n -1. (4)二项式系数的性质:①Cr n =Cn -r n ,Cr n +Cr -1n =Cr n +1. ②二项式系数最值问题当n 为偶数时,中间一项即第n 2+1项的二项式系数C n2n 最大;当n 为奇数时,中间两项即第n +12,n +32项的二项式系数C n -12n ,C n +12n 相等且最大.[考情分析] 计数原理作为排列、组合的基础知识,是高考必考的内容,由于这部分内容抽象性强、思维方法新颖,因此利用化归思想将实际问题转化为能用计数原理解决的问题是关键,一般以选择题、填空题的形式出现,难度不大.[例1] (2012·四川高考)方程ay =b2x2+c 中的a ,b ,c ∈{-3,-2,0,1,2,3},且a ,b ,c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( ) A .60条 B .62条 C .71条 D .80条[思路点拨] 用分类加法计数原理求解.[解析] 当a =1时,若c =0,则b2有4,9两个取值,共2条抛物线; 若c ≠0,则c 有4种取值,b2有两种,共有2×4=8条抛物线;当a=2时,若c=0,b2取1,4,9三种取值,共有3条抛物线;若c≠0,c取1时,b2有2个取值,共有2条抛物线,c取-2时,b2有2个取值,共有2条抛物线,c取3时,b2有3个取值,共有3条抛物线,c取-3时,b2有3个取值,共有3条抛物线.所以共有3+2+2+3+3=13条抛物线.同理,a=-2,-3,3时,共有抛物线3×13=39条.由分类加法计数原理知,共有抛物线39+13+8+2=62条.[答案] B[类题通法]解决此类问题的关键:(1)在应用分类计数原理和分步计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.[冲关集训]1.如图所示,使电路接通,开关不同的开闭方式有( )A.11种B.20种C.21种D.12种解析:选C 左边两个开关的开闭方式有22-1=3种,右边两个开关的开闭方式有23-1=7种,故使电路接通的情况有3×7=21种.2.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种解析:选A 先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C12C24=12种安排方案.[考情分析]排列、组合及排列与组合的综合应用是高考的热点,题型以选择题、填空题为主,中等难度,在解答题中,排列、组合常与概率、分布列的有关知识结合在一起考查.[例2] (1)(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种B.18种C.24种D.36种(2)(2012·山东高考)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )A.232 B.252C.472 D.484[思路点拨] (1)先按列进行排放,再利用乘法原理进行求解;(2)利用分类加法计数原理和组合结合求解.[解析] (1)先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12种不同的排列方法.(2)分两类:第一类,含有1张红色卡片,共有不同的取法C14C212=264种;第二类,不含有红色卡片,共有不同的取法C312-3C34=220-12=208种.由分类加法计数原理知不同的取法有264+208=472种. [答案] (1)A (2)C[类题通法]解排列组合综合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.“分析”就是找出题目的条件、结论.哪些是“元素”,哪些是“位置”;“分辨”就是辨别是排列还是组合,对某些元素的位置有无限制等;“分类”就是对于较复杂的应用题中的元素往往分成互相排斥的几类,然后逐类解决;“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决.[冲关集训]3.(2012·深圳调研)“2 012”含有数字0,1,2,且有两个数字2.则含有数字0,1,2,且有两个相同数字的四位数的个数为( ) A .18 B .24 C .27 D .36解析:选B 依题意,就所含的两个相同数字是否为0进行分类计算:第一类,所含的两个相同数字是0,则满足题意的四位数的个数为C23A22=6;第二类,所含的两个相同数字不是0,则满足题意的四位数的个数为C12·C13·C13=18.由分类加法计数原理得,满足题意的四位数的个数为6+18=24.4.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A .36种 B .42种 C .48种 D .54种解析:选B 由题可知,可以考虑分成两类计算:若甲排在第一位,则有A44种方案;若甲排在第二位,则有C13A33种方案,所以按照要求该台晚会节目演出顺序的编排方案共有A44+C13A33=42种.[考情分析] 对于二项式的考查重点是二项式定理的展开式及通项公式、二项式系数及特定项的系数、二项式性质的应用,题型多为选择题、填空题,难度为中低档.二项式定理的应用有时也在数列压轴题中出现,主要是利用二项式定理及放缩法证明不等式.[例3] (1)(2012·湖南高考)⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答)(2)(2012·皖南八校联考)⎝⎛⎭⎫x +12x n 的展开式中第五项和第六项的二项式系数最大,则第四项为________.[思路点拨] (1)利用二项式定理的通项公式求解;(2)利用二项式系数的性质及二项展开式的通项公式求解.[解析] (1)⎝ ⎛⎭⎪⎫2x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6= 2x -1 6x3,又∵(2x -1)6的展开式的通项公式为Tr +1=Cr 6(2x)6-r(-1)r , 令6-r =3,得r =3.∴T3+1=-C36(2x)3=-20×23·x3=-160x3.∴⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为-160. (2)由题意知,n =9, 则⎝⎛x +12x 9的展开式中第四项 T4=C39(x)6⎝⎛⎭⎫12x 3=212.[答案] (1)-160 (2)212[类题通法]解决此类问题关键要掌握以下几点:(1)它表示二项展开式中的任意项,只要n 与r 确定,该项就随之确定; (2)Tr +1是展开式中的第r +1项,而不是第r 项; (3)公式中a ,b 的指数和为n ,a ,b 不能颠倒位置;(4)要将通项中的系数和字母分离开,以便于解决问题;(5)对二项式(a -b)n 展开式的通项公式要特别注意符号问题. [冲关集训]5.(2012·安徽高考)(x2+2)⎝⎛⎭⎫1x2-15的展开式的常数项是( )A .-3B .-2C .2D .3解析:选D ⎝⎛⎭⎫1x2-15的展开式的通项为Tr +1=Cr 5·⎝⎛⎭⎫1x25-r ·(-1)r ,r =0,1,2,3,4,5.当因式(x2+2)中提供x2时,则取r =4;当因式(x2+2)中提供2时,则取r =5,所以(x2+2)⎝⎛⎭⎫1x2-15的展开式的常数项是5-2=3. 6.(2012·郑州质检)在二项式⎝⎛⎭⎫x2-1x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为( )A .32B .-32C .0D .1解析:选C 依题意得,所有二项式系数的和为2n =32,解得n =5.因此,该二项展开式中的各项系数的和等于⎝⎛⎭⎫12-115=0.7.(2012·安徽名校模拟)在(-x)n =a0+a1x +a2x2+a3x3+…+anxn 中,若2a2+an -3=0,则自然数n 的值是( ) A .7 B .8C .9D .10解析:选B 易知a2=C2n ,an -3=(-1)n -3Cn -3n =(-1)n -3C3n ,又∵2a2+an -3=0,∴2C2n +(-1)n -3C3n =0,将各选项逐一代入检验可知n =8满足上式.破解排列组合问题的十种策略排列组合是高中数学的重点和难点之一,也是求解古典概型的基础,这一类问题不仅内容抽象、解法灵活,而且解题过程极易出现“重复”和“遗漏”等错误,这些错误又不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握求解技巧.常见的解题策略有: (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略; (7)定序问题除法处理的策略; (8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略; (10)构造模型的策略.[典例] 某电视台举办“红色经典”的革命歌曲文艺演出,已知节目单中共有7个节目,为了活跃现场气氛,主办方特地邀请了3位参加过抗美援朝的老战士演唱当年的革命歌曲,要将这3个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有________种.[解析] 根据题意,添加3个节目后,节目单中共有10个节目,而原先7个节目的顺序是固定不变的,故可先将这10个节目进行全排列,不同的排列方法有A1010种;而原来7个节目的不同安排方式共有A77种,故不同的安排方式共有A1010A77=720种.[答案] 720[名师支招]本题为定序问题,采用除法处理的策略.解决一个问题并不一定用一个策略,有时要用几种求解策略,再结合计数原理从而达到求解的目的. [高考预测]两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为( ) A .48 B .36C .24D .12解析:选C 由题意得爸爸排法为A22种,两个小孩排在一起故看成一体有A22种排法,妈妈和孩子共有A33种排法,所以排法种数共为A22×A22×A33=24种. [配套课时作业]1.(2012·辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!解析:选C 把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种. 2.(2012·重庆高考)(1-3x)5的展开式中x3的系数为( ) A .-270 B .-90 C .90 D .270解析:选A (1-3x)5的展开式通项为Tr +1=Cr 5(-3)rxr(0≤r ≤5,r ∈N),当r =3时,该项为T4=C35(-3)3x3=-270x3,故可得x3的系数为-270. 3.将1,2,3,…,9这9个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为( )A .6B .12C .18D .24解析:选A 第一行从左到右前面两个格子只能安排1,2,最右下角的格子只能是9,这样只要在剩余的四个数字中选取两个,安排在右边一列的上面两个格子中(由小到大),剩余两个数字安排在最下面一行的前面两个格子中(由小到大),故总的方法数是C24=6. 4.(2012·温州适应性测试)将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不同,则共有不同放法( ) A .15种 B .18种 C .19种 D .21种解析:选B 对这3个盒子中所放的小球的个数情况进行分类计数:第一类,这3个盒子中所放的小球的个数是1,2,6,此类放法有A33=6种;第二类,这3个盒子中所放的小球的个数是1,3,5,此类放法有A33=6种;第三类,这3个盒子中所放的小球的个数是2,3,4,此类放法有A33=6种.因此满足题意的放法共有6+6+6=18种.5.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( )A .3项B .4项C .5项D .6项解析:选C Tr +1=Cr 24·()x 24-r ·⎝ ⎛⎭⎪⎪⎫13x r =Cr24·x 512-r6,且0≤r ≤24,r ∈N ,所以当r =0,6,12,18,24时,x 的幂指数是整数.6.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( ) A .240种 B .360种C .480种D .720种解析:选C 第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法,因此不同的演讲次序共有A14·A55=480种.7.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种解析:选D 对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此共有C44+C24C25+C45=66种. 8.⎝⎛⎭4x +1x n 的展开式中各项系数之和为125,则展开式中的常数项为( ) A .-27B .-48C .27D .48解析:选D 令x =1,则⎝⎛⎭⎫4x +1x n 的展开式中各项系数之和为5n =125,解得n =3,则⎝⎛⎫4x +1x 3的展开式的通项为Tr +1=Cr 3(4x)3-r ⎝⎛1x r =Cr 343-rx 3-3r 2,令3-3r 2=0,得r =1,所以展开式中的常数项为C13·42=48.9.(2012·安徽高考)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( ) A .1或3 B .1或4 C .2或3 D .2或4解析:选D 不妨设6位同学分别为A ,B ,C ,D ,E ,F ,列举交换纪念品的所有情况为AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共有15种.因为6位同学之间共进行了13次交换,即缺少以上交换中的2种.第一类,某人少交换2次,如DF ,EF 没有交换,则A ,B ,C 交换5次,D ,E 交换4次,F 交换3次;第二类,4人少交换1次,如CD ,EF 没有交换,则A ,B 交换5次,C ,D ,E ,F 交换4次.10.⎝ ⎛⎭⎪⎪⎫x +13x 2n 的展开式的第6项的二项式系数最大,则其常数项为( ) A .120 B .252 C .210D .45解析:选C 根据二项式系数的性质,得2n =10,故二项式⎝⎛⎭⎪⎪⎫x +13x 2n 的展开式的通项公式是Tr +1=Cr 10(x)10-r ⎝ ⎛⎭⎪⎪⎫13x r =Cr 10x5-r 2-r 3,根据题意5-r 2-r3=0,解得r =6,故所求的常数项等于C610=C410=210.11.(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24 B .18 C .12 D .6解析:选B 若选0,则0只能在十位,此时组成的奇数的个数是A23;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.12.(2012·河南三市调研)某单位安排7位员工在2012年1月22日至1月28日(即今年除夕到正月初六)值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在除夕,丁不排在初一,则不同的安排方案共有( ) A .504种 B .960种C .1 008种D .1 056种解析:选D 依题意,满足甲、乙两人值班被安排在相邻两天值班的方法共有A22×A66=1 440种,其中满足甲、乙两人值班被安排在相邻两天且丙在除夕值班的方法共有A22×A55=240种;满足甲、乙两人值班被安排在相邻两天且丁在初一值班的方法共有C14×A22×A44=192种;满足甲、乙两人值班被安排在相邻两天且丙在除夕值班、丁在初一值班的方法共有A22×A44=48种.因此满足题意的安排方案共有1 440-240-192+48=1 056种.13.(2012·湖北高考)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12解析:选D 512 012+a =(13×4-1)2 012+a ,被13整除余1+a ,结合选项可得a =12时,512 012+a 能被13整除.14.(2011·新课标全国卷)⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40解析:选D 对于⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5,可令x =1得1+a =2,故a =1.⎝⎛⎭⎫2x -1x 5的展开式的通项Tr +1=Cr 5(2x)5-r ·⎝⎛⎭⎫-1x r =Cr 525-r ×(-1)r ×x5-2r ,要得到展开式的常数项,则x +1x 的x 与⎝⎛⎭⎫2x -1x 5展开式的1x 相乘,x +1x 的1x 与(2x -1x 展开式的x 相乘,故令5-2r =-1得r =3,令5-2r =1得r =2,从而可得常数项为C35×22×(-1)3+C25×23×(-1)2=40. 15.(2012·福州质检)在(1+x)2-(1+3x)4的展开式中,x 的系数等于________.(用数字作答)解析:因为(1+x)2的展开式中x 的系数为1,(1+3x)4的展开式中x 的系数为C34=4,所以在(1+x)2-(1+3x)4的展开式中,x 的系数等于-3.答案:-316.(2012·潍坊模拟)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为________. 解析:若甲、乙分到的车间不再分人,则分法有C13×A22×C13=18种;若甲、乙分到的车间再分一人,则分法有3×A22×C13=18种.所以满足题意的分法共有18+18=36种. 答案:3617.(2012·浙江高考)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3=____________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a0+a1t +a2t2+a3t3+a4t4+a5t5,则a3=C25(-1)2=10. 答案:1018.(2012·唐山统考)在具有5个行政区域的地图(如图)上,给这5个区域着色共使用了4种不同的颜色,相邻区域不使用同一颜色,则有________种不同的着色方法.解析:已知一共使用了4种不同的颜色,因为有5块区域,故必有2块区域的颜色相同.分成两类情况进行讨论:若1,5块区域颜色相同,则有C14C13C12=24种不同的着色方法;若2,4块区域颜色相同,同理也有24种不同的着色方法.故共有48种不同的着色方法. 答案:4819.(2012·衡阳联考)已知二项式⎝⎛⎭⎪⎫x -1x n 展开式中的第5项为常数项,则展开式中各项的二项式系数之和为________.解析:依题意知,二项式⎝ ⎛⎭⎪⎫x -1x n 的展开式中的第5项是T5=C4n ·xn -4⎝ ⎛⎭⎪⎫-1x 4=C4n ·xn-6,又其第5项是常数项,于是有n -6=0,所以n =6,其展开式中各项的二项系数之和为26=64.答案:6420.(2012·北京西城区期末测试)有限集合P中元素的个数记作card(P).已知card(M)=10,A⊆M,B⊆M,A∩B=∅,且card(A)=2,card(B)=3.若集合X满足A⊆X⊆M,则集合X的个数是________;若集合Y满足Y⊆M,且A ÚY,BÚY,则集合Y的个数是________.(用数字作答)解析:显然card(M)=10表示集合M中有10个元素,card(A)=2表示集合A中有2个元素,而A⊆X⊆M,所以集合X中可以只含A中的2个元素,也可以除了A中的2个元素外,在剩下的8个元素中任取1个、2个、3个、…、8个,共有C08+C18+C28+…+C88=28=256种情况,即符合要求的集合X有256个.满足Y⊆M的集合Y的个数是210,其中不满足条件A ÚY的集合Y的个数是28,不满足条件B ÚY的集合Y的个数是27,同时不满足条件AÚY与BÚY的集合Y的个数是25,因此满足题意的集合Y的个数是210-28-27+25=672. 答案:256 672第二节概率、随机变量及其分布列牢记概率与统计的十个公式及相关结论(1)古典概型的概率公式P(A)=mn=事件A中所含的基本事件数试验的基本事件总数.(2)几何概型的概率公式P(A)=构成事件A的区域长度 面积或体积试验的全部结果所构成的区域长度 面积或体积.(3)离散型随机变量的分布列的两个性质①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1.(4)数学期望公式E(X)=x1p1+x2p2+…+xnpn.(5)数学期望的性质①E(aξ+b)=aE(X)+b;②若X~B(n,p),则E(X)=np;③若X服从两点分布,则E(X)=p.(6)方差公式D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(xn-E(X))2·pn,标准差D X .(7)方差的性质①D(aX+b)=a2D(X);②若X~B(n,p),则D(X)=np(1-p);③若X服从两点分布,则D(X)=p(1-p).(8)独立事件同时发生的概率计算公式P(AB)=P(A)P(B).(9)独立重复试验的概率计算公式Pn(k)=Ck n Pk(1-P)n-k.(10)条件概率公式P(B|A)=P ABP A.[考情分析]高考对该部分的考查,主要是以选择题或填空题的形式考查古典概型或者几何概型的计算,在解答题中和随机变量综合作为解决问题的工具进行考查.[例1] (2012·北京高考)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22 C.π6 D.4-π4[思路点拨] 根据题意,作出满足条件的几何图形进行求解.[解析] 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.[答案] D[类题通法](1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性.(3)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. [冲关集训]1.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.13 B.23 C.34D.14解析:选B 设点P 到点O 的距离小于1的概率为P1,由几何概型,则P1=V 半球V 圆柱=2π3×13π×12×2=13,故点P 到点O 的距离大于1的概率P =1-13=232.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20(1)若所抽取的205的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=0.35-b-c=0.1.所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取2件,所有可能的结果为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}.设事件A表示“从日用品x1,x2,x3,y1,y2中任取2件,其等级系数相等”,则A包含的基本事件为:{x1,x2},{x1,x3},{x2,x3},{y1,y2},共4个.又因为基本事件的总数为10,故所求的概率P(A)=410=0.4.[考情分析该部分是高考考查概率统计的重点,题型有选择题、填空题,有时也出现在解答题中与其他知识交汇命题.在概率计算中一般是根据随机事件的含义,把随机事件分成几个互斥事件的和,每个小的事件再分为几个相互独立事件的乘积,然后根据相应的概率公式进行计算.[例2] (2012·大纲全国卷)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)求开始第5次发球时,甲得分领先的概率.[思路点拨] (1)甲乙的比分为1∶2,第前三次发球甲胜一次负两次,包含三个互斥事件;(2)第五次发球时甲领先,包含两种情况,即4∶0和3∶1.[解] 记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球时,甲、乙的比分为1比2;C表示事件:开始第5次发球时,甲得分领先.(1)B=A0·A+A1·A,P(A)=0.4,P(A0)=0.42=0.16,P(A1)=2×0.6×0.4=0.48,P(B)=P(A0·A+A1·A)=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A )=0.16×0.4+0.48×(1-0.4) =0.352.(2)P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C =A1·B2+A2·B1+A2·B2, P(C)=P(A1·B2+A2·B1+A2·B2) =P(A1·B2)+P(A2·B1)+P(A2·B2) =P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2) =0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.[类题通法](1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解. (2)一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”,“至多”等问题往往用这种方法求解.(3)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(4)牢记公式Pn(k)=Ck n pk(1-p)n -k ,k =0,1,2,…,n ,并深刻理解其含义. [冲关集训]3.设甲、乙两人每次射击命中目标的概率分别为34和45甲、乙……的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是________.解析:分两种情况来考虑:(1)甲在第二次射击时命中,结束射击;(2)甲在第二次射击时未命中,乙命中结束射击. 所以概率为14×15×⎝⎛⎫34+14×45=19400.答案:194004.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p.(1)若在任意时刻至少有一个系统不发生故障的概率为4950p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列. 解:(1)设“至少有一个系统不发生故障”为事件C ,那么P(C)=1-P(C )=1-110·p =4950,解得p =15.(2)由题意:P(ξ=0)=C03⎝⎛⎭⎫1103=11 000, P(ξ=1)=C13⎝⎛⎭1102×⎝⎛⎭1-110=271 000,P(ξ=2)=C23×110×⎝⎛⎭⎫1-1102=2431 000, P(ξ=3)=C33⎝⎛⎭⎫1-1103=7291 000.所以,随机变量ξ的分布列为[考情分析]在高考中,离散型随机变量及其分布列一般是在解答题中和离散型随机变量的数学期望、方差等相结合进行综合考查,以考生比较熟悉的实际应用问题为背景,综合排列组合、概率公式、互斥事件及独立事件等基础知识,考查对随机变量的识别及概率计算的能力,解答时要注意分类与整合、转化与化归思想的运用.[例3] (2012·湖南高考)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)[思路点拨] (1)先求x ,y 的值,再写出分布列,即可求出数学期望;(2)两位顾客结算的时间有三种情况,由独立事件的概率计算公式和(1)中的概率分布求解即可. [解] (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得 P(X =1)=15100=320,P(X =1.5)=30100=310, P(X =2)=25100=14,P(X =2.5)=20100=15, P(X =3)=10100=110. X 的分布列为X 的数学期望为。

2021-2022年高三数学二轮复习高考大题分层练3三角数列概率统计立体几何(C组)理新人教版

2021-2022年高三数学二轮复习高考大题分层练3三角数列概率统计立体几何(C组)理新人教版

2021年高三数学二轮复习高考大题分层练3三角数列概率统计立体几何(C组)理新人教版1.已知向量m=,n=.记f(x)=m·n,(1)求f(x)的最小正周期.(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,若f(A)=,试判断△ABC的形状.【解析】f(x)=sincos+cos2=sin+cos+=sin+.(1)T==4π.(2)根据正弦定理知:(2a-c)cosB=bcosC⇒(2sinA-sinC)cosB=sinBcosC⇒2sinAcosB=sin(B+C)=sinA⇒cosB=⇒B=,因为f(A)=,所以sin+=⇒+=或⇒A=或π.而0<A<,所以A=,因此△ABC为等边三角形.2.已知数列{a n}的前n项和为S n,且满足2S n=n-n2.(n∈N*)(1)求数列{a n}的通项公式.(2)设b n=(n∈N*),求数列{b n}的前2n项和T2n.【解析】(1)当n≥2时,2a n=2S n-2S n-1=n-n2-=2-2n.a n=1-n(n≥2),当n=1时,由2S1=1-12得a1=0,显然当n=1时上式也适合,所以a n=1-n.(2)因为==-,所以T2n=(b1+b3+…+b2n-1)+(b2+b4+…+b2n)=(20+2-2+…+22-2n)+[++…+=+-=-·-.3.某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到如图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意.(1)根据以上资料完成下面的2×2列联表,若据此数据算得K2的观测值k≈3.7781,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?不满意满意总计男47女总计附:(2)以此“满意”的频率作为概率,求在3人中恰有2人满意的概率.(3)从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为ξ,求ξ的分布列与数学期望.【解析】(1)因为K2的观测值k≈3.7781<3.841,所以在犯错的概率不超过5%的前提下,不能认为“满意与否”与“性别”有关.(2)由频率估计“满意”的概率为=0.3,所以在3人中恰有2人满意的概率为(0.3)2×(1-0.3)=0.189;(3)ξ的可能取值为0,1,2,3,P(ξ=0)=·=,P(ξ=1)=·+·=,P(ξ=3)=·=,P(ξ=2)=1---=,ξ的分布列为ξ0123P数学期望E(ξ)=1×+2×+3×=.4.正方体ABCD -A1B1C1D1中,沿平面A1ACC1将正方体分成两部分,其中一部分如图所示,过直线A1C的平面A1CM与线段BB1交于点M.(1)当M与B1重合时,求证:MC⊥AC1.(2)当平面A1CM⊥平面A1ACC1时,求平面A1CM与平面ABC所成锐二面角的余弦值.【解析】(1)连接C1B,AC1,在正方形B1BCC1中,BC1⊥B1C,在正方体ABCD -A1B1C1D1中,AB⊥平面B1BCC1,B1C⊂平面B1BCC1,所以AB⊥B1C,又因为AB∩BC1=B,所以B1C⊥平面ABC1,所以B1C⊥AC1,即MC⊥AC1.(2)在正方体ABCD -A1B1C1D1中,CB,AB,BB1两两垂直,分别以CB,AB,BB1为x,y,z轴建立空间直角坐标系,设AB=a,所以C(-a,0,0),A1(0,-a,a),设M(0,0,z),所以=(a,-a,a),=(a,0,z),设平面A1MC的法向量为n1=(x1,y1,z1),则即令z1=a,得n1=(-z,a-z,a),平面A1ACC1的一个法向量为n2=(1,1,0),平面ABC的一个法向量为n3=(0,0,1),因为平面A1CM⊥平面A1ACC1,所以n1·n2=0,得z=a,所以n1=,设平面A1CM与平面ABC所成锐二面角为θ,则cosθ===.。

高考数学-立体几何(含22年真题讲解)

高考数学-立体几何(含22年真题讲解)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=bB 1D ,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD . 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1,因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF ⃑⃑⃑⃑⃑ =(−1,1,0),EB 1⃑⃑⃑⃑⃑⃑⃑ =(0,1,2),DB ⃑⃑⃑⃑⃑⃑ =(2,2,0),DA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),AC ⃑⃑⃑⃑⃑ =(−2,2,0),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−2,2,0),设平面B 1EF 的法向量为m ⃑⃑ =(x 1,y 1,z 1), 则有{m ⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =−x 1+y 1=0m ⃑⃑ ⋅EB 1⃑⃑⃑⃑⃑⃑⃑ =y 1+2z 1=0 ,可取m ⃑⃑ =(2,2,−1),同理可得平面A 1BD 的法向量为n 1⃑⃑⃑⃑ =(1,−1,−1), 平面A 1AC 的法向量为n 2⃑⃑⃑⃑ =(1,1,0), 平面A 1C 1D 的法向量为n 3⃑⃑⃑⃑ =(1,1,−1), 则m ⃑⃑ ⋅n 1⃑⃑⃑⃑ =2−2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m ⃑⃑ 与n 2⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误; 因为m ⃑⃑ 与n 3⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误, 故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则VO−ABCD =13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3 B .1.2×109m 3 C .1.4×109m 3 D .1.6×109m 3【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V . 棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2, ∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径R =3, 设正四棱锥的底面边长为2a ,高为ℎ, 则l 2=2a 2+ℎ2,32=2a 2+(3−ℎ)2, 所以6ℎ=l 2,2a 2=l 2−ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2−l 436)×l 26=19(l 4−l 636), 所以V ′=19(4l 3−l 56)=19l 3(24−l 26),当3≤l ≤2√6时,V ′>0,当2√6<l ≤3√3时,V ′<0, 所以当l =2√6时,正四棱锥的体积V 取最大值,最大值为643, 又l =3时,V =274,l =3√3时,V =814,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是[274,643]. 故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=3√3sin60∘,2r 2=4√3sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=√R 2−9,d 2=√R 2−16,故|d 1−d 2|=1或d 1+d 2=1,即|√R 2−9−√R 2−16|=1或√R 2−9+√R 2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.9.【2022年北京】已知正三棱锥P−ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×√32=2√3,故PO=√36−12=2√6.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×√34×363×6=√3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.223πD.163π【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm,圆台的下底面半径为2cm,所以该几何体的体积V=12×43π×13+π×12×2+13×2×(π×22+π×12+√π×22×π×12)=22π3cm3.故选:C.11.【2022年浙江】如图,已知正三棱柱ABC−A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F−BC−A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β【答案】A【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F作FP⊥AC于P,过P作PM⊥BC于M,连接PE,则α=∠EFP,β=∠FEP,γ=FMP,tanα=PEFP =PEAB≤1,tanβ=FPPE=ABPE≥1,tanγ=FPPM≥FPPE=tanβ,所以α≤β≤γ,故选:A.12.【2022年新高考1卷】(多选)已知正方体ABCD−A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1, 因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C , 又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确; 连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B , 因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D , 所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =√22,BC 1=√2,sin∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确. 故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)6403√3.【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.15.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=√32,BD=√DE2+BE2=√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃑⃑⃑⃑⃑ =(−1,0,√3),BP ⃑⃑⃑⃑⃑ =(0,−√3,√3),DP ⃑⃑⃑⃑⃑ =(0,0,√3), 设平面PAB 的法向量n⃑ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃑ =(√3,1,1), 则cos〈n ⃑ ,DP ⃑⃑⃑⃑⃑ 〉=n ⃑ ⋅DP ⃑⃑⃑⃑⃑⃑|n ⃑ ||DP ⃑⃑⃑⃑⃑⃑ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.16.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CDBD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB ≅△CDB ,所以∠FBA =∠FBC , 由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃑⃑⃑⃑⃑ =(−1,0,1),AB ⃑⃑⃑⃑⃑ =(−1,√3,0), 设平面ABD 的一个法向量为n⃑ =(x,y,z ), 则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−x +z =0n ⃑ ⋅AB⃑⃑⃑⃑⃑ =−x +√3y =0,取y =√3,则n ⃑ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃑⃑⃑⃑⃑ =(1,√34,34), 所以cos⟨n ⃑ ,CF ⃑⃑⃑⃑⃑ ⟩=n ⃑ ⋅CF⃑⃑⃑⃑⃑|n ⃑ ||CF⃑⃑⃑⃑⃑ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃑ ,CF⃑⃑⃑⃑⃑ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.18.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值. 【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃑⃑⃑⃑⃑⃑ =(1,1,1),BA ⃑⃑⃑⃑⃑ =(0,2,0),BC ⃑⃑⃑⃑⃑ =(2,0,0), 设平面ABD 的一个法向量m ⃑⃑ =(x,y,z),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =x +y +z =0m ⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =2y =0,可取m⃑⃑ =(1,0,−1),设平面BDC 的一个法向量n ⃑ =(a,b,c),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =a +b +c =0m ⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =2a =0, 可取n⃑ =(0,1,−1), 则cos〈m ⃑⃑ ,n ⃑ 〉=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ |⋅|n ⃑ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.19.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE //PD ,即可得证; (2)过点A 作Az //OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃑⃑⃑⃑⃑ =(3√3,1,32),AB ⃑⃑⃑⃑⃑ =(4√3,0,0),AC ⃑⃑⃑⃑⃑ =(0,12,0), 设平面AEB 的法向量为n ⃑ =(x,y,z ),则{n ⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3x +y +32z =0n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃑ =(0,−3,2);设平面AEC 的法向量为m⃑⃑ =(a,b,c ),则{m ⃑⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3a +b +32c =0m ⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃑⃑ =(√3,0,−6);所以cos⟨n⃑ ,m⃑⃑ ⟩=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |=√13×√39=−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC−A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB的中点为K,连接MK,NK,可证平面MKN//平面CBB1C1,从而可证MN//平面CB B1C1.(2)选①②均可证明BB1⊥平面ABC,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC −A 1B 1C 1可得四边形ABB 1A 1为平行四边形, 而B 1M =MA 1,BK =KA ,则MK //BB 1,而MK ⊄平面CBB 1C 1,BB 1⊂平面CBB 1C 1,故MK //平面CBB 1C 1, 而CN =NA,BK =KA ,则NK //BC ,同理可得NK //平面CBB 1C 1, 而NK ∩MK =K,NK,MK ⊂平面MKN ,故平面MKN //平面CBB 1C 1,而MN ⊂平面MKN ,故MN //平面CBB 1C 1, (2)因为侧面CBB 1C 1为正方形,故CB ⊥BB 1, 而CB ⊂平面CBB 1C 1,平面CBB 1C 1⊥平面ABB 1A 1, 平面CBB 1C 1∩平面ABB 1A 1=BB 1,故CB ⊥平面ABB 1A 1, 因为NK //BC ,故NK ⊥平面ABB 1A 1, 因为AB ⊂平面ABB 1A 1,故NK ⊥AB ,若选①,则AB ⊥MN ,而NK ⊥AB ,NK ∩MN =N , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB ⊥MK ,所以AB ⊥BB 1,而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA ⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z), 则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB ⃑⃑⃑⃑⃑ 〉|=42×3=23. 若选②,因为NK //BC ,故NK ⊥平面ABB 1A 1,而KM ⊂平面MKN , 故NK ⊥KM ,而B 1M =BK =1,NK =1,故B 1M =NK , 而B 1B =MK =2,MB =MN ,故△BB 1M ≅△MKN , 所以∠BB 1M =∠MKN =90°,故A 1B 1⊥BB 1, 而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z),则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n ⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB⃑⃑⃑⃑⃑ 〉|=42×3=23.21.【2022年浙江】如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,二面角F −DC −B 的平面角为60°.设M ,N 分别为AE,BC 的中点.(1)证明:FN ⊥AD ;(2)求直线BM 与平面ADE 所成角的正弦值. 【答案】(1)证明见解析; (2)5√714.【解析】 【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC =BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,求出平面ADE 的一个法向量,以及BM ⃑⃑⃑⃑⃑⃑ ,即可利用线面角的向量公式解出. (1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB//DC,CD//EF,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =2√3, ∵DC ⊥CF,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F −DC −B 的平面角,则∠BCF =60∘, ∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD . (2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,设A(5,√3,0),B(0,√3,0),D(3,−√3,0),E(1,0,3),则M (3,√32,32),∴BM ⃑⃑⃑⃑⃑⃑ =(3,−√32,32),AD ⃑⃑⃑⃑⃑ =(−2,−2√3,0),DE⃑⃑⃑⃑⃑ =(−2,√3,3) 设平面ADE 的法向量为n⃑ =(x,y,z) 由{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0n ⃑ ⋅DE ⃑⃑⃑⃑⃑ =0 ,得{−2x −2√3y =0−2x +√3y +3z =0 ,取n ⃑ =(√3,−1,√3),设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n⃑ ,BM ⃑⃑⃑⃑⃑⃑ 〉|=|n⃑ ⋅BM ⃑⃑⃑⃑⃑⃑⃑ ||n⃑ |⋅BM ⃑⃑⃑⃑⃑⃑⃑ |=|3√3+√32+3√32|√3+1+3⋅√9+34+94=√3√7⋅2√3=5√714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】 【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解. 【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cosECF ∠==,即直线1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小. 【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC = 由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒ D .四面体PBCD 【答案】C 【解析】 【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可 【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确 对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCDV S PM ==⨯=,故D 正确 故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A .2BCD .【答案】C 【解析】 【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答. 【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r =因此,球心O 到平面α的距离1d r ===,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r =,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,依题意,145CPO ∠=,111CO PO ==,PC =AB ==所以212AB S PC =⋅=. 故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π 其中所有真命题的序号是( ) A .①③ B .①④C .②④D .①③④ 【答案】D 【解析】 【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.令AC BD O =,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠=,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF ∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO sin OF FAC AF ∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆, 因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确, 所以所有真命题的序号是①③④. 故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥ D .11O C ⊥平面11BDD B【答案】B 【解析】 【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断. 【详解】连接1A C 、1AC ,交于点O ,连接11A C 、11B D ,交于点P . 连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形. 11//O C OC ∴.OC ⊂平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P =,11B D ∴⊥平面111O AC , 1111B D O C ∴⊥,又11//B D BD , 11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误. 故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( ) A .若,m m αβ⊥⊥,则αβ∥ B .若,αγβγ⊥⊥,则αβ∥ C .若,m n m α⊥⊥,则n α∥ D .若,m n αα∥∥,则m n ∥ 【答案】A 【解析】 【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行; 对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面. 【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行; 选项B 错误,平面α和β也可以相交; 选项C 错误,直线n 可能在平面α内; 选项D 错误,直线m 和n 还可能相交或者异面. 故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE ,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】 【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在∠GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解. 【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE =,所以三棱锥E ACF -的体积13ACF V S EG ==△2111122sin 4(22))323223AC CF ACF EG x x x ⨯∠=⨯⨯-=-,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF中,由余弦定理,得cos GF GC CF ACF =∠=。

专题训练:数列综合运用大题(解析版)

专题训练:数列综合运用大题1.(2022·江苏·盐城市第一中学高二阶段练习)有下列3个条件:①382a a +=-;②728S =-;③2a ,4a ,5a 成等比数列.从中任选1个,补充到下面的问题中并解答问题:设数列{}n a 的前n 项和为n S ,已知()*12N n n n S S a n +=++∈,.(1)求数列{}n a 的通项公式;(2)n S 的最小值并指明相应的n 的值.【答案】(1)212n a n =-;(2)n =5或者6时,n S 取到最小值30-.【解析】(1)因为12n n n S S a +=++,所以12n n a a +-=,即{}n a 是公差为2的等差数列,选择条件①:因为382a a +=-,所以1292a d +=-,则12922a +⨯=-,解得110a =-,所以212n a n =-;选择条件②:因为728S =-,所以1767282a d ⨯+=-,解得110a =-,所以212n a n =-;选择条件③:因为2a ,4a ,5a 成等比数列,所以()2425a a a =,即2111(3)()(4)a d a d a d +=++,解得110a =-,所以212n a n =-;(2)由(1)可知110a =-,2d =,所以22(1)1112110211224n n n S n n n n -⎛⎫=-+⨯=-=-- ⎪⎝⎭,因为*N n ∈,所以当5n =或者6时,n S 取到最小值,即min )0(3n S =-2.(2022·江苏·星海实验中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记1(1)(1)n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.【答案】(1)2n n a =;(2)1,3⎛⎫+∞ ⎪⎝⎭【解析】(1)选择①,由22n n S a =-①知,当2n ≥时,1122n n S a --=-②,由①-②,得122n n n a a a -=-,即()122n n a a n -=≥,当1n =时,11122a S a ==-,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故1222n n n a -=⨯=.选择②,由122222n na a a n ++⋯⋯+=①知,当2n ≥时,112211222n n a a an --++⋯⋯+=-②由①-②,得()()1122n nan n n =--=≥,在122222n na a a n ++⋯⋯+=中,令1n =,则112a=,满足上式,所以12n n a=,即2n n a =.选择③,由221232n nna a a a +⋯⋯=①知,当2n ≥时,()()22113122122n nn n n a a a a -+---⋯⋯==2②由①②,得()2222222n n n n n n a n +--==≥,在221232n n n a a a a +⋯⋯=中,令1n =,则12a =,满足上式,所以2n n a =.(2)由(1)知,2n n a =,所以()()111211(1)(1)22111122n n n n n n n n n a b a a +++===-------,所以数列{}n b 的前n 项和为111111113371711151122112n n n n T ++⎛⎫⎛⎫⎛⎫=-+-⎛⎫-=- ⎪⎝+-++ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎭,对于任意的*n ∈N ,1n k T n>-,所以111121n k n+->--,即121n n k +>-.设1(),21n nf n +=-所以()()()()22111111211(1)0222121n n n n n n n nf n f n +++++-⋅-++-=----=<-恒成立,即()(1)f n f n +<,所以()f n 单调递减,所以()()11max 111213f n f +===-,于是有13k >,故实数k 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭.3.(2022·福建·莆田第二十五中学高二阶段练习)从条件①()21n n S n a =+,②22,0n n n n a a S a +=>()2n a n =≥,中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为1,1n S a =,___________.(1)求{}n a 的通项公式;(2)设1112n n n a b +++=,记数列{}n b 的前n 项和为n T ,是否存在正整数n 使得83nT >.【答案】(1)答案见解析;(2)答案见解析【解析】(1)若选择①,因为()*21,N n n S n a n =+∈,所以112,2n n S na n --=≥,两式相减得()121n n n a n a na -=+-,整理得()11,2n n n a na n --=≥,即1,21n n a a n n n -=≥-,所以n a n ⎧⎫⎨⎬⎩⎭为常数列,而111n a a n ==,所以n a n =;若选择②,因为()2*2N n n n a a S n +=∈,所以()211122n n n a a S n ---+=≥,两式相减()221112222n n n n n n n a a a a S S a n ----+-=-=≥,得()()()1112n n n n n n a a a a a a n ----+=+≥,因为()1100,1,2n n n n n a a a a a n -->∴>∴+-=≥,所以{}n a 是等差数列,所以()111n a n n =+-⨯=;()2n a n =≥1n n S S --,=,由题意知0n S >1=,所以为等差数列,11a ==()21,,212n n n n n S n a S S n n -==∴=-=-≥,又1n =时,11a =也满足上式,所以21n a n =-;(2)若选择①或②,1111222n n n n n b +++++==,所以()234111113452,2222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()345211111345222222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得()2341211111132222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2121113148221142212n n n n n +-+⎛⎫- ⎪+⎛⎫⎝⎭=+-+⨯=- ⎪⎝⎭-,则1422n n n T ++=-,故要使得83n T >,即148223n n ++->,整理得,14223n n ++<-,当N*n ∈时,1402n n ++>,所以不存在*N n ∈,使得83n T >.若选择③,依题意,111122n n nn a n b ++++==,所以()23111123412222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-+⨯=+-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=-,则332n n n T +=-,令38323n n n T +=->,则3123n n +<,即2390n n -->,令239n n c n =--,则1100c =-<,当2n ≥时,()()112319239230n n nn n c c n n ++-=-+----=->,又450,0c c <>,故234560c c c c c <<<<<,综上,使得83n T >成立的最小正整数n 的值为5.4.(2022·河北·邢台市第二中学高二阶段练习)①{}2nn a 为等差数列,且358a =;②21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①②两个条件中任选一个,补充在下面的问题中,并解答.在数列{}n a 中,112a =,________.(1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由.【答案】(1)212n nn a -=;(2)存在,3p =,4q =,2r =﹒【解析】(1)若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,∴()1222121nn a a n n =+-=-,即212n n n a -=.若选②:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a ⨯-==⨯-,∴11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭,即212n n n a -=;(2)21321222n n n S -=+++,231113212222n n n S +-=+++,则两式相减得,23111111212222222n n n n S +-⎛⎫=+⨯+++- ⎪⎝⎭12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,∴2332n n n S +=-.∵()22221233343422n n n n n n S a +++-+=-=-⨯=-,∴存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.5.(2022·吉林·长春市第二中学高二阶段练习)已知数列{}n a ,其中前n 项和为n S ,且满足15a =,*123(N )n n a a n +=+∈.(1)证明:数列{3}n a +为等比数列;(2)求数列{}n a 的通项公式及其前n 项和n S .【答案】(1)证明见解析;(2)223n n a +=-,*n ∈N ,n S 3238n n +=--.【解析】(1)证明:由题意,123n n a a +=+两边同时加3,可得132332(3)n n n a a a ++=++=+,13538a +=+=,∴数列{3}n a +是以8为首项,2为公比的等比数列.(2)由(1)可得123822n n n a -++=⋅=,则223n n a +=-,*n ∈N ,故12n n S a a a =++⋅⋅⋅+342(23)(23)(23)n +=-+-+⋅⋅⋅+-342(222)3n n+=++⋅⋅⋅+-⋅3322312n n +-=--3238n n +=--.6.(2021·广西·钟山中学高二阶段练习)已知数列{}n a 为等比数列,22a =,516a =,2log n n b a =,n n n c a b =+.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n c 的前n 项和n S .【答案】(1)12n n a -=,1n b n =-;(2)121(1)2nn S n n =-+-【解析】(1)设数列{}n a 的公比为q ,则3521682a q a ===,所以2q =,所以2212222n n n n a a q ---=⋅=⋅=,所以22log log 2n n b a ==11n n -=-;(2)121n n n n c a b n -=+=+-,所以0121012120212221(2222)(0121)n n n S n n --=++++++⋯++-=+++⋯+++++⋯+-(12)(01)121(1)1222-+-=+=-+--n n n n n n .7.(2022·福建三明·高二阶段练习)已知数列{}n a 的前n 项和为n S ,满足()321n n S a =-,{}n b 是以1a 为首项且公差不为0的等差数列,237,,b b b 成等比数列.(1)求数列{}{},n n a b 的通项公式;(2)令n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)()2nn a =-,35n b n =-;(2)()1834(2)3n n n T +---=.【解析】(1)由()321n n S a =-,取1n =可得()11321S a =-,又11S a =,所以()11321a a =-,则12a =-.当2n ≥时,由条件可得()()11321321n n n n S a S a --⎧=-⎪⎨=-⎪⎩,两式相减可得,12n n a a -=-,又12a =-,所以12nn a a -=-,所以数列{}n a 是首项为2-,公比为2-的等比数列,故()2nn a =-,因为112b a ==-,设等差数列{}n b 的公差为d ,则2372,22,26b d b d b d =-+=-+=-+,由237,,b b b 成等比数列,所以()()2(22)226d d d -+=-+-+,又0d ≠,所以解得3d =,故35n b n =-,(2)()35(2)nn n n c a b n ==--,()()1232(2)1(2)4(2)35(2)n n T n =-⨯-+⨯-+⨯-++-⨯-,()()()234122(2)1(2)4(2)38(2)35(2)n n n T n n +-=-⨯-+⨯-+⨯-++-⨯-+-⨯-相减得()2341343(2)(2)(2)(2)35(2)n n n T n +⎡⎤=+-+-+-++---⨯-⎣⎦,所以()()()114234335(2)12n n n T n ++--=+--⨯---,所以()13834(2)n n T n +=---所以()1834(2)3n n n T +---=.8.(2022·陕西·府谷县府谷中学高二阶段练习(文))已知数列{}n a 是公差不为零的等差数列,11a =且2514,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}21nan a ++的前n 项和n S .【答案】(1)21n a n =-;(2)222433n n S n n =⋅++-【解析】(1)设等差数列的公差为d ,因为2514,,a a a 成等比数列,所以()()()2111413a d a d a d +=++,解得2d =或0d=(舍去).故()=1+2121n a n n -=-.(2)由(1)可得212122nn n aa n -++=+,故()22214222414233n n n S n n n n +⨯-=⨯+=⋅++--9.(2022·陕西·长安一中高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,10a ≠,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1lg n a ⎧⎫⎨⎬⎩⎭的前项n 和最大?【答案】(1)2nn a λ=;(2)6.【解析】(1)取1n =,得211122a S a λ==,()1120a a λ-=,10a ≠,则12a λ=,当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,上述两个式子相减得:12n n a a -=,所以数列{}n a 是等比数列,当10a ≠,则1122n n n a a λ-=⋅=.(2)当10a >,且100λ=时,令1lgn n b a =,所以,1002lg 2lg 2n n b n =-=所以,{}n b 单调递减的等差数列(公差为lg 2-)则12366100100lglg lg10264b b b b ⋅>>>⋅⋅⋅>==>=当7n ≥时,77100100lg lglg102128n b b ≤==<=故数列1lg n a ⎧⎫⎨⎬⎩⎭的前6项的和最大.10.(2022·广东·饶平县第二中学高二阶段练习)已知n S 为等差数列{}n a 的前n 项和,若355a a +=,47S =.(1)求n a ;(2)记2221n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【答案】(1)n a =12n +;(2)469nn +【解析】(1)设等差数列{}n a 的公差为d ,则1126543472a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11,1,2a d =⎧⎪⎨=⎪⎩,故111(1)22n n a n +=+-=;(2)因为12n n a +=,所以22214112(21)(23)2123n n n b a a n n n n +⎛⎫===- ⎪⋅++++⎝⎭,故12111111112+++235572+12+4693323n n T b b b n n n n n ⎛⎫⎛⎫=+++=---=-= ⎪ ⎪+⎝⎭⎝⎭+.11.(2022·广东·南海中学高二阶段练习)已知数列{}n a 中,12325a =,112n n a a-=-(2n ≥,*n ∈N ),数列{}n b 满足()*11n nb n N a =∈-.(1)求数列{}n b 的通项公式;(2)求12320b b b b +++⋅⋅⋅+;(3)求数列{}n a 中的最大项和最小项,并说明理由.【答案】(1)272=-n b n ;(2)109;(3)()max 3=n a ,()min 1=-n a ,理由见解析【解析】(1)证明:111111111111121n n n n n n b b a a a a -----=-=-=-----,又1112512b a ==--,∴数列{}n b 是252-为首项,1为公差的等差数列.∴()127112n b b n n =+-⨯=-.(2)由2702n b n =-≥,得272n ≥,即13n ≤时,0n b <;14n ≥时,0n b >,∴()123201213141520b b b b b b b b b b +++⋅⋅⋅+=-++⋅⋅⋅++++⋅⋅⋅+251312277613171411092222⎡⎤⨯⨯⎛⎫⎛⎫=-⨯-+⨯+⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(3)由12712n nb n a ==--,得()*21N 227n a n n =+∈-又函数()21227f x x =+-在27,2⎛⎫-∞ ⎪⎝⎭和27,2⎛⎫+∞ ⎪⎝⎭上均是单调递减.由函数()21227f x x =+-的图象,可得:()14max 3n a a ==,()13min 1n a a ==-.12.(2022·山西省浑源中学高二阶段练习)表示n S 等差数列{}n a 的前n 项的和,且49S S =,112a =-.(1)求数列{}n a 的通项n a 及n S ;(2)求和12n nT a a a =+++【答案】(1)214n a n =-,213n S n n =-;(2)2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩【解析】(1)设等差数列{}n a 的公差为d ,由49S S =可得1143984922a d a d ⨯⨯+=+,因为112a =-,解得2d =,所以,()()111221214n a a n d n n =+-=-+-=-,()()12122141322n n n a a n n S n n +-+-===-.(2)142,17214214,8n n n a n n n -≤≤⎧=-=⎨-≥⎩,当17n ≤≤且N n *∈时,()212142132n n n T n n +-==-;当8n ≥且N n *∈时,()()()()2722147426713842n n n T T n n n n +--=+=+--=-+.综上所述,2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩.13.(2021·江苏省灌南高级中学高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,()*4224, 21,N n n S S a a n ==+∈.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()()*123 21 N n b b n b n n +++-=∈,记数列14(1)n n n n b a +⎧⎫⋅-⎨⎬⎩⎭的前n 项和为n T ,求n T .【答案】(1)21n a n =-;(2)**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.【解析】(1)设等差数列{}n a 的公差为d ,由424S S =,可得()114642a d a d +=+,即12a d =;又因为221n n a a =+,取1n =,所以2121a a =+,即11a d +=;故可得11,2a d ==.故{}n a 的通项公式为21n a n =-.(2)由()12321n b b n b n +++-=,当2n ≥时,()1213231n b b n b n -+++-=-,上述两式作差可得()1221n b n n =≥-,又11b =满足上式,综上()*1N 21n b n n =∈-;所以14411(1)(1)(1)()(21)(21)2121n n nn n n b n a n n n n +⋅-=-=-+-+-+.当n 为偶数时11111(1)()(33557n T =-+++-++…1111((23212121n n n n -+++---+.∴1212121n nT n n =-+=-++.当n 为奇数时,1111111(1)(()()335572121n T n n =-+++-++-+-+∴12212121n n T n n +=--=-++.故**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.14.(2022·江苏省苏州实验中学高二阶段练习)已知数列{}n a 是首项为4的单调递增数列,满足()221111682n n n n n na a a a a a +++++=++(1)求证:14n n a a ++-=(2)设数列{}n b 满足πsin2n n n b a =,数列{}n b 前n 㑔和n S ,求20242024S 的值.【答案】(1)证明见解析;(2)4048-【解析】(1)证明:由题意得,()22111121684n n n n n n n n a a a a a a a a +++++++++=,即()()21118164n n n n n n a a a a a a ++++-++=,即()21144n n n n a a a a +++=-,∵数列{}n a 是首项为4的单调递增数列,4n a ≥,∴14n n a a ++-=(2)由(1)得14n n a a +-=,即24=,2-=,所以数列是首项为2,公差为22n =,则2ππsinsin 224n n n n b a n ==,()22222220244135720212023S =⨯-+-++-()()()()()()4131357572021202320212023⎡⎤=⨯-++-+++-+⎣⎦()84124044=-⨯+++()4404450682+⨯=-⨯44048506=-⨯⨯∴202444048506404820242024S =-=-⨯⨯15.(2022·陕西·白水县白水中学高二阶段练习)在数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=- ⎪⎝⎭.(1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)设21nn S b n =+,求{}n b 的前n 项和n T .【答案】(1)证明见解析;(2)21nn +【解析】(1)证明:∵当2n ≥时,1n n n a S S -=-,212n n n S a S ⎛⎫=- ⎪⎝⎭()22111111222n n n n n n n n n S S S S S S S S S ---⎛⎫∴=--=--+ ⎪⎝⎭,即:112n n n nS S S S ---=111112112n n n n n n n n n n S S S S S S S S S S ------∴-===,又11111S a ==∴数列1n S ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列(2)由(1)知:()112121nn n S =+-=-121n S n ∴=-∴()()1111212122121n b n n n n ⎛⎫==⨯- ⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫∴=⨯-++⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭16.(2022·山东潍坊·高二阶段练习)设数列{}n a 的前n 项和为n S ,且满足323n n a S -=.(1)求n a ;(2)设32log 1,21,,2,,n n n a n k k N b a n k k N **⎧+=-∈=⎨=∈⎩求数列{}n b 的前n 项和n T .【答案】(1)3n n a =;(2)()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩【解析】(1)当1n =时,13a =,当2n ≥时,因为323n n a S -=,所以11323n n a S ---=,得13n n a a -=,所以数列{}n a 为首项为3,公比为3的等比数列,得3n n a =;(2)21,21,3,2,n n n n k k N b n k k N**⎧+=-∈=⎨=∈⎩,当n 为偶数时,2463373113(21)3nn T n =+++++++-+()246[3711(21)]3333n n =++++-+++++()2919(321)9312(1)21928nn n n n n ⎛⎫- ⎪+--⎝⎭=+=++-,当n 为奇数时,24613373113(21)3(21)n n T n n -=+++++++-+++()2461[3711(21)]3333n n -=++++++++++()1211919(321)931(2)(1)221928n n n n n n --⎛⎫+- ⎪++-++⎝⎭=+=+-,所以()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩17.(2022·湖北·石首市第一中学高二阶段练习)已知数列{}n a 满足312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----.(1)证明:数列1n n a a ⎧-⎫⎨⎬⎩⎭为等比数列.(2)已知()11n n n b a a +=-,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)11121n n S +=--【解析】(1)证明:当1n =时,111211a a a =--,则12a =.因为312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----,①所以311212311211111n n n a a a a a a a a a ++++++⋅⋅⋅+-----,②由②-①得11122111n n n n a a a a +++=----,化简可得112n n n n a a a a ++-=,()()11111111121122n n n n n n n n n n n n n n n na a a a a a a aa a a a a a a a ++++++++----===----,所以数列1n n a a ⎧-⎫⎨⎬⎩⎭是一个公比为12的等比数列.(2)由(1)可知11111222n n n na a --=-⨯=-,化简可得221n n n a =-.()()()111211121212121n n n n n n n n b a a +++=-==-----.所以22334111111111111212121212121212121n n n n S ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪---------⎝⎭⎝⎭⎝⎭⎝⎭.18.(2022·湖北省罗田县第一中学高二阶段练习)设等差数列{}n a 的前n 项和为n S ,且634S S =,221n n a a =+,(1)求数列{}n a 的通项公式:(2)若数列{}n b 满足121221n nnb b ba aa +++=-,N n +∈,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =-;(2)()3232nn T n =+-⨯【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由634S S =,221n n a a =+,则()()()111161543321211a d a d a n d a n d ⎧+=+⎪⎨⎡⎤+-=+-+⎪⎣⎦⎩,解得112a d =⎧⎨=⎩,所以21n a n =-;(2)因为121221n nnb b b a a a +++=-,当1n =时111211ba =-=,即11b =,当2n ≥时111212121n n n b b ba a a ---+++=-,所以()1121212n n n n nb a --=---=,即()1212n n b n -=-⋅,当1n =时()1212n n b n -=-⋅也成立,所以()1212n n b n -=-⋅,所以()0121123252212n n T n -=⨯+⨯+⨯++-⨯,()1232135222122n n T n =⨯+⨯+⨯++-⨯,所以()121022*********n nn T n --=⨯+⨯+⨯++⨯--⨯()()()1121121332222122n n n n T n n -⨯--=+--⨯=-+-⨯-,所以()3232nn T n =+-⨯.19.(2021·河北·邢台一中高二阶段练习)等差数列{}()*n a n N ∈中,123a a a ,,分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的123{}a a a ,,组合,并求数列{}n a 的通项公式.(2)记(1)中您选择的{}n a 的前n 项和为Sn ,判断是否存在正整数k ,使得12k k a a S +,,成等比数列?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)由题意可知,有两种组合满足条件.①12381216a a a ===,,,此时等差数列{}n a 中,18a =,公差d =4,所以数列{}n a 的通项公式为44n a n =+②123246a a a ===,,,此时等差数列{}n a 中,12a =,公差d =2,所以数列{}n a 的通项公式为2n a n =.(2)若选择①,226n S n n =+,则()()222226221420k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()2244821420k k k +=++,整理得2221710k k k k ++=++,即59.k =-此方程无正整数解,故不存在正整数k ,使12k k a a S +,,成等比数列.若选择②,2n S n n =+,则()2222256k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()222256k k k =++,整理得2560k k --=,因为k 为正整数,所以6k =.故存在正整数6k k =(),使得12k k a a S +,,成等比数列.20.(2022·广东·佛山一中高二阶段练习)已知数列{}n a 是公差d 不为0的等差数列,且数列{}nk a 是等比数列,其中13k =,25k =,39k =.(1)求12n k k k +++;(2)记1n n b k n =-+,求数列1122n n n b b ++⎧⎫-⎨⎬⎩⎭的前n 项和n T .【答案】(1)11222n n n k k k +++=-++;(2)122321n n T n +=--+【解析】(1)由已知可得2539a a a =,则()()()2111428a d a d a d +=++,0d ≠,所以,10a =,则()()111n a a n d n d =+-=-,所以,32a d =,54a d =,则数列{}n k a 的公比为532a a =,所以,()13221nn nk n a a d k d -=⋅==-,所以,21n n k =+,所以,()()21122122222212n nn n k k k n n n +-+++=++++=+=+--.(2)122n n n b k n n =-+=-+,则()()()()()()11111122122222222122221222n n n n n n n nn n n n b b n n n n ++++++⎡⎤-++--+--⎣⎦==⎡⎤⎡⎤-++⋅-+-++⋅-+⎣⎦⎣⎦()12222212n n n n +=--+-++,因此,()1223122222221222222223222212n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪-+-+-+-+-+-++⎝⎭⎝⎭⎝⎭122321n n +=--+.21.(2022·湖北·十堰东风高级中学高二阶段练习)数列{}n a 满足:31232n a n a a a +++=+12(1)2n n ++-⋅,*n ∈N .(1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m 的取值范围.【答案】(1)2n n a =,*n ∈N ;(2)2m ≤-或2m ≥【解析】(1)当2n ≥,12323n a a a na ++++L 12(1)2n n +=+-⋅,①1212(1)n a a n a -+++-2(2)2n n =+-⋅,2n ≥,②①-②得22(2)n n n n na n a n =⋅⇒=≥(*)在①中令1n =,得12a =,也满足(*),所以2n n a =,*n ∈N ,(2)由(1)知,()()1121121212121n n n n n n b ++==-----,故12112121n T ⎛⎫=- ⎪--⎝⎭23112121⎛⎫+-+ ⎪--⎝⎭1112121n n +⎛⎫+- ⎪--⎝⎭11121n +=--,于是,23n T m <-⇔2111321n m +-<--因为11121n +--随n 的增大而增大,所以231m -≥,解得2m ≤-或2m ≥所以实数m 的取值范围是2m ≤-或2m ≥.22.(2021·河北保定·高二阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式.(2)令34log 1n n b a =+,()111n n n n t b b ++=-,n T 为数列{}n t 的前n 项和,求2n T .(3)记()()14130n n n n c a l l +=+-⋅≠.是否存在实数λ,使得对任意的*n ∈N ,恒有1n n c c +>若存在,求出λ的取值范围;若不存在,说明理由.【答案】(1)13n n a -=;(2)22328n T n n =--;(3)存在,()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭.【解析】(1)当1n =时,有11231a a =-,解得11a =当2n ≥时,由231n n S a =-,得11231n n S a --=-,两式相减得1233n n n a a a -=-,整理得13n n a a -=,所以{}n a 是首项为1,公比为3的等比数列,故13n n a -=;(2)因为13n n a -=,所以43n b n =-,()()()114341n n t n n +=--+,所以()()()()21559913131787838381n T n n n n =⨯-⨯+⨯-⨯++----+()()()()58138883n =⨯-+⨯-++-⨯-()258383282n n n n +-=-⨯=--;(3)因为()1413n n n n c l +=+-⋅⋅,所以()1111413n n n n c l ++++=--⋅⋅,由10n n c c +->,得()1341430n n n l +⨯--⋅⋅>,即()1114130n n n l +----⋅⋅>,进一步化简得()11413n n l -+⎛⎫-⋅< ⎪⎝⎭.当n 为奇数时,143n λ-⎛⎫< ⎪⎝⎭恒成立,因为()143n f n -⎛⎫= ⎪⎝⎭是增函数,所以0413l ⎛⎫<= ⎪⎝⎭;当n 为偶数时,143n l -⎛⎫-< ⎪⎝⎭恒成立,同理214433l -⎛⎫-<=⎪⎝⎭,所以43λ>-故413λ-<<且0λ≠,即存在实数()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭,使得对任意的*n ∈N ,恒有1n n c c +>.23.(2021·湖南·周南中学高二阶段练习)已知数列{}n a 中,11a =,121n n a S +=+(n *∈N ),n S 为数列{}n a 的前n 项和.(1)求{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n T ;(3)在n a ,1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项m d ,k d ,p d ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【答案】(1)13n n a -=;(2)333244n n nT ⎛⎫=-⨯+ ⎪⎝⎭;(3)不存在,理由见解析.【解析】(1)当2n ≥时,()()1122222n n n n n a a S S a +--=+-+=,所以13n n a a +=2112133a S a =+==;又2112133a S a =+==,所以对*N n ∈,有13n n a a +=,故数列{}n a 是1为首项3为公比的等比数列,通项公式为13n n a -=.(2)由(1)知1n b n =-,112233n n n T a b a b a b a b =++++()012103132313n n -=⨯+⨯+⨯++-⨯…①()23303132313n n T n =⨯+⨯+⨯++-⨯…②①−②得:()212033313n nn T n --=++++--⨯()331313nn n -=--⨯-33322n n ⎛⎫=-+⨯- ⎪⎝⎭,∴333244nn n T ⎛⎫=-⨯+ ⎪⎝⎭.(3)在数列{}n d 不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.理由如下:由已知得1113323111n n n n n n a a d n n n --+--⨯===+++假设在数列{}n d 中存在m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列,则2km p d d d =,即2111232323111k m p k m p ---⎛⎫⨯⨯⨯=⨯ ⎪+++⎝⎭,化简得()()()22224343111k m p m p k -+-⨯⨯=+++,又因为m ,k ,p 成等差数列,所以2m p k +=,故上式可以化简为()()()2111k m p +=++,则k m p ==,与已知矛盾.故在数列{}n d 中不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.24.(2022·广东·饶平县第二中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,且3122n n S a =-,*N n ∈(1)求数列{}n a 的通项公式;(2)若不等式12(2703+⋅⋅-+≥n n k a n 对任意*N n ∈恒成立,求实数k 的取值范围.【答案】(1)13n n a -=;(2)3[,)32+∞【解析】(1)数列{}n a 的前n 项和为n S ,*N n ∀∈,3122n n S a =-,当2n ≥时,113322n n n n n a S S a a --=-=-,则13n n a a -=,而当1n =时,1113122a S a ==-,即得11a =,因此,数列{}n a 是以1为首项,3为公比的等比数列,则13n n a -=,所以数列{}n a 的通项公式是:13n n a -=(2)由(1)知,1227(270227032+-⋅⋅-+≥⇔⋅-+≥⇔≥n n n nn k a n k n k ,对任意*N n ∈恒成立设272n n n c -=,则()1112172792222n nn n n n n n c c ++++----=-=,当5n ≥,1n n c c +≤,{}n c 单调递减,当15n ≤<,1n n c c +>,{}n c 单调递增,显然有45131632c c =<=,则当5n =时,n c 取得最大值332,即272nn -最大值是332,因此,332k ≥,所以实数k 的取值范围是3[,)32+∞25.(2022·山东·兰陵四中高二阶段练习)已知数列{}n a 满足1=2a ,123n n a a n +=++.(1)证明:数列{}2n a n -为等差数列.(2)设数列(){}22nn a n -⨯的前n 项和为n S ,求n S ,并求满足610023n S n -≤-的n 的最大值.【答案】(1)证明见解析;(2)5【解析】(1)证明:因为数列{}n a 满足1=2a ,123n n a a n +=++,所以()()22221112123212n n n n a n a n a n n a n n n ++⎡⎤-+--=----+=+--=⎣⎦,因为1=2a ,所以2111a -=所以,数列{}2n a n -为等差数列,公差为2,首项为1.(2)由(1)知221n a n n -=-,所以()()22212n nn a n n -⨯=-⋅,所以,()()231123252232212n n n S n n -=⨯+⨯+⨯++-⨯+-⨯,()()23411232522232212n n n S n n +=⨯+⨯+⨯++-⨯+-⨯,所以,()23112222222212n n n S n +-=⨯+⨯+⨯++⨯--⨯L ()()()211121222212632212n n n n n -++-=+⨯-⨯=-+-⨯-,所以,()12326n n S n +=-⨯+,所以16210023n n S n +-=≤-,解得5n ≤,*N n ∈.所以,满足610023nS n -≤-的n 的最大值为526.(2022·湖南·安仁县第一中学高二阶段练习)已知数列{}n a 中,121,2a a ==,当2n ≥时,()112n n n a a a n +-+=+,记1n n n b a a +=-.(1)求数列{}n b 的通项公式;(2)设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:2918n S <.【答案】(1)21n b n n =+-;(2)证明见解析【解析】(1)由题意得112n n n n a a a a n +--=-+,所以12n n b b n -=+,即12n n b b n --=.当2n ≥时,()()()11221122(1)221n n n n n b b b b b b b b n n ---=-+-++-+=+-++⨯+=2(24)(1)112n n n n +-+=+-.当1n =时,1211b a a =-=也符合.综上,21n b n n =+-.(2)证明:由(1)得2111nb n n =+-,当1n =时11129118S b ==<;当2n ≥时,2111112312n b n n n n ⎛⎫<=- ⎪+--+⎝⎭,故当2n ≥时,121111111111111113425364712n n S b b b n n ⎛⎫=+++<+-+-+-+-++-= ⎪-+⎝⎭291111291831218n n n ⎛⎫-++< ⎪++⎝⎭.综上,2918n S <.27.(2022·广东·佛山市第四中学高二阶段练习)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .【答案】(1)2,n n a n N *=∈;(2)证明见解析【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a =,3424a a +=,可得2344424a a q q +=+=,即260q q +-=,解得2q =或3q =-(舍去),所以数列{}n a 的通项公式为222422n n n n a a q --==⋅=.(2)由2n n a =,可得112n n a ++=因为n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,可得1(1)n n n a a n d +=++,所以1211nn n n a a d n n +-==++,所以111(1)()22nn nn n d +==+⋅,设数列{}n d 的前n 项和为n S ,可得2311111123()4(((1)()22222n n n S n n -=⋅+⋅+⋅++⋅++⋅,则23411111112()3()4()()(1)()222222n n n S n n +=⋅+⋅+⋅++⋅++⋅,两式相减231111111(()()(1)(22222n nn S n -=++++-+⋅211111()[1()]131221(1)()(3)()122212n n n n n -++-=++⋅=-+⋅-,所以13(3)(2n n S n =-+⋅,因为n N *∈,所以1(3)(02n n +⋅>,所以13(3)()32nn S n =-+⋅<,即12311113nd d d d ++++<L .28.(2022·广东·普宁市华侨中学高二阶段练习)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,+==S b S q b .(1)求n a 与n b ;(2)证明:121111233n S S S +++< .【答案】(1)3n a n =,13n n b -=;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,因为222212b S S q b +=⎧⎪⎨=⎪⎩,所以6126q d d q q ++=⎧⎪+⎨=⎪⎩,解得33q d =⎧⎨=⎩或410q d =-⎧⎨=⎩(舍),故()3313n a n n =+-=,13n n b -=.(2)因为()332n n n S +=,所以()122113331nS n n n n ⎛⎫==- ⎪++⎝⎭.故1211121111121113223131n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为1n ,所以11012n <+ ,所以111121n -<+ ,所以121213313n ⎛⎫-< ⎪+⎝⎭ ,即121111233n S S S +++< .29.(2022·福建省宁德第一中学高二阶段练习)设等比数列{}n a 的公比为q ,前n 项和为n S ,24a =,314S =.(1)求n a ;(2)若1q >,证明:12122nna a a ++⋅⋅⋅+<.【答案】(1)2n n a =或42n n a -=;(2)证明见解析.【解析】(1)据题意知:144410a q q q =⎧⎪⎨+=⎪⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩,所以2n n a =或42n n a -=.(2)由(1)有:因为1q>,所以2n n a =,记1212n n n T a a a =++⋅⋅⋅+,则2311111232222n nT n =⨯+⨯+⨯+⋅⋅⋅+⋅①()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+⋅②所以-①②得231111*********n n n T n +⎛⎫=+++⋅⋅⋅+-⋅ ⎪⎝⎭11111111221122212n n n n n n ++⎛⎫- ⎪⎝⎭=-⋅=--⋅-,∴2222222n n n n n n T +=--=-,因为n *∈N ,所以202n n +>,所以12122nn a a a ++⋅⋅⋅+<.30.(2022·福建省福安市第一中学高二阶段练习)已知数列{}n a 满足a 1=3,a 2=5,且2123n n n a a a ++=-,n ∈N *.(1)设bn =an +1-an ,求证:数列{}n b 是等比数列;(2)若数列{an }满足n a m ≤(n ∈N *),求实数m 的取值范围.【答案】(1)证明见解析;(2)7m ≥【解析】(1)因为2123n n n a a a ++=-,所以()2112n n n n a a a a +++-=-.即12n n b b +=,又因为12120b a a =-=≠,所以0n b ≠,则112n n b b +=,所以,数列{}n b 是等比数列(2)由(1)数列{}n b 是首项为2公比为12的等比数列,则22n n b -=.所以121321n n n a a a a a a a a --=-+-++-L 11211122(2)112n n b b b n --⎛⎫- ⎪⎝⎭=+++=⨯≥-L ,则131123272(2)112n n n a n --⎛⎫- ⎪⎝⎭=+⨯=-≥-.经检验1n =时也符合,则372n n a -=-.又因为3727n n a -=-<,所以7m ≥.。

高考数学江苏专版三维二轮专题复习教学案:专题一 三角 Word版含答案

江苏 新高考新高考中,对三角计算题的考查始终围绕着求角、求值问题,以和、差角公式的运用为主,可见三角式的恒等变换比三角函数的图象与性质更为重要.三角变换的基本解题规律是:寻找联系、消除差异.常有角变换、函数名称变换、次数变换等(简称为:变角、变名、变次).备考中要注意积累各种变换的方法与技巧,不断提高分析与解决问题的能力.三角考题的花样翻新在于条件变化,大致有三类:第一类是给出三角式值(见2014年三角解答题),第二类是给出在三角形中(见2011年、2015年、2016年三角解答题),第三类是给出向量(见2013年、2017年三角解答题).而2012年三角解答题则是二、三类的混合.第1课时三角函数(基础课)[常考题型突破]1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α.[题组练透]1.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α= ________.解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:752.已知f (x )=sin ⎝⎛⎭⎫x +π6,若sin α=35⎝⎛⎭⎫π2<α<π,则f ⎝⎛⎭⎫α+π12=________. 解析:∵sin α=35⎝⎛⎭⎫π2<α<π, ∴cos α=-45,∴f ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4=22(sin α+cos α)=22×⎝⎛⎭⎫35-45=-210. 答案:-2103.(2016·全国卷Ⅰ)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解析:由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角, 所以cos ⎝⎛⎭⎫θ+π4= 1-sin 2⎝⎛⎭⎫θ+π4=45. tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4 =-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-45×53=-43.答案:-434.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________.解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13,∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13,即1-2sin 2A =13,∴sin A =33.答案:33[方法归纳]函数y =A sin(ωx +φ)的图象(1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). [题组练透]1.(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.解析:因为y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,所以把y =2sin ⎝⎛⎭⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝⎛⎭⎫x -π3的图象. 答案:2π32.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.解析:由题意得,A =3,T =4=2πω,ω=π2.又∵f (x )=A cos(ωx +φ)为奇函数,∴φ=π2+k π,k ∈Z ,取k =0,则φ=π2,∴f (x )=-3sin π2x ,∴f (1)=- 3.答案:- 33.(2017·天津高考改编)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________.解析:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫2x 3+φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12. 答案:23 π124.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为______.解析:由f (x 1)≤f (x )≤f (x 2)对任意x ∈R 成立,知f (x 1),f (x 2)分别是函数f (x )的最小值和最大值.又要使|x 1-x 2|最小,∴|x 1-x 2|的最小值为f (x )的半个周期,即为2.答案:2 [方法归纳]1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z),单调递减区间是⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z);y =cos x 的单调递增区间是[]2k π-π,2k π(k ∈Z),单调递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z). 2.三角函数的奇偶性与对称性y =A sin(ωx +φ),当φ=k π(k ∈Z)时为奇函数;当φ=k π+π2(k ∈Z)时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z)求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z)时为奇函数;当φ=k π(k ∈Z)时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z)求得. y =A tan(ωx +φ),当φ=k π(k ∈Z)时为奇函数.[题组练透]1.已知f (x )=2sin ⎝⎛⎭⎫2x +π3,则函数f (x )的最小正周期为________,f ⎝⎛⎭⎫π6=________. 解析:周期T =2π2=π,f ⎝⎛⎭⎫π6=2sin 2π3= 3. 答案:π32.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. 答案:13.若函数f (x )=sin ⎝⎛⎭⎫ωx -π6(ω>0)的图象相邻两个对称中心之间的距离为π2,则f (x )在⎝⎛⎫-π2,π2上的单调递增区间为________.解析:依题意知,f (x )=sin ⎝⎛⎭⎫ωx -π6的图象相邻两个对称中心之间的距离为π2,于是有T =2πω=2×π2=π,ω=2,所以f (x )=sin ⎝⎛⎭⎫2x -π6.当2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )=sin ⎝⎛⎭⎫2x -π6单调递增.因此,f (x )=sin ⎝⎛⎭⎫2x -π6在⎝⎛⎭⎫-π2,π2上的单调递增区间为⎣⎡⎦⎤-π6,π3. 答案:⎣⎡⎦⎤-π6,π3 [方法归纳]1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,sin A =a2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等. 2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .[题组练透]1.(2017·盐城期中)在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则此三角形的最大内角的大小为________.解析:由正弦定理及sin A ∶sin B ∶sin C =3∶5∶7知,a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k ,且角C 是最大内角,由余弦定理知cos C =a 2+b 2-c 22ab =9k 2+25k 2-49k 22×3k ×5k =-12,因为0°<C <180°,所以C =120°. 答案:120°2.在△ABC 中,B =π3,AB =2,D 为AB 的中点,△BCD 的面积为334,则AC =________.解析:因为S △BCD =12BD ·BC sin B =12×1×BC ×sin π3=334,所以BC =3.由余弦定理得AC 2=4+9-2×2×3×cos π3=7,所以AC =7.答案:73.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 解析:在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又∵a sin A =b sin B ,∴b =a sin Bsin A =1×636535=2113.答案:2113[方法归纳][A 组——抓牢中档小题]1.(2017·苏北四市期末)若函数f (x )=sin ⎝⎛⎭⎫ωπx -π6(ω>0)的最小正周期为15,则f ⎝⎛⎭⎫13的值为________.解析:因为f (x )的最小正周期为2πωπ=15,所以ω=10,所以f (x )=sin ⎝⎛⎭⎫10πx -π6,所以f ⎝⎛⎭⎫13=sin ⎝⎛⎭⎫10π3-π6=sin 19π6=-sin π6=-12. 答案:-122.在平面直角坐标系xOy 中,角θ的终边经过点P (-2,t ),且sin θ+cos θ=55,则实数t 的值为________.解析:∵角θ的终边经过点P (-2,t ), ∴sin θ=t 4+t2,cos θ=-24+t2,又∵sin θ+cos θ=55, ∴t 4+t2+-24+t 2=55,即t -24+t 2=55, 则t >2,平方得t 2-4t +44+t 2=15, 即1-4t 4+t 2=15,即4t 4+t 2=45,则t 2-5t +4=0,则t =1(舍去)或t =4. 答案:43.(2017·南京、盐城一模)将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为偶函数,则φ=____________.解析:将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为f (x )=3sin ⎣⎡⎦⎤2(x -φ)+π3,即f (x )=3sin ⎣⎡⎦⎤2x +⎝⎛⎭⎫π3-2φ.因为f (x )为偶函数,所以π3-2φ=π2+k π,k∈Z ,所以φ=-π12-k π2,k ∈Z ,因为0<φ<π2,所以φ=5π12.答案:5π124.设函数y =sin ⎝⎛⎭⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为________.解析:由条件得sin ⎝⎛⎭⎫π12ω+π3=1,又0<x <π,ω>0,故π12ω+π3=π2,ω=2. 答案:25.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2b =a +c ,若sin B =45,cos B =9ac,则b 的值为________.解析:∵2b =a +c ,sin B =45,cos B =9ac ,sin 2B +cos 2B =1,∴ac =15,∴b 2=a 2+c 2-2ac cos B =a 2+c 2-18=(a +c )2-48=4b 2-48,得b =4.答案:46.(2017·扬州期末)已知cos ⎝⎛⎭⎫π3+α=130<α<π2,则sin(π+α)=________. 解析:因为cos ⎝⎛⎭⎫π3+α=13⎝⎛⎭⎫0<α<π2, 所以π3<π3+α<5π6,有sin ⎝⎛⎭⎫π3+α=1-cos 2⎝⎛⎭⎫π3+α=223,所以sin(π+α)=sin ⎣⎡⎦⎤⎝⎛⎭⎫π3+α+2π3 =sin ⎝⎛⎭⎫π3+αcos 2π3+cos ⎝⎛⎭⎫π3+αsin 2π3 =223×⎝⎛⎭⎫-12+13×32=3-226. 答案:3-2267.(2017·北京高考)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.解析:因为角α与角β的终边关于y 轴对称, 所以α+β=2k π+π,k ∈Z ,所以cos(α-β)=cos(2α-2k π-π)=-cos 2α=-(1-2sin 2α)=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫132=-79. 答案:-798.在△ABC 中,A =2π3,a =3c ,则b c =________.解析:∵在△ABC 中,A =2π3,∴a 2=b 2+c 2-2bc cos 2π3,即a 2=b 2+c 2+bc .∵a =3c ,∴3c 2=b 2+c 2+bc ,∴b 2+bc -2c 2=0, ∴(b +2c )(b -c )=0,∴b -c =0,∴b =c ,bc =1.答案:19.若f (x )=3sin(x +θ)-cos(x +θ)⎝⎛⎭⎫-π2≤θ≤π2是定义在R 上的偶函数,则θ=________.解析:因为f (x )=3sin(x +θ)-cos(x +θ)=2sin ⎝⎛⎭⎫x +θ-π6为偶函数,所以θ-π6=k π+π2,k ∈Z.即θ=k π+2π3.因为-π2≤θ≤π2,所以θ=-π3.答案:-π310.在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,若a =5,A =π4,cos B =35,则c =________.解析:根据题意得,sin B =45,所以sin C =sin(A +B )=sin ⎝⎛⎭⎫π4+B =22(sin B +cos B )=22×75=7210,由a sin A =c sin C ,得5sinπ4=c 7210,解得c =7. 答案:711.(2017·无锡期末)设f (x )=sin 2x -3cos x ·cos ⎝⎛⎭⎫x +π2,则f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为________.解析:f (x )=sin 2x +3sin x cos x =12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎫2x -π6+12,当2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,函数f (x )单调递增,令k =0,得-π6≤x ≤π3,所以函数f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为⎣⎡⎦⎤0,π3. 答案:⎣⎡⎦⎤0,π3 12.函数y =a sin(ax +θ)(a >0,θ≠0)图象上的一个最高点和其相邻最低点的距离的最小值为________.解析:易知函数y =a sin(ax +θ)(a >0,θ≠0)的最大值为a ,最小值为-a ,最小正周期T =2πa ,所以相邻的最高点与最低点的距离为 ⎝⎛⎭⎫πa 2+4a 2≥2×πa ×2a =2π,当且仅当πa =2a ,即a =2π2时等号成立.答案:2π13.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-4514.(2017·苏锡常镇一模)已知sin α=3sin ⎝⎛⎭⎫α+π6,则tan ⎝⎛⎭⎫α+π12=________. 解析:∵sin α=3sin ⎝⎛⎭⎫α+π6=3sin αcos π6+3cos α·sin π6=332sin α+32cos α,∴tan α=32-33.又tan π12=tan ⎝⎛⎭⎫π3-π4=tan π3-tan π41+tan π3tanπ4=3-13+1=2-3,∴tan ⎝⎛⎭⎫α+π12=tan α+tanπ121-tan αtanπ12=32-33+2-31-32-33×()2-3=23-4.答案:23-4[B 组——力争难度小题]1.如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的最小正周期是________.解析:设函数f (x )的最小正周期为T ,由图象可得A ⎝⎛⎭⎫T 4,3,B ⎝⎛⎭⎫3T 4,-3,则OA ―→·OB ―→=3T 216-3=0,解得T =4. 答案:42.(2017·南京考前模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6-cos ωx (ω>0).若函数f (x )的图象关于直线x =2π对称,且在区间⎣⎡⎦⎤-π4,π4上是单调函数,则ω的取值集合为____________. 解析:f (x )=32sin ωx +12cos ωx -cos ωx =32sin ωx -12cos ωx =sin ⎝⎛⎭⎫ωx -π6, 因为f (x )的图象关于直线x =2π对称, 所以f (2π)=±1,则2πω-π6=k π+π2,k ∈Z ,所以ω=k 2+13,k ∈Z.因为函数f (x )在区间⎣⎡⎦⎤-π4,π4上是单调函数, 所以最小正周期T ≥2⎣⎡⎦⎤π4-⎝⎛⎭⎫-π4, 即2πω≥π,解得0<ω≤2,所以ω=13或ω=56或ω=43或ω=116.当ω=13时,f (x )=sin ⎝⎛⎭⎫13x -π6, x ∈⎣⎡⎦⎤-π4,π4时,13x -π6∈⎣⎡⎦⎤-π4,-π12, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=56时,f (x )=sin ⎝⎛⎭⎫56x -π6, x ∈⎣⎡⎦⎤-π4,π4时,56x -π6∈⎣⎡⎦⎤-3π8,π24, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=43时,f (x )=sin ⎝⎛⎭⎫43x -π6, x ∈⎣⎡⎦⎤-π4,π4时,43x -π6∈⎣⎡⎦⎤-π2,π6, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=116时,f (x )=sin ⎝⎛⎭⎫116x -π6, x ∈⎣⎡⎦⎤-π4,π4时,116x -π6∈⎣⎡⎦⎤-5π8,7π24, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上不是单调函数; 综上,ω∈⎩⎨⎧⎭⎬⎫13,56,43.答案:⎩⎨⎧⎭⎬⎫13,56,433.△ABC 的三个内角为A ,B ,C ,若3cos A +sin A 3sin A -cos A=tan ⎝⎛⎭⎫-7π12,则tan A =________. 解析:3cos A +sin A 3sin A -cos A=2sin ⎝⎛⎭⎫A +π32sin ⎝⎛⎭⎫A -π6=-sin ⎝⎛⎭⎫A +π3cos ⎝⎛⎭⎫A +π3=-tan ⎝⎛⎭⎫A +π3=tan ⎝⎛⎭⎫-A -π3=tan ⎝⎛⎭⎫-7π12, 所以-A -π3=-7π12,所以A =7π12-π3=π4,所以tan A =tan π4=1.答案:14.已知函数f (x )=A sin(x +θ)-cos x2cos ⎝⎛⎭⎫π6-x 2(其中A 为常数,θ∈(-π,0)),若实数x 1,x 2,x 3满足:①x 1<x 2<x 3,②x 3-x 1<2π,③f (x 1)=f (x 2)=f (x 3),则θ的值为________.解析:函数f (x )=A (sin x cos θ+cos x sin θ)-cos x 2·⎝⎛⎭⎫32cos x 2+12sin x 2=A (sin x cos θ+cos xsin θ)-32×1+cos x 2-14sin x =⎝⎛⎭⎫A cos θ-14sin x +⎝⎛⎭⎫A sin θ-34cos x -34,故函数f (x )为常数函数或为周期T =2π的周期函数.又x 1,x 2,x 3满足条件①②③,故f (x )只能为常数函数,所以⎩⎨⎧A cos θ-14=0,A sin θ-34=0,则tan θ=3,又θ∈(-π,0),故θ=-2π3.答案:-2π3第2课时平面向量(基础课)[常考题型突破][必备知识](1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向,不能盲目转化.(2)在用三角形加法法则时要保证“首尾相接”,和向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,减向量的方向是指向被减向量.(3)A ,B ,C 三点共线的充要条件是存在实数λ,μ,有OA ―→=λOB ―→+μOC ―→,且λ+μ=1.(4)C 是线段AB 中点的充要条件是OC ―→=12(OA ―→+OB ―→).G 是△ABC 的重心的充要条件为GA ―→+GB ―→+GC ―→=0.[题组练透]1.(2017·盐城期中)设向量a =(2,-6),b =(-1,m ),若a ∥b ,则实数m =________. 解析:因为a ∥b ,所以2m -(-1)×(-6)=0,所以m =3. 答案:32.(2017·镇江模拟)已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m 使得AB ―→+AC ―→=mAM ―→成立,则m =________.解析:由MA ―→+MB ―→+MC ―→=0知,点M 为△ABC 的重心,设点D 为底边BC 的中点,则AM ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),∴AB ―→+AC ―→=3AM ―→,故m =3.答案:33.(2017·南京考前模拟)在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =2CD ,M 为CD 的中点,N 为线段BC 上一点(不包括端点),若AC ―→=λAM ―→+μAN ―→,则1λ+3μ的最小值为________.解析:以AB 为x 轴,A 为坐标原点建立直角坐标系如图所示,设B (2,0),C (1,t ),M ⎝⎛⎭⎫12,t ,N (x 0,y 0), 因为N 在线段BC 上,所以y 0=t 1-2(x 0-2),即y 0=t (2-x 0), 因为AC ―→=λAM ―→+μAN ―→, 所以⎩⎪⎨⎪⎧1=12λ+μx 0,t =λt +μy 0,即t =λt +μy 0=λt +μt (2-x 0),因为t ≠0,所以1=λ+μ(2-x 0)=λ+2μ-μx 0=λ+2μ-⎝⎛⎭⎫1-12λ, 所以3λ+4μ=4,这里λ,μ均为正数,所以4⎝⎛⎭⎫1λ+3μ=(3λ+4μ)⎝⎛⎭⎫1λ+3μ=3+12+4μλ+9λμ≥15+236=27, 所以1λ+3μ≥274当且仅当4μλ=9λμ,即λ=49,μ=23时取等号.所以1λ+3μ的最小值为274.答案:274[方法归纳][必备知识]1.数量积的定义:a ·b =|a ||b |cos θ. 2.三个结论:(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB ―→|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. [题组练透]1.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:332.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.答案:2 33.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(tm +n ),则实数t的值为________.解析:∵n ⊥(tm +n ),∴n ·(tm +n )=0,即tm ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4. 答案:-44.(2017·南京、盐城二模)已知平面向量AC ―→=(1,2),BD ―→=(-2,2),则AB ―→·CD ―→的最小值为________.解析:设A (a ,b ),B (c ,d ), ∵AC ―→=(1,2),BD ―→=(-2,2), ∴C (a +1,b +2),D (c -2,d +2),则AB ―→=(c -a ,d -b ),CD ―→=(c -a -3,d -b ),∴AB ―→·CD ―→=(c -a )(c -a -3)+(b -d )2=(c -a )2-3(c -a )+(b -d )2=⎝⎛⎭⎫c -a -322-94+(b -d )2≥-94.∴AB ―→·CD ―→的最小值为-94.答案:-945.已知边长为6的正三角形ABC ,BD ―→=12BC ―→,AE ―→=13AC ―→,AD 与BE 交于点P ,则PB ―→·PD ―→的值为________.解析:由题意可得点D 为BC 的中点,以点D 为坐标原点,BC ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则D (0,0),A (0,33),B (-3,0),C (3,0),E (1,23),直线BE 的方程为y =32(x +3)与AD (y 轴)的交点为P ⎝⎛⎭⎫0,332,所以PB ―→·PD ―→=⎝⎛⎭⎫-3,-332·⎝⎛⎭⎫0,-332=274.答案:274[方法归纳]1.(2017·南京三模)在四边形ABCD 中,BD =2,且AC ―→·BD ―→=0,(AB ―→+DC ―→)·(BC ―→+AD ―→)=5,则四边形ABCD 的面积为________.解析:因为AC ―→·BD ―→=0,所以AC ―→⊥BD ―→,所以以BD 所在直线为x 轴,AC 所在直线为y 轴,建立直角坐标系,因为BD =2,所以可设B (b,0),D (2+b,0),A (0,a ),C (0,c ),所以AB ―→=(b ,-a ),DC ―→=(-2-b ,c ),BC ―→=(-b ,c ),AD ―→=(2+b ,-a ),所以AB ―→+DC ―→=(-2,c -a ),BC ―→+AD ―→=(2,c -a ),因为(AB ―→+DC ―→)·(BC ―→+AD ―→)=5,所以-4+(c -a )2=5,即(c -a )2=9,所以|AC ―→|=| c -a |=3,所以四边形ABCD 的面积为12×AC ×BD =12×3×2=3.答案:32.已知圆O 的半径为2,AB 是圆O 的一条直径,C ,D 两点都在圆O 上,且|CD ―→|=2,则|AC ―→+BD ―→|=________.解析:如图,连结OC ,OD ,则AC ―→=AO ―→+OC ―→,BD ―→=BO ―→+OD ―→, 因为O 是AB 的中点, 所以AO ―→+BO ―→=0, 所以AC ―→+BD ―→=OC ―→+OD ―→, 设CD 的中点为M ,连结OM , 则AC ―→+BD ―→=OC ―→+OD ―→=2OM ―→, 显然△COD 是边长为2的等边三角形, 所以|OM ―→|=3,故|AC ―→+BD ―→|=|2OM ―→|=2 3. 答案:2 33.(2017·南通三模)如图,在直角梯形ABCD 中,AB ∥DC ,∠ABC =90°,AB =3,BC =DC =2.若E ,F 分别是线段DC 和BC 上的动点,则AC ―→·EF ―→的取值范围是________.解析:法一:因为AC ―→=AB ―→+BC ―→,EF ―→=EC ―→+CF ―→,所以AC ―→·EF ―→=(AB ―→+BC ―→)·(EC ―→+CF ―→)=AB ―→·EC ―→+BC ―→·CF ―→=3|EC ―→|-2|CF ―→|,因为E ,F 分别是线段DC 和BC 上的动点,且BC =DC =2,所以|EC ―→|∈[0,2],|CF ―→|∈[0,2],所以由不等式的性质知AC ―→·EF ―→的取值范围是[-4,6].法二:以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系(图略),则C (3,2),因为E ,F 分别是线段DC 和BC 上的动点,且BC =DC =2,所以可设E (x ,2),F (3,y ),所以AC ―→=(3,2),EF ―→=(3-x ,y -2),且x ∈[1,3],y ∈[0,2],所以AC ―→·EF ―→=3(3-x )+2(y -2)=5-3x +2y ∈[-4,6],即AC ―→·EF ―→的取值范围是[-4,6].答案:[-4,6] [方法归纳]1.利用平面向量解决几何问题的两种方法2.求解向量数量积最值问题的两种方法[课时达标训练] [A 组——抓牢中档小题]1.(2017·南京学情调研)设向量a =(1,-4),b =(-1,x ),c =a +3b .若a ∥c ,则实数x =________.解析:因为a =(1,-4),b =(-1,x ),c =a +3b =(-2,-4+3x ).又a ∥c ,所以-4+3x -8=0,解得x =4.答案:42.(2017·无锡期末)已知向量a =(2,1),b =(1,-1),若a -b 与ma +b 垂直,则m 的值为________.解析:因为a =(2,1),b =(1,-1),所以a -b =(1,2),ma +b =(2m +1,m -1),因为a -b 与ma +b 垂直,所以(a -b )·(ma +b )=0,即2m +1+2(m -1)=0,解得m =14.答案:143.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎨⎧k =13,λ=-13.答案:-134.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为________. 解析:∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22,∴〈a ,b 〉=π4.答案:π45.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=________.解析:由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12.答案:-126.已知平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:由题意得c ·a |c ||a |=c ·b |c ||b |⇒c ·a |a |=c ·b |b |⇒5m +85=8m +2025⇒m =2.答案:27.(2017·常州模拟)已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为________.解析:由已知得M ,G ,N 三点共线,即AG ―→=λAM ―→+(1-λ)AN ―→=λx AB ―→+(1-λ)y AC ―→, ∵点G 是△ABC 的重心,∴AG ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x ,1-λ=13y,得13x +13y=1, 即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 答案:138.已知A ,B ,C 三点不共线,且AD ―→=-13AB ―→+2AC ―→,则S △ABD S △ACD=________.解析:如图,取AM ―→=-13AB ―→,AN ―→=2AC ―→,以AM ,AN 为邻边作平行四边形AMDN ,此时AD ―→=-13AB ―→+2AC ―→.由图可知S △ABD =3S △AMD ,S △ACD =12S △AND ,而S △AMD =S △AND ,所以S △ABDS △ACD =6.答案:69.(2017·苏锡常镇一模)在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP ―→=AB ―→+λAC ―→,且BP ―→·CP ―→=1,则实数λ的值为________.解析:法一:由题意可得AP ―→-AB ―→=BP ―→=λAC ―→.又CP ―→ =AP ―→-AC ―→=AB ―→+(λ-1)AC ―→,所以BP ―→·CP ―→=λAB ―→·AC ―→+λ(λ-1)|AC ―→|2=1,即λ+(λ2-λ)×4=1,所以有4λ2-3λ-1=0,解得λ=1或λ=-14.法二:建立如图所示的平面直角坐标系,所以A (0,0),B ⎝⎛⎭⎫12,32,C (2,0),设P (x ,y ).所以AP ―→=(x ,y ),AB ―→=⎝⎛⎭⎫12,32,AC ―→=(2,0).又因为AP ―→=AB ―→+λAC ―→,所以有⎩⎨⎧x =2λ+12,y =32,所以BP ―→=(2λ,0),CP ―→=⎝⎛⎭⎫2λ-32,32.由BP ―→·CP ―→=1可得4λ2-3λ-1=0,解得λ=1或λ=-14.答案:1或-1410.已知向量a =(1,3),b =(0,t 2+1),则当t ∈[-3,2]时,⎪⎪⎪⎪a -t b|b |的取值范围是________.解析:由题意,b |b |=(0,1),根据向量的差的几何意义,⎪⎪⎪⎪a -t b |b |表示同起点的向量t b|b |的终点到a 的终点的距离,当t =3时,该距离取得最小值1,当t =-3时,该距离取得最大值13,即⎪⎪⎪⎪a -t b|b |的取值范围是[1,13 ]. 答案:[1,13 ]11.(2017·南通二调)如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB ―→·AD ―→=-7,则BC ―→·DC ―→的值是________.解析:法一:由AB ―→·AD ―→=-7得,(OB ―→-OA ―→)·(OD ―→-OA ―→)=-7,即(OB ―→-OA ―→)·(OB ―→+OA ―→)=7,所以OB ―→2=7+OA ―→2=7+9=16,所以|OB ―→|=|OD ―→|=4.所以BC ―→·DC ―→=(OC ―→-OB ―→)·(OC ―→-OD ―→)=(OC ―→-OB ―→)·(OC ―→+OB ―→)=OC ―→2-OB ―→2=25-16=9.法二:以O 为原点,OC 为x 轴,建立平面直角坐标系(图略),则C (5,0),设B (x 1,y 1),A (x 2,y 2),则D (-x 1,-y 1),x 22+y 22=9,由AB ―→·AD ―→=-7,得(x 1-x 2,y 1-y 2)·(-x 1-x 2,-y 1-y 2)=-7,得x 21+y 21=16,而BC ―→·DC ―→=(5-x 1,-y 1)·(5+x 1,y 1)=25-x 21-y 21=25-16=9.答案:912.已知菱形ABCD 的边长为a ,∠DAB =60°,EC ―→=2DE ―→,则AE ―→·DB ―→的值为________.解析:如图所示,∵EC ―→=2DE ―→,∴DE ―→=13DC ―→.∵菱形ABCD 的边长为a , ∠DAB =60°, ∴|DA ―→|=|DC ―→|=a ,DA ―→·DC ―→=|DA ―→||DC ―→|cos 120°=-12a 2,∵DB ―→=DA ―→+DC ―→,∴AE ―→·DB ―→=(AD ―→+DE ―→)(DA ―→+DC ―→) =⎝⎛⎭⎫AD ―→+13 DC ―→(DA ―→+DC ―→)=-DA ―→2+13DC ―→2-23DA ―→·DC ―→=-a 2+13a 2+13a 2=-a 23.答案:-a 2313.在矩形ABCD 中,边AB ,AD 的长分别为2和1,若E ,F 分别是边BC ,CD 上的点,且满足|BE ―→||BC ―→|=|CF ―→||CD ―→|,则AE ―→·AF ―→的取值范围是________.解析:法一:取A 为原点,AB 所在直线为x 轴,建立如图所示直角坐标系,则A (0,0),B (2,0),C (2,1).∵|BE ―→||BC ―→|=|CF ―→||CD ―→|,得2|BE ―→|=|CF ―→|,设E (2,y )(0≤y ≤1),则F (2-2y,1).∴AE ―→·AF ―→=(2,y )·(2-2y,1)=2(2-2y )+y =4-3y ∈[1,4].法二:∵|BE ―→||BC ―→|=|CF ―→||CD ―→|,则|CF ―→|=2|BE ―→|. ∵0≤|BE ―→|≤1,∴AE ―→·AF ―→=(AB ―→+BE ―→)·(AD ―→+DF ―→) =AB ―→·DF ―→+BE ―→·AD ―→=2|DF ―→|+|BE ―→| =2(2-|CF ―→|)+|BE ―→|=4-3|BE ―→|∈[1,4]. 答案:[1,4]14.(2017·全国卷Ⅱ改编)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是________.解析:如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.答案:-32[B 组——力争难度小题]1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM ―→=2MD ―→.若AC ―→·BM ―→=-3,则AB ―→·AD ―→=________.解析:由题意可得AC ―→=AD ―→+DC ―→=AD ―→+12AB ―→,BM ―→=AM ―→-AB ―→=23AD ―→-AB ―→,则AC ―→·BM ―→=⎝⎛⎭⎫AD ―→+12 AB ―→ ·⎝⎛⎭⎫23 AD ―→-AB ―→=-3, 则23|AD ―→|2-12|AB ―→|2-23AB ―→·AD ―→=-3, 即6-8-23AB ―→·AD ―→=-3,解得AB ―→·AD ―→=32.答案:322.已知a ,b ,c 是同一平面内的三个向量,其中a ,b 是互相垂直的单位向量,且(a -c )·(3b -c )=1,则|c |的最大值为________.解析:法一:由题意可得(a -c )·(3b -c )=-a ·c -3b ·c +|c |2=1,则|c |2-(a +3b )·c -1=0.又|a +3b |=2,设a +3b 与c 的夹角为θ,θ∈[0,π], 则|c |2-2|c |cos θ-1=0,-2≤2cos θ=|c |-1|c |≤2,即⎩⎪⎨⎪⎧|c |2-2|c |-1≤0,|c |2+2|c |-1≥0,解得2-1≤|c |≤2+1,则|c |max =2+1.法二:不妨设a =(1,0),b =(0,1),c =(x ,y ),则(a -c )·(3b -c )=(1-x ,-y )·(-x ,3-y )=1,化简得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -322=2,圆心⎝⎛⎭⎫12,32到坐标原点的距离为1,则|c |max =2+1.答案:2+13.(2017·苏州考前模拟)已知点A (1,-1),B (4,0),C (2,2).平面区域D 由所有满足AP ―→=λAB ―→+μAC ―→(1<λ≤a,1<μ≤b )的点P (x ,y )组成的区域.若区域D 的面积为16,则a +b 的最小值为________.解析:如图,延长AB 至点N ,延长AC 至点M ,使得AN =aAB ,AM =bAC .四边形ABEC 、四边形ANGM 、四边形EHGF 均为平行四边形.由条件知,点P (x ,y )组成的区域D 为图中的阴影部分,即四边形EHGF (不含边界EH ,EF ).∵AB ―→=(3,1),AC ―→=(1,3),BC ―→=(-2,2).∴|AB |=10,|AC |=10,|BC |=22,cos ∠CAB =10+10-82×10×10=35,sin ∠CAB =45.∴四边形EHGF 的面积为(a -1)10×(b -1)10×45=16.∴(a -1)(b -1)=2,a +b =a +⎝ ⎛⎭⎪⎫2a -1+1=(a -1)+2a -1+2.由a >1,b >1知,当且仅当a -1=2,即a =b =2+1时,a +b 取得最小值22+2. 答案:22+24.(2017·江苏高考)如图,在同一个平面内,向量OA ―→,OB ―→,OC ―→的模分别为1,1,2,OA ―→与OC ―→的夹角为α,且tan α=7,OB ―→与OC ―→的夹角为45°.若OC ―→=m OA ―→+n OB ―→(m ,n ∈R),则m +n =________.解析:法一:如图,以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2, 得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ), 则x C =|OC ―→|cos α=2×152=15,y C =|OC ―→|sin α=2×752=75,即C ⎝⎛⎭⎫15,75. 又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=752×12+152×12=45,则x B =|OB ―→|cos(α+45°)=-35,y B =|OB ―→|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45. 由OC ―→=m OA ―→+n OB ―→,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎫0,π2, 得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,所以OB ―→·OC ―→=1×2×22=1,OA ―→·OC ―→=1×2×152=15,OA ―→·OB ―→=1×1×⎝⎛⎭⎫-35=-35, 由OC ―→=m OA ―→+n OB ―→,得OC ―→·OA ―→=m OA ―→2+n OB ―→·OA ―→,即15=m -35n .①同理可得OC ―→·OB ―→=m OA ―→·OB ―→+n OB ―→2, 即1=-35m +n .②①+②得25m +25n =65,即m +n =3.答案:3第3课时解三角形(能力课)[常考题型突破][例1] (2016·江苏高考)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求cos ⎝⎛⎭⎫A -π6的值. [解] (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =ABsin C,所以AB =AC ·sin Csin B=6×2235=5 2.(2)在△ABC 中,A +B +C =π, 所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎫B +π4 =-cos B cos π4+sin B sin π4.又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A <π,所以sin A =1-cos 2A =7210.因此,cos ⎝⎛⎭⎫A -π6=cos A cos π6+sin A sin π6 =-210×32+7210×12=72-620.[方法归纳][变式训练]1.(2017·南京、盐城一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin 2C =c sin B .(1)求角C ;(2)若sin ⎝⎛⎭⎫B -π3=35,求sin A 的值. 解:(1)由正弦定理及b sin 2C =c sin B , 得2sin B sin C cos C =sin C sin B , 因为sin B >0,sin C >0,所以cos C =12,又C ∈(0,π),所以C =π3.(2)因为C =π3,所以B ∈⎝⎛⎭⎫0,2π3, 所以B -π3∈⎝⎛⎭⎫-π3,π3, 又sin ⎝⎛⎭⎫B -π3=35, 所以cos ⎝⎛⎭⎫B -π3= 1-sin 2⎝⎛⎭⎫B -π3=45. 又A +B =2π3,即A =2π3-B ,所以sin A =sin ⎝⎛⎭⎫2π3-B =sin ⎣⎡⎦⎤π3-⎝⎛⎭⎫B -π3=sin π3cos ⎝⎛⎭⎫B -π3-cos π3sin ⎝⎛⎭⎫B -π3=32×45-12×35=43-310. 2.(2017·苏北四市一模)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且tan B =2,tan C =3.(1)求角A 的大小; (2)若c =3,求b 的长.解:(1)因为tan B =2,tan C =3,A +B +C =π,所以tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C 1-tan B tan C =-2+31-2×3=1.又A ∈(0,π),所以A =π4.(2)因为tan B =sin Bcos B =2,且sin 2B +cos 2B =1,又B ∈(0,π),所以sin B =255. 同理可得sin C =31010.由正弦定理,得b =c sin B sin C =3×25531010=2 2.[例2] ,b ,c ,且△ABC面积的大小为S ,3AB ―→·AC ―→=2S .(1)求sin A 的值;(2)若C =π4,AB ―→·AC ―→=16,求b . [解] (1)由3AB ―→·AC ―→=2S ,得3bc cos A =2×12bc sin A ,即sin A =3cos A . 整理化简得sin 2A =9cos 2A =9(1-sin 2A ),所以sin 2A =910. 又A ∈(0,π),所以sin A >0,故sin A =31010. (2)由sin A =3cos A 和sin A =31010, 得cos A =1010, 又AB ―→·AC ―→=16,所以bc cos A =16,得bc =1610. ①又C =π4, 所以sin B =sin(A +C )=sin A cos C +cos A sin C =31010×22+1010×22=255. 在△ABC 中,由正弦定理b sin B =c sin C , 得b 255=c 22, 即c =104b . ② 联立①②得b =8.[方法归纳]1.(2017·南通三调)已知△ABC 是锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),且m ⊥n .(1)求A -B 的值;(2)若cos B =35,AC =8,求BC 的长. 解:(1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B =cos ⎝⎛⎭⎫A +π3-B =0, 又A ,B ∈⎝⎛⎭⎫0,π2,所以A +π3-B ∈⎝⎛⎭⎫-π6,5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎫0,π2,所以sin B =45. 所以sin A =sin ⎝⎛⎭⎫B +π6 =sin B cos π6+cos B sin π6=45×32+35×12=43+310. 由正弦定理,得BC =sin A sin B ×AC =43+31045×8=43+3. 2.(2017·镇江调研)在△ABC 中,角A ,B ,C 所对应的边分别是a ,b ,c ,向量m =(a -c ,b +c ),n =(b -c ,a ),且m ∥n .(1)求B ;(2)若b =13,cos ⎝⎛⎭⎫A +π6=33926,求a .解:(1)因为m ∥n ,所以a (a -c )-(b +c )(b -c )=0,即a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12, 又B ∈(0,π),故B =π3. (2)由(1)得A ∈⎝⎛⎭⎫0,2π3,所以A +π6∈⎝⎛⎭⎫π6,5π6, 又cos ⎝⎛⎭⎫A +π6=33926,所以sin ⎝⎛⎭⎫A +π6=51326,所以sin A =sin ⎣⎡⎤⎝⎛⎭⎫A +π6-π6 =sin ⎝⎛⎭⎫A +π6cos π6-cos ⎝⎛⎭⎫A +π6sin π6=51326×32-33926×12=3926. 在△ABC 中,由正弦定理a sin A =b sin B, 可得a =b ·sin A sin B =13×392632=1.[例3] (2017·南通调研)如图,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =b (sin C +cos C ).(1)求∠ABC ;(2)若∠A =π2,D 为△ABC 外一点,DB =2,DC =1,求四边形ABDC 面积的最大值.[解] (1)在△ABC 中,因为a =b (sin C +cos C ),所以sin A =sin B (sin C +cos C ),所以sin(B +C )=sin B (sin C +cos C ),所以sin B cos C +cos B sin C =sin B sin C +sin B cos C,所以cos B sin C =sin B sin C ,又因为C ∈(0,π),故sin C ≠0,所以cos B =sin B ,即tan B =1.又B ∈(0,π),所以B =π4. (2)在△BCD 中,DB =2,DC =1,BC 2=12+22-2×1×2×cos D =5-4cos D .又A =π2,由(1)可知∠ABC =π4, 所以△ABC 为等腰直角三角形,S △ABC =12×BC ×12×BC =14BC 2=54-cos D , 又S △BDC =12×BD ×DC ×sin D =sin D, 所以S 四边形ABDC =54-cos D +sin D =54+2sin ⎝⎛⎭⎫D -π4. 所以当D =3π4时,四边形ABDC 的面积有最大值,最大值为54+ 2. [方法归纳](2017·苏北三市模拟)如图,在平面四边形ABCD 中,DA ⊥AB ,DE=1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ;(2)求BE 的长.解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列,所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3. (1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,由题设知7=CD 2+1+CD ,即CD 2+CD -6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得ECsin ∠EDC =CD sin α, 于是sin α=CD ·sin 2π3EC =2×327=217, 即sin ∠CED =217. (2)由题设知0<α<π3, 由(1)知cos α=1-sin 2α= 1-2149=277, 又∠AEB =π-∠BEC -α=2π3-α, 所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3·sin α=-12cos α+32sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714, 所以BE =47.。

2019-2020年高三数学二轮复习高考大题分层练1三角数列概率统计立体几何(A组)理新人教版

2019-2020年高三数学二轮复习高考大题分层练1三角数列概率统计立体几何(A组)理新人教版1.已知向量a=(cosx+sinx,2sinx),b=(cosx-sinx,cosx),令f(x)=a·b.(1)求f(x)的最小正周期.(2)当x∈时,求f(x)的最小值以及取得最小值时x的值.【解析】f(x)=cos2x-sin2x+2sinxcosx=cos 2x+sin 2x=sin.(1)由最小正周期公式得:T==π.(2)x∈,则2x+∈,令2x+=,则x=,所以当x=时,函数f(x)取得最小值-.2.已知{a n}为等差数列,且满足a1+a3=8,a2+a4=12.(1)求数列{a n}的通项公式.(2)记{a n}的前n项和为S n,若a3,a k+1,S k成等比数列,求正整数k的值.【解析】(1)设数列{a n}的公差为d,由题意知解得a1=2,d=2,所以a n=a1+(n-1)d=2+2(n-1)=2n,即a n=2n.(2)由(1)得S n===n(1+n)=n2+n,所以a3=2×3=6,a k+1=2(k+1)=2k+2,S k=k2+k,因为a3,a k+1,S k成等比数列,所以=a3S k,从而(2k+2)2=6(k2+k),即k2-k-2=0,k∈N*,解得k=2或k=-1(舍去),所以k=2.3.甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,现在从这两个箱子里各随机摸出2个球,求:(1)摸出3个白球的概率.(2)摸出至少两个白球的概率.(3)若将摸出至少有两个白球记为1分,则一个人不放回地摸2次,求得分X的分布列及数学期望.【解析】设“在1次游戏中摸出i个白球”为事件A i(i=0,1,2,3),(1)由题意得P(A3)=·=.(2)设“摸出至少两个白球”为事件B,则B=A2∪A3,又P(A2)=·+=,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=+=.(3)X的所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列是X 0 1 2P4.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF ⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(1)证明:AG⊥平面ABCD.(2)若直线BF与平面ACE所成角的正弦值为,求AG的长.【解析】(1)因为AE=AF,点G是EF的中点,所以AG⊥EF.又因为EF∥AD,所以AG⊥AD.因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AG⊂平面ADEF,所以AG⊥平面ABCD.(2)因为AG⊥平面ABCD,AB⊥AD,所以AG,AD,AB两两垂直.以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系,则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t>0),则E(0,1,t),F(0,-1,t),所以=(-4,-1,t),=(4,4,0),=(0,1,t).设平面ACE的法向量为n=(x,y,z),由·n=0,·n=0,得令z=1,得n=(t,-t,1).因为BF与平面ACE所成角的正弦值为,所以|cos<·n>|==,即=,解得t2=1或t2=.所以AG=1或AG=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大题分层练(三)三角、数列、概率统计、立体几何(C组)
1.在△ABC中,角A,B,C的对边分别为a,b,c,且(2a-b)·cos C=c·cos B.
(1)求角C的大小.
(2)若c=2,△ABC的面积为,求该三角形的周长.
【解析】(1)在△ABC中,由正弦定理知===2R,
又因为(2a-b)·cos C=c·cos B,
所以2sin Acos C=sin Bcos C+cos Bsin C,
即2sin Acos C=sin A.
因为0<A<π,所以sin A>0,
所以cos C=.
又0<C<π,所以C=.
(2)因为S△ABC=absin C=ab=,
所以ab=4.
又c2=a2+b2-2abcos C=(a+b)2-3ab=4,
所以(a+b)2=16,
所以a+b=4,
所以周长为6.
2.在数列{a n}中,a1=4,na n+1-(n+1)a n=2n2+2n.
(1)求证:数列是等差数列.
(2)设数列的前n项和为S n,问是否存在正整数N,使得当n>N时,总有
<,若存在,求出N的最小值,否则,说明理由.
【解析】(1)na n+1-(n+1)a n=2n2+2n的两边同时除以n(n+1),得-=2(n∈N*),
所以数列是首项为4,公差为2的等差数列.
(2)由(1)得=2n+2,
所以a n=2n2+2n,故==·=
·,
所以S n=++…+=.
所以由不等式=<,
解得n>1 008,
所以存在N≥1 008,使得当n>N时,总有<,所以N的最小值为1 008.
3.某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量x的平均数.
(2)将y表示为x的函数.
(3)根据直方图估计利润y不少于4 000元的概率.
【解析】(1)由频率分布直方图得:
需求量为[100,120)的频率=0.005×20=0.1,
需求量为[120,140)的频率=0.01×20=0.2,
需求量为[140,160)的频率=0.015×20=0.3,
需求量为[160,180)的频率=0.012 5×20=0.25,
需求量为[180,200]的频率=0.007 5×20=0.15.
则平均数=110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.
(2)因为每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元,所以当100≤x≤160时,
y=30x-10×(160-x)=40x-1 600;
当160<x≤200时,y=160×30=4 800,
所以y=
(3)因为利润不少于4 000元,所以40x-1600≥4 000,解得x≥140.所以由(1)知利润不少于
4 000元的概率P=1-0.3=0.7.
4.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为B C的中点.
(1)证明:PE⊥DE.
(2)如果异面直线AE与PD所成的角的大小为,求PA的长及点A到平面PED的距离. 【解析】(1)连接AE,由AB=BE=1,得AE=,同理得,DE=,AE2+DE2=4=AD2,
由勾股定理得∠AED=90°,
DE⊥AE,
因为PA⊥平面ABCD,所以PA⊥DE.
又因为PA∩AE=A,所以DE⊥平面PAE,
所以PE⊥DE.
(2)取PA的中点M,AD的中点N,连接MC,NC,MN,AC.
所以NC∥AE,MN∥PD,
所以∠MNC的大小等于异面直线PD与AE所成的角或其补角的大小,
即∠MNC=或(或者由观察可知,∠MNC=,不需分类讨论).
设PA=x,则NC=,MN=,MC=.
若∠MNC=,由cos∠MNC==-,得PA=2.
所以V A-PDE=V P-DAE=××××2=.
在Rt△PED中,PE=,DE=,所以S△PED=××=.所以点A到平面PED的距离为=.
若∠MNC=,由cos∠MNC==,显然不适合题意.
综上所述,PA=2,点A到平面PED的距离为.。

相关文档
最新文档