人教版八年级数学上册第十五章测试题
人教版八年级数学上册第十五章测试题及答案

第十五章 分式得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.若分式x 2-4x的值为0,则x 的值是(A ) A .2或-2 B .2 C .-2 D .02.(宜宾中考)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000 052米.将0.000 052用科学记数法表示为(B )A .5.2×10-6B .5.2×10-5C .52×10-6D .52×10-53.分式①a +2a 2+3 ,②a -b a 2-b 2 ,③4a 12(a -b ) ,④1x -2中,最简分式有(B ) A .1个 B .2个 C .3个 D .4个4.(益阳中考)解分式方程x 2x -1 +21-2x=3时,去分母化为一元一次方程,正确的是(C )A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)5.(白银中考)下面的计算过程中,从哪一步开始出现错误(B )A .①B .②C .③D .④6.下列计算正确的是(B )A .⎝⎛⎭⎫b a 2=b 2a B .a 2÷a -1=a 3 C .1x +1y =2x +y D .-x -y x -y =-1 7.如果x +y 3x =12,那么y x 的值为(B ) A .23 B .12 C .13 D .258.(湘潭中考)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为(B )A .120x -20 =90xB .120x +20 =90xC .120x =90x -20D .120x =90x +209.关于x 的方程x +a x -1 +2a 1-x=2的解不小于0,则a 的取值范围是(A ) A .a ≤2且a ≠1 B .a ≥2且a ≠3 C .a ≤2 D .a ≥210.若数a 既使关于x 的不等式组⎩⎪⎨⎪⎧x -a 2+1≤x +a 3,x -2a >6无解,又使关于x 的分式方程x +a x +2 -a x -2=1的解小于4,则满足条件的所有整数a 的个数为(B ) A .2个 B .3个 C .4个 D .5个二、填空题(每小题3分,共24分)11.(绥化中考)若分式3x -4有意义,则x 的取值范围是x ≠4. 12.将代数式27 a 3b -2c -1表示成只含有正整数指数幂的形式为2a 37b 2c. 13.(武汉中考)计算2a a 2-16 -1a -4 的结果是1a +4. 14.(乐山中考改)如图,点A ,B 在数轴上,它们对应的数分别为-2,x x +1,且点A ,B 到原点的距离相等,则x 的值为-2.15.若x +y =1,且x ≠0,则(x +2xy +y 2x )÷x +y x的值为__1__. 16.若分式方程2x x -4 -a 4-x=0无解,则a =__-8__. 17.(盘锦中考)某班学生从学校出发前往科技馆参观,学校距离科技馆15 km ,一部分学生骑自行车先走,过了15 min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是20km/h.18.已知实数a ,b ,c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a ,b ,c 中只有两个数相等,则a +b +c =8.其中正确的结论是①③④(填序号).三、解答题(共66分)19.(8分)计算:(1)(-5×10-6)÷(8×105);(结果用科学记数法表示)解:原式=-6.25×10-12(2)(重庆中考)(a -1-4a -1a +1 )÷a 2-8a +16a +1. 解:原式=a 2-1-4a +1a +1 ·a +1(a -4)2 =a (a -4)a +1 ·a +1(a -4)2 =a a -420.(8分)解分式方程:(1)2-x x -3 =13-x -2; (2)7x 2+x +5x 2-x =6x 2-1. 解:(1)两边都乘以x -3,得2-x =-1-2(x -3),解得x =3.检验:x =3时,x -3=0,则x =3不是原分式方程的解,所以原分式方程无解(2)方程两边都乘以x(x +1)(x -1),得7(x -1)+5(x +1)=6x ,解得x =13 .经检验,x =13是原分式方程的解,所以原分式方程的解为x =1321.(7分)先化简式子(3x x -1 -x x +1 )÷x x 2-1 ,再从不等式组⎩⎪⎨⎪⎧x -2(x -1)≥1,6x +10>3x +1 的解集中取一个合适的整数值代入,求出式子的值.解:原式=3x x -1 ·(x +1)(x -1)x -x x +1 ·(x +1)(x -1)x=3(x +1)-(x -1)=2x +4.解不等式组⎩⎨⎧x -2(x -1)≥1,①6x +10>3x +1,② 解①,得x ≤1,解②,得x >-3, 故不等式组的解集为-3<x ≤1.要使原式有意义,则x -1≠0,x +1≠0,x ≠0,即x ≠1,x ≠-1,x ≠0,∴x 只能为-2.把x =-2代入,得原式=022.(8分)已知M =(3x x +1 -x x +1 )·x 2-1x +2,N =(1+1x -1 )÷1x 2-1-(x -1).小刚和小军在对上述式子进行化简之后,小刚说不论x 取何值(使M ,N 有意义),M 的值都比N 的值大;小军说不论x 取何值(使M ,N 有意义),N 的值都比M 的值大.请你判断他们谁的结论正确,并说明理由.解:小军的说法正确.理由:∵M =2x x +1 ·(x +1)(x -1)x +2=2(x -1)+2=2x ,N =x x -1·(x +1)(x -1)-x +1=x (x +1)-x +1=x 2+1,∴M -N =2x -x 2-1=-(x 2-2x +1)=-(x -1)2,∵x ≠1,∴(x -1)2>0,∴-(x -1)2<0,∴M <N23.(9分)学习“分式方程的应用”时,老师板书的问题如下:有甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度.经讨论,冰冰所列方程为:400x =600x +20;庆庆所列方程为:600y -400y =20.老师检查他们所设的未知数后,告诉他们所列的方程都是对的.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示甲队每天修路的长度,庆庆同学所列方程中的y 表示甲队修路400米所需时间(或乙队修路600米所需时间);(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并解答老师的例题.解:(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间; 庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米(选择一个即可)(3)①选冰冰的方程400x =600x +20.解得x =40. 经检验,x =40是原分式方程的解.答:甲队每天修路的长度为40米.②选庆庆的方程600y -400y=20.解得y =10. 经检验,y =10是原分式方程的解.所以400y =40010=40. 答:甲队每天修路的长度为40米24.(12分)我们把分子为1的分数叫做单位分数,如12 ,13 ,14,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如12 =13 +16 ,13 =14 +112 ,14 =15 +120,… (1)根据对上述式子的观察,你会发现15 =1□ +1○,请写出□,○所表示的数; (2)进一步思考,单位分数1n =1△ +1☆(n 是不小于2的正整数),请写出△,☆所表示的式子,并对等式加以验证;(3)应用你所发现的规律解方程:1(x -1)(x -2) +1(x -2)(x -3) +1(x -3)(x -4) =32x -2. 解:(1)15 =16 +130,即□=6,○=30 (2)△=n +1,☆=n (n +1),可得1n =1n +1 +1n (n +1), 右边=n n (n +1) +1n (n +1) =n +1n (n +1)=1n =左边,即等式成立 (3)由(2)可得1n (n +1) =1n -1n +1 ,∴原方程可化为: 1x -2 -1x -1 +1x -3 -1x -2 +1x -4 -1x -3 =32(x -1) ,1x -4 -1x -1 =32(x -1),x =6,经检验,x =6是原方程的解25.(14分)“一带一路”的倡议为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题:(1)A ,B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备,运输过程中产生的费用由甲国承担.请直接写出水路运输的次数.解:(1)设A 种设备每台的成本是x 万元,则B 种设备每台的成本是1.5x 万元.根据题意,得16x +361.5x =10,解得x =4.经检验,x =4是分式方程的解,∴1.5x =6(万元).答:A 种设备每台的成本是4万元,B 种设备每台的成本是6万元(2)设A 种设备生产a 台,则B 种设备生产(60-a)台.根据题意,得 ⎩⎨⎧(6-4)a +(10-6)(60-a )≥126,a ≥53,解得53≤a ≤57.∵a为整数,∴a=53,54,55,56,57.∴该公司有5种生产方案(3)设水路运输了m次,则航空运输(4-m)次,该公司赠送4m台A种设备,(8-2m)台B种设备,根据题意,得6(a-4m)+10[60-a-(8-2m)]-4a-6(60-a)=44,整理,得a+2m-58=0,解得m=29-12a.∵53≤a≤57,0<m<4,且a,m均为正整数,∴m=1或2.当m=1时,a=56,∴60-a=4,8-2m=6.∵4<6,∴m=1不合题意,舍去;当m =2时,a=54,∴60-a=6,8-2m=4.∵6>4,∴m=2符合题意.∴水路运输的次数为2次。
初中八年级数学上册第十五章综合测试卷3套及答案

x
1.
19.(6
分)解方程:
x
x 2
1
8 x2
. 4
20.已知
1 a
1 b
3
,求
2a a
3ab 2ab
2b b
的值.
21.(8 分)某超市用 5000 元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨了 11000 元 资金购进该品种苹果,但这次的进货价比试销时每千克多了 0.5 元,购进的苹果数量是试销时的 2 倍。 (1)试销时该品种苹果的进货价是每千克多少元? (2)如果超市将该品种苹果按每千克 7 元的定价出售,当大部分苹果售出后,余下的 400 kg 按定价的七折 (“七折”即定价的 70%)售完,那么超市在这两次苹果销售中共赢利多少元?
D. (3.14 π)0 1
6.分式
1 x2
1
,
x2
1 2x
1
,
x
1
1
的最简公分母是(
)
A. x2 1(x 1)
B. x2 1 x2 1
C. (x 1)2 x2 1
D. (x 1)2
7.关于
x
的分式方程
3x x2
1
x
m
2
无解,则
m
的值是(
)
A.2
B.5
C.6
D.7
8.某服装加工厂计划加工 400 套运动服,在加工完 160 套后,采用了新技术,工作效率比原计划提高了 20% ,
分)对于
x
1
2
和
3 2x 1
,你能找到一个合适的
x
值,使它们的值相等吗?写出你的解题过程.
16.(12 分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程 需要 60 天;若由甲队先做 20 天,剩下的工程由甲、乙合做 24 天可完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款 3.5 万元,乙队施工一天需付工程款 2 万元.若该工程计划在 70 天内完成, 在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工 程省钱?
人教版八年级数学上册第十五章综合测试卷含答案

人教版八年级数学上册第十五章综合测试卷一、选择题(每小题3分,共30分) 1.下列分式中,是最简分式的是( ) A .xy 2x 2B .x -1x 2-1C .x +y xD .1-x x -12. [母题教材P 145练习T 1]在标准状态下气体分子间的平均距离为0.000 33 m ,将0.000 33用科学记数法应表示为( ) A .3.3×10-4 B .33×10-3 C .3.3×10-3D .33×10-43.如果把分式3y x +y中的x 和y 都扩大2倍,那么分式的值( ) A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.[2024成都武侯区模拟]已知x =1是分式方程2ax+3a -x=34的解,则a的值为( ) A .-1B .1C .3D .-35.[2023唐山一模]若□x +y÷x y 2-x 2运算的结果为整式,则“□”中的式子可能是( ) A . y -xB . y +xC .2xD .1x6.化简(x -1+y -1)(x +y )-1的结果是( ) A . xyB .1xyC .1x 2y2D .1x 2+y 27. [新趋势 跨学科]相机成像的原理公式为1f=1u+1v(u ≠f ,v ≠f ),其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.下列用f ,u 表示v 正确的是( ) A . v =u -f fuB . v =fuf -uC . v =f -u fuD . v =fuu -f8.如图,下面的计算过程中,开始出现错误的一步是( )A.①B.②C.③D.④9.[2024德阳旌阳区二模]若5x-7x2-4x-5=Ax+1+Bx-5,则A,B的值为()A. A=3,B=-2B. A=2,B=3C. A=3,B=2D. A=-2,B=310.[2024东莞期末]设p=aa+1-bb+1,q=1a+1-1b+1,则p,q的关系是()A. p=qB. p>qC. p+q=0D. p<q二、填空题(每小题3分,共15分)11.计算:2-1+(π-1)0=.12. [母题教材P134习题T13] 若分式a 2-4a+2的值为零,则a的值是.13.A,B两地相距120 km,甲骑摩托车,乙驾驶小汽车,同时从A 地出发去B地.已知小汽车的速度是摩托车速度的1.6倍,乙中途休息了0.5 h还比甲早到0.4 h,则小汽车的速度为km/h.14.[2024常德期末]若关于x的分式方程2xx-1-1=mx-1无解,则m=.15. [新视角规律探索题]如图,将形状大小完全相同的“〇”按照一定的规律摆放,记图①中的“〇”的个数为a1,图②中的“〇”的个数为a2,图③中的“〇”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a n的值是(n为正整数).三、解答题(本大题共8个小题,满分75分)16.(8分) [母题教材P152练习]解方程:(1)4-xx-3+13-x=1;(2)x+1x-1-6x2-1=1.17.(9分)先化简,再求值:a 2-9a2+6a+9÷(1-3a),其中a=2.18.(9分)[2023长春]随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3 000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?19.(9分)(1)化简:a-1a ÷a2-2a+1a2.(2)把(1)中化简的结果记作A,将A中的分子与分母同时加上1后得到B,问:当a>1时,B的值与A的值相比变大了还是变小了?试说明理由.20.(9分)已知关于x的方程xx-3-2=k3-x.(1)当k=3时,求x的值;(2)若原方程的解是正数.求k的取值范围.21.(9分) [情境题游戏活动]小明和小强一起做分式的游戏,如图所示.他们面前各有三张牌(互相可以看到对方的牌),两人各自任选两张牌分别做分子和分母,组成一个分式,然后两人均取一个相同的x值,再计算分式的值,值大者为胜.为使分式有意义,他们约定x是大于3的正整数.(1)小明组成的分式中值最大的分式是,小强组成的分式中值最大的分式是;(2)小强思考了一下,哈哈一笑,说:“虽然我是三张带减号的牌,但最终我一定是胜者”小强说的有道理吗?请你通过计算说明.22.(11分)[2024鄂州华容区期末]阅读下面材料,解答下面的问题.解方程:x-1x -4xx-1=0.解:设y=x-1x,则原方程化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y =0的解.当y=2时,x-1x=2,解得x=-1;当y=-2时,x-1x =-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.∴原分式方程的解为x1=-1,x2=13.上述这种解分式方程的方法称为换元法.问题:(1)若在方程x-14x -xx-1=0中,设y=x-1x,则原方程可化为;(2)若在方程x-1x+1-4x+4x-1=0中,设y=x-1x+1,则原方程可化为;(3)仿照上述方法解方程:x-1x+2-3x-1-1=0.23.(11分)“五一”劳动节期间,某公司计划购买A,B两种型号的保温杯发给公司员工,已知每个A型保温杯的售价比B型保温杯的售价少10元,用1 200元购买A型保温杯的个数是用1 000元购买B型保温杯个数的32.请解答下列问题:(1)A,B两种型号的保温杯每个进价各是多少元?(2)若该公司购买B型保温杯比A型保温杯的个数少9个,且A型保温杯不少于38个,购买A,B两种型号保温杯的总费用不超过3 150元,请你求出该公司有哪几种购买方案.(3)为奖励公司的模范工作者,公司准备购买甲、乙两种奖品(两种奖品都要购买),所花费的金额与(2)中最少的费用相同,已知甲种奖品每个270元,乙种奖品每个240元,求出购买甲、乙两种奖品的个数.答案一、1. C 2. A 3. A 4. D 5. C 6. B 7. D 8. B 9. B 10. C二、11.32 12.2 13.80 14.2 15.n n+1三、16.【解】(1)去分母,得4-x -1=x -3. 解得x =3.检验:当x =3时,x -3=0,∴x =3不是原分式方程的解.∴原分式方程无解. (2)去分母,得(x +1)2-6=x 2-1. 解得x =2.检验:当x =2时,(x +1)(x -1)≠0, ∴原分式方程的解为x =2. 17.【解】a 2-9a 2+6a+9÷(1-3a)=(a+3)(a -3)(a+3)2÷a -3a=a -3a+3·aa -3=a a+3,当a =2时,原式=22+3=25.18.【解】设原计划平均每天制作x 个摆件,根据题意,得3 000x-3 0001.5x=5,解得x =200.经检验,x =200是原分式方程的根,且符合题意. 答:原计划平均每天制作200个摆件. 19.【解】(1)a -1a÷a 2-2a+1a 2=a -1a·a 2(a -1)2=aa -1.(2)当a >1时,B 的值与A 的值相比变小了.理由如下: B -A =a+1a-aa -1=a 2-1-a 2a (a -1)=-1a (a -1).当a >1时,a (a -1)>0,∴-1a (a -1)<0.∴B <A .∴当a >1时,B 的值与A 的值相比变小了.20.【解】(1)当k =3时,方程为xx -3-2=33-x,两边同乘以(x -3),得x -2(x -3)=-3,解得x =9.经检验,x =9是原分式方程的解.∴x 的值为9. (2)x x -3-2=k3-x,两边同乘以(x -3),得x -2(x -3)=-k ,解得x =6+k .∵原方程的解是正数,∴6+k >0.∴k >-6. ∵x ≠3,∴6+k ≠3.∴k ≠-3.∴k >-6且k ≠-3. 21.【解】(1)x+3x+1;x -1x -3(2)小强说的有道理,理由如下:x -1x -3-x+3x+1=(x -1)(x+1)(x -3)(x+1)-(x+3)(x -3)(x+1)(x -3)=8(x+1)(x -3).当x 是大于3的正整数时,(x +1)(x -3)>0, ∴8(x+1)(x -3)>0.∴x -1x -3>x+3x+1.故小强说的有道理.22.【解】(1)y 4-1y=0(2)y -4y=0(3)原方程可化为x -1x+2-x+2x -1=0,设y =x -1x+2,则上式化为y -1y=0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =±1都是方程y -1y =0的解.当y =1时,x -1x+2=1,该方程无解;当y =-1时,x -1x+2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.23.【解】(1)设每个A 型保温杯的进价是x 元,则每个B 型保温杯的进价是(x +10)元,根据题意,得1 200x=1 000x+10×32,解得x =40.经检验,x =40是所列分式方程的解,且符合题意,∴x +10=40+10=50.答:每个A 型保温杯的进价是40元,每个B 型保温杯的进价是50元.(2)设购买y 个A 型保温杯,则购买(y -9)个B 型保温杯,根据题意,得{y ≥38,40y +50(y -9)≤3 150,解得38≤y ≤40.∵y 为正整数,∴y 可以为38,39,40.∴该公司共有3种购买方案如下: 方案1:购买38个A 型保温杯,29个B 型保温杯; 方案2:购买39个A 型保温杯,30个B 型保温杯; 方案3:购买40个A 型保温杯,31个B 型保温杯.(3)易知(2)中选择购买方案1所需费用最少,最少为40×38+50×29=2 970(元).设购买m 个甲种奖品,n 个乙种奖品,根据题意,得 270m +240n =2 970,∴m =11-89n .∵m ,n 均为正整数,∴{m =3,n =9.∴购买3个甲种奖品,9个乙种奖品.。
最新人教版八年级数学上册第15章同步测试题及答案

最新人教版八年级数学上册第15章同步测试题及答案15.1 分式15.1.1 从分数到分式一、选择题1、下列说法正确的是( )A.如果A 、B 是整式,那么BA 就叫做分式 B.分式都是有理式,有理式都是分式C.只要分式的分子为零,分式的值就为零D.只要分式的分母为零,分式就无意义2、下列各式:①312-x ;②x x 22;③21x ;④πv .其中分式有( ) A.1个 B.2个 C.3个 D.4个3、分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零 B .分式无意义 C .若a ≠-13时,分式的值为零 D .若a ≠13时,分式的值为零 4、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±15、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 6、若分式23x x -的值为负,则x 的取值是( ) A.x <3且x ≠0 B.x >3 C.x <3 D.x >-3且x ≠07、如果代数式1-x x 有意义,那么x 的取值为( ) A.x ≥0 B.x ≠0 C.x >0 D.x ≥0且x ≠1二、填空题8、当x=________时,分式xx x -2的值为0. 9、当m________时,分式mm 4127-+有意义.10、当x=____________时,分式2)2(--x x x 无意义. 三、解答题11、要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12、已知y=123x x --,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.参考答案1.D2.B3.D4.D5.D6.A7.D8. 19.≠1410. 2 11.解:因为分式221y x x -+的值为零, 所以22100x x y +=⎧⎨-≠⎩, 解得:x=-1且22x y ≠,所以x=-1且y ≠±1.12.解:(1)当y 的值是正数时, 10230x x ->⎧⎨->⎩或10230x x -<⎧⎨-<⎩. 当10230x x ->⎧⎨->⎩时,无解;当10230x x -<⎧⎨-<⎩时, 解得213x <<. (2) 当y 的值是负数时,10230x x ->⎧⎨-<⎩或10230x x -<⎧⎨->⎩. 当10230x x ->⎧⎨-<⎩时,x>1;当10230x x -<⎧⎨->⎩时,23x <. (3)当y 的值是0时,10230x x -=⎧⎨-≠⎩, 解得x=1.(4)当分式无意义时,2-3x=0,解得x=23.15.1.2 分式的基本性质一、选择题1、在下列四组求最简公分母的分式中,其中求错了的一组是()A. 与的最简公分母是B. 与的最简公分母是C. 与的最简公分母是D. 与的最简公分母是2、下列等式成立的是( )A. B.C. D.3、分式可变形为()A. B.C. D.4、把分式中的分子、分母的、同时扩大倍,那么分式的值()A. 扩大倍B. 缩小倍C. 变为原来的D. 不改变5、对分式通分时,最简公分母是()A. B. C. D.6、下列分式是最简分式的是()A. B.C. D.7、化简的结果是()A. B.C. D.8、分式与下列分式相等的是()A. B.C. D.二、填空题9、化简分式的结果是________.10、不改变分式的值,把分子、分母的系数化为整数:______.11、分式与的最简公分母是_____.12、若,则____________.三、解答题13、约分:.14.参考答案1.B2.C3.D4.D5.D6.B7.B8.B9. 10. 11. 12.13.解:14.15.2 分式的运算基础巩固1.一种花瓣的花粉颗粒直径约为0.000 006 5米,0.000 006 5用科学记数法表示为( ).A.6.5×10-5B.6.5×10-6C.6.5×10-7D.65×10-62.化简2221121a aa a a a+-÷--+的结果是( ).A.1aB.a C.11aa+-D.11aa-+3.化简:2332x y xz yzz y x⎛⎫⎛⎫⎛⎫⋅⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭等于( ).A.232y zxB.xy4z2C.xy4z4D.y5z4.计算37444x x y yx y y x x y++----等于( ).A.264x yx y+--B.264x yx y+-C .-2D .2 5.化简111a ⎛⎫+ ⎪-⎝⎭÷221a a a -+的结果是( ). A .a +1 B .11a - C .1a a - D .a -16.若m 等于它自身的倒数,则分式22444m m m ++-÷222m m m +-的值为__________. 7.化简22221221121x x x x x x x x x +----÷--++的结果是__________. 能力提升8.已知a +b =3,ab =1,则a b b a+的值等于__________.9.先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =-4.10.特殊的问题中往往蕴含有一些规律与技巧,当一个问题出现时,不妨先观察一下问题的特征,探究出规律再应用于解题,这是数学中常用的“特殊——一般——应用”方法.请先阅读材料,再解题.计算1111(1)x x x x -=++, 即有111(1)1x x x x =-++. 试用上式计算:111112233420122013+++⋅⋅⋅+⨯⨯⨯⨯.11.有这样一道题:“计算2222111x x xxx x x-+-÷--+的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?12.已知两个分式:A=24 4x-,B=1122x x++-,其中x≠±2,下面有三个结论:①A=B;②A·B=1;③A+B=0.请问哪个正确?为么?参考答案1.B2.A 分析:原式=21(1)1(1)(1)(1)a aa a a a a+-⋅=-+-,故选A.3.B 分析:原式=3362337542232662()()()x y xz yz x y xz y z x y zz y x z y x x yz⋅⋅=⋅⋅==xy4z2.4.D 分析:37444x x y yx y y x x y++----=373()74444x x y y x x y yx y x y x y x y+-+---=----=282(4)44x y x yx y x y--=--=2.故选D.5.D 分析:111a⎛⎫+⎪-⎝⎭÷221aa a-+=2211(1)(1)111a a a aa a a a a---⎛⎫+⋅=⋅⎪---⎝⎭=a-1.6.±1 分析:222442214(2)(2)(2)m m m m mm m m m m m+++-÷⋅=-+-+.因为m等于它自身的倒数,所以m=±1,把m=±1代入,得1m=±1.7.11x-分析:22221221121x x x x xx x x x+----÷--++=21(2)(1)(2)1(1)(1)(1)x x x x xx x x x+-+--÷-+-+=21(2)(1)1(1)(1)(1)(2)x x x xx x x x x+-+-⋅-+-+-=1111111x x x xx x x x++--==----.8.7 分析:22()23211a b a b ab b a ab +--⨯+===7. 9.解:原式=2345222x x x x x ⎛⎫--÷- ⎪---⎝⎭=3212(3)(3)3x x x x x x --⋅=--++. 当x =-4时,原式=143-+=-1. 10.解:111111111112233420122013122334+++⋅⋅⋅+=-+-+-⨯⨯⨯⨯+…+12012-12013=1-12013=20122013. 11.解:因为2222111x x x x x x-+-÷-+-x =x -x =0, 所以x 取使原式有意义的任何值,原式的值都为0.所以甲同学计算结果也正确.12.解:③正确.理由:因为B =2112(2)422(2)(2)4x x x x x x x --+-==-+-+--,所以A +B =224444x x ---=0.15.3 分式方程一、选择题1.方程的解为( ). A.2B.1C.-2D.-1 2.解分式方程,可得( ). A.x =1B.x =-1C.x =3D.无解 3.要使的值和的值互为倒数,则x 的值为( ). A.0 B.-1 C. D.14.已知,若用含x 的代数式表示y ,则以下结果正确的是( ). A. B.y =x +2 C. D.y =-7x -25.若关于x 的方程有增根,则k 的值为( ). 132+=x x 12112-=-x x 54--x x xx --424214321--=+-y y x x 310+=x y 310x y -=xk x --=-1113A.3B.1C.0D.-1 6.若关于x 的方程有正数解,则( ). A.m >0且m ≠3B.m <6且m ≠3C.m <0D.m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ).A.小时B.小时C.小时D.小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).A.B. C. D. 二、填空题 9.当x =______时,两分式与的值相等. 10.关于x 的方程的解为______. 11.当a =______时,关于x 的方程的根是1. 12.若方程有增根,则增根是______. 13.关于x 的方程的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.三、解方程15.323-=--x m x x )(54b a +)11(54b a +)(54b a ab +b a ab +c a 22a c a c 22c a 44-x 13-x 324+=-b x a 4532=-+x a ax 114112=---+x x x 11=+x a .32121=-+--x x x16.17.四、列方程解应用题18.甲工人工作效率是乙工人工作效率的倍,他们同时加工1500个零件,甲比乙提前18小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.⋅+=+--1211422x x x x x ⋅-+=+-x x x x x 2531621220.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算,若由甲工程队单独完成这项工程,刚好如期完成;若由乙工程队单独完成此项工程,则要比规定工期多用6天.现先由甲、乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成.求该工程规定的工期天数.参考答案1.A 2.D 3.B 4.C 5.A 6.B 7.C 8.A9.-8 10. 11. 12.x =1 13.a <1且a ≠0. 14.小时. 15.无解. 16. 17.无解. 18.解:设乙的工作效率为x 个/时,甲的工作效率为个/时. .解得.经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.解:设自行车的速度为x 千米/时,汽车的速度为2.5x 千米/时..解得x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.解:设该工程规定的工期天数为x ,则甲工程队单独做x 天完成该工程,乙工程队单独做(x+6)天完成该工程.根据题意得:解得:x=6. 经检验,x=6是原方程的根,且符合题意.答:该工程规定的工期天数是6.⋅--=462b a x ⋅-=317a 20+v s ⋅-=21x x 25182515001500+=x x 50=x xx 502215.250=++。
人教版八年级数学上册第十五章分式单元测试题(有答案)

. 若每个甲种零件的进价
比每个乙种零件的进价少 2 元 , 且用 80 元购进甲种零件的数量与用 100 元购进乙种零件的数量相同 .
(1) 求每个甲种零件、每个乙种零件的进价分别为多少元
?
(2) 若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的
3 倍还少 5 个 , 购进两种零件的
总数量不超过 95 个 , 该五金商店每个甲种零件的销售价格为 12 元 , 每个乙种零件的销售价格为 15
由题意 , 得
, 解得 x=10.
检验 : 当 x=10 时 ,x(x- 2) ≠0, 故 x=10 是原分式方程的解 . 10-2=8( 元 ). 故每个甲种零件的进价为 8 元 , 每个乙种零件的进价为 10 元. (2) 设购进乙种零件 y 个, 则购进甲种零件 (3y-5) 个 , 由题意 , 得
为
.
10. 如果实数 x 满足 x 2+2x-3=0, 那么
的值为
.
11. 若关于 x 的方程
无解 , 则 m的值是
.
12. 甲、乙工程队分别承接了 160 m,200 m 的管道铺设任务 , 已知乙工程队比甲工程队每天多铺设 5
m,甲、乙工程队完成铺设任务的时间相同 , 问甲工程队每天铺设多少米 ?设甲工程队每天铺设 x m,
A. 是原来的 20 倍
B. 是原来的 10 倍
C.
是原来的
D. 不变
3. 计算 -2 2+(-2) 2-
=( )
A.2
B.-2
C.6
4. 能使分式 的值为 0 的 x 的值是 ( )
A.x=0
B.x=1
C.x=0
5. 化简 :
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
人教版八年级数学上册第十五章分式同步检测题含答案
人人人人人人人人人人人人人人人人人人人人15.1分式一、选择题(本大题共10小题,共30分)1.不改变分式的值,使分式的分子、分母中x的最高次数式的系数都是正数,应该是()。
A. B. C. D.2.下列各个算式中正确的是()A. B. C. D.3.无论x取什么数时,总是有意义的分式是().A. B. C. D.4.将分式中的a,b都扩大到原来的3倍,则分式的值().A.不变B.扩大3倍C.扩大6倍D.扩大9倍5.要使分式有意义,则a取值应是()A.-1B.1C.D.任意实数6.若把分式中的字母x和y都扩大3倍,分式的值将().A.不变B.扩大3倍C.缩小为原来的D.扩大9倍7.下列各式中,约分后得的是().A. B. C. D.8.下列约分正确的是()A. B. C. D.9.若分式无意义,则x的取值范围是.A. B. C.且 D.或10.若分式的值为零,则x的值是A.2B.C.D.4二、填空题(本大题共5小题,共15分)11.若,则A=_________。
13.分式的值是m,如果分式中x,y用它们的相反数代入,那么所得的值为n,那么m,n的关系是________。
14.对于分式,有下列三种说法:①它的值可以是正数;②它的值可以是负数;③它的值可以是0。
其中,正确的说法是________(填序号)。
15.当x=2时,分式的值为1,则k,m必须满足的条件是_________。
三、计算题(本大题共2小题,共18分)16.通分:(1)与(2)与(3)与17.约分:(1)(2)(3)四、解答题(本大题共6小题,共57分)18.(8分)已知分式,当x=4时,分式没有意义;当x=-3时,分式的值为零。
求分式的值。
19.(8分)已知分式,当x=-1时,分式无意义;当x=4时,分式的值为0,求的值。
20.(10分)某项工程,甲队单独做需要x天完成,乙队单独做需要y天完成.现甲、乙两队合作。
(1)用含x,y的式子表示合作完成该项工程的天数;(2)若甲队单独完成需要20天,乙队单独完成需要30天,则两队合作需要多少天完成?21.(10分)先将分式约分,然后代入你喜欢的一个值求分式的值。
人教版八年级数学上册第十五章测试题及答案
第十五章 分式得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.若分式x 2-4x的值为0,则x 的值是(A ) A .2或-2 B .2 C .-2 D .02.(宜宾中考)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000 052米.将0.000 052用科学记数法表示为(B )A .5.2×10-6B .5.2×10-5C .52×10-6D .52×10-53.分式①a +2a 2+3 ,②a -b a 2-b 2 ,③4a 12(a -b ) ,④1x -2中,最简分式有(B ) A .1个 B .2个 C .3个 D .4个4.(益阳中考)解分式方程x 2x -1 +21-2x=3时,去分母化为一元一次方程,正确的是(C )A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)5.(白银中考)下面的计算过程中,从哪一步开始出现错误(B )A .①B .②C .③D .④6.下列计算正确的是(B )A .⎝⎛⎭⎫b a 2=b 2a B .a 2÷a -1=a 3 C .1x +1y =2x +y D .-x -y x -y =-1 7.如果x +y 3x =12,那么y x 的值为(B ) A .23 B .12 C .13 D .258.(湘潭中考)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为(B )A .120x -20 =90xB .120x +20 =90xC .120x =90x -20D .120x =90x +209.关于x 的方程x +a x -1 +2a 1-x=2的解不小于0,则a 的取值范围是(A ) A .a ≤2且a ≠1 B .a ≥2且a ≠3 C .a ≤2 D .a ≥210.若数a 既使关于x 的不等式组⎩⎪⎨⎪⎧x -a 2+1≤x +a 3,x -2a >6无解,又使关于x 的分式方程x +a x +2 -a x -2=1的解小于4,则满足条件的所有整数a 的个数为(B ) A .2个 B .3个 C .4个 D .5个二、填空题(每小题3分,共24分)11.(绥化中考)若分式3x -4有意义,则x 的取值范围是x ≠4. 12.将代数式27 a 3b -2c -1表示成只含有正整数指数幂的形式为2a 37b 2c. 13.(武汉中考)计算2a a 2-16 -1a -4 的结果是1a +4. 14.(乐山中考改)如图,点A ,B 在数轴上,它们对应的数分别为-2,x x +1,且点A ,B 到原点的距离相等,则x 的值为-2.15.若x +y =1,且x ≠0,则(x +2xy +y 2x )÷x +y x的值为__1__. 16.若分式方程2x x -4 -a 4-x=0无解,则a =__-8__. 17.(盘锦中考)某班学生从学校出发前往科技馆参观,学校距离科技馆15 km ,一部分学生骑自行车先走,过了15 min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是20km/h.18.已知实数a ,b ,c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a ,b ,c 中只有两个数相等,则a +b +c =8.其中正确的结论是①③④(填序号).三、解答题(共66分)19.(8分)计算:(1)(-5×10-6)÷(8×105);(结果用科学记数法表示)解:原式=-6.25×10-12(2)(重庆中考)(a -1-4a -1a +1 )÷a 2-8a +16a +1. 解:原式=a 2-1-4a +1a +1 ·a +1(a -4)2 =a (a -4)a +1 ·a +1(a -4)2 =a a -420.(8分)解分式方程:(1)2-x x -3 =13-x -2; (2)7x 2+x +5x 2-x =6x 2-1. 解:(1)两边都乘以x -3,得2-x =-1-2(x -3),解得x =3.检验:x =3时,x -3=0,则x =3不是原分式方程的解,所以原分式方程无解(2)方程两边都乘以x(x +1)(x -1),得7(x -1)+5(x +1)=6x ,解得x =13 .经检验,x =13是原分式方程的解,所以原分式方程的解为x =1321.(7分)先化简式子(3x x -1 -x x +1 )÷x x 2-1 ,再从不等式组⎩⎪⎨⎪⎧x -2(x -1)≥1,6x +10>3x +1 的解集中取一个合适的整数值代入,求出式子的值.解:原式=3x x -1 ·(x +1)(x -1)x -x x +1 ·(x +1)(x -1)x=3(x +1)-(x -1)=2x +4.解不等式组⎩⎨⎧x -2(x -1)≥1,①6x +10>3x +1,② 解①,得x ≤1,解②,得x >-3, 故不等式组的解集为-3<x ≤1.要使原式有意义,则x -1≠0,x +1≠0,x ≠0,即x ≠1,x ≠-1,x ≠0,∴x 只能为-2.把x =-2代入,得原式=022.(8分)已知M =(3x x +1 -x x +1 )·x 2-1x +2,N =(1+1x -1 )÷1x 2-1-(x -1).小刚和小军在对上述式子进行化简之后,小刚说不论x 取何值(使M ,N 有意义),M 的值都比N 的值大;小军说不论x 取何值(使M ,N 有意义),N 的值都比M 的值大.请你判断他们谁的结论正确,并说明理由.解:小军的说法正确.理由:∵M =2x x +1 ·(x +1)(x -1)x +2=2(x -1)+2=2x ,N =x x -1·(x +1)(x -1)-x +1=x (x +1)-x +1=x 2+1,∴M -N =2x -x 2-1=-(x 2-2x +1)=-(x -1)2,∵x ≠1,∴(x -1)2>0,∴-(x -1)2<0,∴M <N23.(9分)学习“分式方程的应用”时,老师板书的问题如下:有甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度.经讨论,冰冰所列方程为:400x =600x +20;庆庆所列方程为:600y -400y =20.老师检查他们所设的未知数后,告诉他们所列的方程都是对的.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示甲队每天修路的长度,庆庆同学所列方程中的y 表示甲队修路400米所需时间(或乙队修路600米所需时间);(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并解答老师的例题.解:(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间; 庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米(选择一个即可)(3)①选冰冰的方程400x =600x +20.解得x =40. 经检验,x =40是原分式方程的解.答:甲队每天修路的长度为40米.②选庆庆的方程600y -400y=20.解得y =10. 经检验,y =10是原分式方程的解.所以400y =40010=40. 答:甲队每天修路的长度为40米24.(12分)我们把分子为1的分数叫做单位分数,如12 ,13 ,14,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如12 =13 +16 ,13 =14 +112 ,14 =15 +120,… (1)根据对上述式子的观察,你会发现15 =1□ +1○,请写出□,○所表示的数; (2)进一步思考,单位分数1n =1△ +1☆(n 是不小于2的正整数),请写出△,☆所表示的式子,并对等式加以验证;(3)应用你所发现的规律解方程:1(x -1)(x -2) +1(x -2)(x -3) +1(x -3)(x -4) =32x -2. 解:(1)15 =16 +130,即□=6,○=30 (2)△=n +1,☆=n (n +1),可得1n =1n +1 +1n (n +1), 右边=n n (n +1) +1n (n +1) =n +1n (n +1)=1n =左边,即等式成立 (3)由(2)可得1n (n +1) =1n -1n +1 ,∴原方程可化为: 1x -2 -1x -1 +1x -3 -1x -2 +1x -4 -1x -3 =32(x -1) ,1x -4 -1x -1 =32(x -1),x =6,经检验,x =6是原方程的解25.(14分)“一带一路”的倡议为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题:(1)A ,B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备,运输过程中产生的费用由甲国承担.请直接写出水路运输的次数.解:(1)设A 种设备每台的成本是x 万元,则B 种设备每台的成本是1.5x 万元.根据题意,得16x +361.5x =10,解得x =4.经检验,x =4是分式方程的解,∴1.5x =6(万元).答:A 种设备每台的成本是4万元,B 种设备每台的成本是6万元(2)设A 种设备生产a 台,则B 种设备生产(60-a)台.根据题意,得 ⎩⎨⎧(6-4)a +(10-6)(60-a )≥126,a ≥53,解得53≤a ≤57.∵a为整数,∴a=53,54,55,56,57.∴该公司有5种生产方案(3)设水路运输了m次,则航空运输(4-m)次,该公司赠送4m台A种设备,(8-2m)台B种设备,根据题意,得6(a-4m)+10[60-a-(8-2m)]-4a-6(60-a)=44,整理,得a+2m-58=0,解得m=29-12a.∵53≤a≤57,0<m<4,且a,m均为正整数,∴m=1或2.当m=1时,a=56,∴60-a=4,8-2m=6.∵4<6,∴m=1不合题意,舍去;当m =2时,a=54,∴60-a=6,8-2m=4.∵6>4,∴m=2符合题意.∴水路运输的次数为2次。
第十五章周测(15.2.2~15.2.3)【习题课件】八年级上册人教版数学
.
−
-2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
周测(15.2.2~15.2.3)
一、选择题
二、填空题
三、解答题
14. 【教材第147页习题15.2第12题改编】我国是一个水资源贫乏的国
家,每一个公民都应自觉养成节约用水的意识和习惯.为提高水资源的
利用率,某住宅小区安装了循环用水装置. 经测算,原来 a 天用水 b
三、解答题
10. (2023·沧州模拟预测)小敏在做数学作业时,不小心将式子中除号后
边的代数式污染,即
−
−
被污染的代数式█为(
C
+
A.
+
+
B.
−
−
C.
+
+
D.
−
1
2
3
4
5
6
−
÷█,通过查看答案,答案为
,则
−
)
7
8
9
10
11
12
13
14
三、解答题
−+
÷
,其中 x =4.
−
+
−+
− (+)(−)
−
解:原式=(
-
)÷
=
·
=
.
+
+
−
+
(−)
−
−
当 x =4时,原式=
= .
−
1
人教版八年级上册数学 第十五章 分式 单元测试卷
人教版八年级上册数学第15章分式单元测试卷一.选择题(36分)1.化简xy y x y x ---22的结果是()A.-x-yB.x+yC.x-yD.-x+y2.下列分式是最简分式的是()A、11m m--;B、3xy yxy -;C、22x yx y -+;D、6132mm-;3.在式子a 1,1-x ,m 3,3b ,b a c -,()y x +43,5122++x x ,n m nm +-中,分式的个数是()A、6B、5C、4D、34.若把分式x yxy+中的,x y 都扩大3倍,那么分式的值()A.缩小3倍B.扩大3倍C.不变D .缩小9倍5.已知2111=-b a ,则ba ab -的值是()A.21 B.-21 C.2D.-26.下列各式正确的是()A、c c a b a b =----;B、c c a b a b =---+;C、c c a b a b =--++;D、c ca b a b-=----7.环境空气质量问题已经成为人们日常生活所关心的重要问题。
我国新修订的《环境空气质量标准》中增加了 2.5PM 监测指标,“ 2.5PM ”是指大气中危害健康的直径小于或等于2.5微米的颗粒物。
2.5微米即0.0000025米。
用科学记数法表示0.0000025为()A.52.510-⨯B.52.510⨯C.62.510-⨯D.62.510⨯8.一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要()小时。
A、ba 11+B、ab1C、ba +1D、ba ab +9.已知:a 2﹣3a+1=0,则a+﹣2的值为()A.4B.1C.﹣1D.﹣510.若方程7667=----xkx x 有增根,则k 的值是()A.-1B.0C.1D.611.若分式73222++y y 的值为41,则21461y y +-的值为()A、1B、-1C、-71D、5112.下列分式中,无论x 取任意实数都有意义的是()A.221x x --B.22x x -C.2x x -D.221x x -+二.填空(16分)13.化简333x x x+--结果是___________14.不改变分式的值,把分式144132a ba b +-的分子与分母中各项的系数都化为整数,其结果.15.若2222,2ba b ab a b a ++-=则=16.当41=+m m 时,221mm +的值为________17.已知+=3,则代数式的值为.18.已知关于x 的分式方程﹣=1的解为负数,则k 的取值范围是.19.如果分式121+-x x 的值为-1,则x 的值是;已知31=b a ,分式ba ba 52-+的值为20.当m 满足条件:时,分式方程1133mx x =---有增根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章整式的乘除与因式分解
一、耐心选一选,你会开心(每小题2分,计20分)
1.计算a 3·a 4的结果是( ) A 、a 12 B 、a C 、a 7 D 、2a 3
2、(m 2)3等于 ( ) A 、m 5 B 、m 6 C 、m 8 D 、m 9
3、下面计算正确的是( )A 、20=-1 B 、4=±2 C 、(m ·n 3)2=m ·n 6 D 、m 6÷m 2=m 4
4、下列多项式中,能用公式法分解因式的是( )
A 、x 2-xy
B 、x 2-y 2
C 、x 2+xy
D 、x 2+y 2
5、分解因式(x+y )2+8(x+y)+16的结果是( )
A 、(x+y+4)2
B 、(x+y+8)2
C 、(x+y+6)2
D 、(x+y+2)2
6、已知a-b=3,ab=1,则a 2+b 2=( )A 、5 B 、7 C 、9 D 、11
7、(-2)2n+1+2·(-2)2n 的运算结果是( )A 、-22n+1 B 、22n+1 C 、0 D 、1
8、当a=43
时,代数式(28a 3-28a 2+7a )÷7a 的值是( )
A 、6.25
B 、0.25
C 、-2.25
D 、-4
9、(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2)等于( )
A 、-8x 2y 2+4xy-1
B 、-8x 2y 2-4xy-1
C 、-8x 2y 2+4xy+1
D 、-8x 2y 2+4xy
10、对于任意整数m,多项式(4m+5)2-9都能( )
A 、被8整除
B 、被m 整除
C 、被(m-1)整除
D 、被(2m-1)整除
二、精心填一填,你会轻松(每小题3分,计30分)
11、计算:(2-3)·(2+3)=
12、如果多项式x 2+kx+16是一个完全平方式,则k=
13、若果单项式4a m bc 与m 1
a 2bc 的差是单项式,那么这两个单项式的积是
14、分解因式:2m 3-8m=
15、一个长方形的面积是a 2bc,它的长为51
ac,则它的宽为
16、计算:(a+b )(a-b)(a 2+b 2)-(a 4+b 4)=
17、(x-3)(x-n )=x 2+mx-15,则m= ,n=
18、(4x 2+3xy-23
x )·2x=
19、计算:20032-2002×2004=
20、化简:1+x+x(1+x)+x(1+x)2+……+x(1+x)2008=
三、细心做一做,你会成功(共50分)
21、(6分)计算:
⑴2a 5·(-a)2-(-a 2)3·(-7a)
⑵(x-4y) ·(2x+3y)-(x+2y) ·(x-y)
22、(8分)先化简后求值:
⑴〔2x-
32y-(x-y)〕2-32xy,其中x=1,y=9
⑵(3x-y)2-(2x+y)2-5x(x-y),其中x=2,y=1
23、(8分)因式分解:
⑴a 3-ab
2 ⑵(x 2-4x)2+8(x 2
-4x)+16
24、(8分)一种液体每升含有1012个有害细菌,经过试验,一滴杀菌剂能杀死109个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?
25、(10分)已知:xy=3,x+y=7,求下列式子的值
⑴x 2+xy+y 2 ⑵(x-y )2
26、(10分)观察下列式子;
①32-12=(3+1)·(3-1)=8 ②52-32=(5+3)·(5-3)=16
③72-52=(7+5)·(7-5)=24 ④92-72=(9+7)·(9-7)=32
求:⑴20072-20052=
⑵结论:任意两个连续奇数的平方差一定是 ,并说明理由。