限制性内切酶酶切位点保护碱基

合集下载

酶切位点——精选推荐

酶切位点——精选推荐

PCR引物设计时酶切位点的保护碱基表
不同内切酶对识别位点以外最少保护碱基数目的要求(在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。


注释
1.如果要加在序列的5’端,就在酶切位点识别碱基序列(红色)的5’端加上相
应的碱基(黑色),如果要在序列的3’端加上保护碱基,就在酶切位点识别碱基序列(红色)的3’端加上相应的碱基(黑色)。

2.切割率:正确识别并切割的效率。

3.加保护碱基时最好选用切割率高时加的相应碱基。

限制性内切酶酶切位点汇总

限制性内切酶酶切位点汇总

限制性内切酶酶切位点汇总限制性内切酶(Restriction Endonuclease)是一类存在于细菌体内的酶,它能够识别特定的酶切位点,并在该位点上切割DNA链。

限制性内切酶起源于细菌,原本作为细菌对抗噬菌体感染的防御机制,但现在被广泛应用于分子生物学和基因工程领域。

限制性内切酶的分类和命名依据它们发现的第一个类型的噬菌体。

如EcoRI是从大肠杆菌中分离出的内切酶,与T4噬菌体相关;HindIII是与T4噬菌体有关的内切酶等。

酶名中的缩写首字母通常是酶切位点的首字母,比如EcoRI是指E.coli的RY粘性末端的切点。

现在限制性内切酶已被发现有超过3000多个类型。

下面是一些常见的限制性内切酶的切割位点汇总:1. EcoRI:切割位点为G↓AATTC(↓表示切割位点),产生的切割后的两个DNA片段是G-AATTC和CTTAA-G。

2. HindIII:切割位点为A↓AGCTT,产生的切割后的两个DNA片段是A-AGCTT和TTCGA-A。

3. SmaI:切割位点为CCC↓GGG,产生的切割后的两个DNA片段是CCC-GGG和GGG-CCC。

4. BamHI:切割位点为G↓GATCC,产生的切割后的两个DNA片段是G-GATCC和CCTAG-G。

5. XhoI:切割位点为C↓TCGAG,产生的切割后的两个DNA片段是C-TCGAG和GAGCT-C。

6. NotI:切割位点为GC×GGCCGC,产生的切割后的两个DNA片段是GC-GGCCGC和CGC-GC。

7. EcoRV:切割位点为GAT↓ATC,产生的切割后的两个DNA片段是GAT-ATC和TAC-TAG。

8. KpnI:切割位点为GGTAC↓C,产生的切割后的两个DNA片段是GGTAC-C和CCATG-G。

9. SalI:切割位点为G↓TCGAC,产生的切割后的两个DNA片段是G-TCGAC和CAGCT-G。

10. PstI:切割位点为CTGCA↓G,产生的切割后的两个DNA片段是CTGC-AG和GACG-T。

PCR设计引物时酶切位点的保护

PCR设计引物时酶切位点的保护

PCR设计引物时酶切位点的保护注释:1.如果要加在序列的5‘端,就在酶切位点识别碱基序列(红色)的5’端加上相应的碱基(黑色),相同如果要在3‘端加保护碱基,就在酶切位点识别碱基序列(红色)的3’端加上相应的碱基(黑色)。

2.切割率:正确识别并酶切的效率3。

加保护碱基时最好选用切割率高时加的相应碱基。

为什么要添加保护碱基?在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

该如何添加保护碱基?添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。

取1?g已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。

反应缓冲液含70mM Tris-HCl (pH 7.6), 10 mM MgCl2 , 5 mMDTT及适量的NaCl或KCl(视酶的具体要求而定)。

部分限制酶酶切位点、保护性碱基及酶切效率表doc

部分限制酶酶切位点、保护性碱基及酶切效率表doc

New England Biolabs Technical Literature - Updated 03/13/2004 部分限制酶酶切位点、保护性碱基及酶切效率表Cleavage Close to the End of DNA Fragments (oligonucleotides)NOTE: To test the varying requirements restriction endonucleases have for the number of bases flanking their recognition sequences, a series of short, double-stranded oligonucleotides that contain the restriction endonuclease recognition sites (shown in red) were digested. This information may be helpful when choosing the order of addition of two restriction endonucleases for a double digest (a particular concern when cleaving sites close together in a polylinker), or when selecting enzymes most likely to cleave at the end of a DNA fragment. The experiment was performed as follows: 0.1 A260 unit of oligonucleotide was phosphorylated using T4 polynucleotide kinase and g-[32P] ATP. 1 μg of 5′ [32P]-labeled oligonucleotide was incubated at 20°C with 20units of restriction endonuclease in a buffer containing 70 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM DTT and NaCl or KCl depending on the salt requirement of each particular restriction endonuclease. Aliquots were taken at 2 hours and 20 hours and analyzed by 20% PAGE (7 M urea). Percent cleavage was determined by visual estimate of autoradiographs. As a control, self-ligated oligonucleotides were cleaved efficiently. Decreased cleavage efficiency for some of the longer palindromic oligonucleotides may be caused by the formation of hairpin loops.。

保护碱基

保护碱基

保护碱基
限制性内切酶识别特定的DNA序列,除此之外,酶蛋白还要占据识别位点两边的若干个碱基,这些碱基对内切酶稳定的结合到DNA双链并发挥切割DNA作用是有很大影响的,被称为保护碱基。

在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

添加原则
1、添加保护碱基,需要考虑两个因素:一是碱基数目,一是碱基种类。

2、添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,
添加几个保护碱基,是有数据可以参考的,见附表。

3、添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC
含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

附表一、靠近PCR片段末端识别位点的酶切效率(Fermentas)
当识别位点靠近DNA分子末端时,有些限制酶的酶切效率非常低。

表列出了Fermentas 公司限制酶的识别位点靠近PCR片段末端不同碱基数的切割效率。

(酶切时间为16小时)
2、保护碱基列表(BioLabs)。

限制性内切酶酶切位点保护碱基

限制性内切酶酶切位点保护碱基

寡核苷酸近末端位点的酶切
(Cleavage Close to the End of DNA Fragments (oligonucleotides))
为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

单位的寡实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A
260
核苷酸。

取1 µg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别
, 反应2小时和20小时。

反应缓冲液含70 mM Tris-HCl (pH 7.6), 10 mM MgCl
2
5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。

20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。

本实验采用自连接的寡核苷酸作为对照。

若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

酶切位点保护碱基

酶切位点保护碱基-PCR引物设计用于限制性内切酶酶切反应来源:easylabs 发布时间:2009-11-08 查看次数:12704本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,A flIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,E coRI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,N siI,PacI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,S peI,SphI,StuI,XbaI,XhoI,XmaI,为什么要添加保护碱基?在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

该如何添加保护碱基?添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A2 60单位的寡核苷酸。

保护碱基

首先要明确什么是保护碱基限制性内切酶识别特定的DNA序列,除此之外,酶蛋白还要占据识别位点两边的若干个碱基,这些碱基对内切酶稳定的结合到DNA双链并发挥切割DNA作用是有很大影响的,被称为保护碱基。

添加保护碱基的目的在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

但实验证明,大多数限制酶对裸露的酶切位点不能切断。

必须在酶切位点旁边加上一个至几个保护碱基,才能使所定的限制酶对其识别位点进行有效切断。

因此在设计PCR引物时,为保护5` 端外加的内切酶识别位点,人为地在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高酶切时的活性,使酶切完全。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

添加保护碱基的原则添加保护碱基,需要考虑两个因素:一是碱基数目,一是碱基种类。

添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA段上。

如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

酶切位点

PCR引物设计时酶切位点的保护碱基表
不同内切酶对识别位点以外最少保护碱基数目的要求(在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。


注释
1.如果要加在序列的5’端,就在酶切位点识别碱基序列(红色)的5’端加上相
应的碱基(黑色),如果要在序列的3’端加上保护碱基,就在酶切位点识别碱基序列(红色)的3’端加上相应的碱基(黑色)。

2.切割率:正确识别并切割的效率。

3.加保护碱基时最好选用切割率高时加的相应碱基。

关于保护碱基

关于保护碱基1.首先要明确什么是保护碱基限制性内切酶识别特定的DNA序列,除此之外,酶蛋白还要占据识别位点两边的若干个碱基,这些碱基对内切酶稳定的结合到DNA双链并发挥切割DNA 作用是有很大影响的,被称为保护碱基。

2.添加保护碱基的目的在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

但实验证明,大多数限制酶对裸露的酶切位点不能切断。

必须在酶切位点旁边加上一个至几个保护碱基,才能使所定的限制酶对其识别位点进行有效切断。

因此在设计PCR引物时,为保护5` 端外加的内切酶识别位点,人为地在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高酶切时的活性,使酶切完全。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

3.添加保护碱基的原则添加保护碱基,需要考虑两个因素:一是碱基数目,一是碱基种类。

添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA段上。

如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寡核苷酸近末端位点的酶切
(Cleavage Close to the End of DNA Fragments (oligonucleotides))
为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A
单位的寡
260
核苷酸。

取1 µg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别
, 5 mM 反应2小时和20小时。

反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCl
2
DTT及适量的NaCl或KCl(视酶的具体要求而定)。

20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。

本实验采用自连接的寡核苷酸作为对照。

若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

DNA合成,新链的延伸方向是5→3因此,需要在5端加上酶切位点,因为内切酶除了有特异的识别位点之外,还需多几个无需特异性的碱基提供一个platform让它可以结合上去,否则会掉下来. 引物的结构就是(5→3):保护碱基+酶切位点+原来的引物序列
首先要看目的基因中是否含有该酶切位点,只有没有的才可以选(小虾米酶切位点分析)。

其次,如果需要做表达,需要考虑起始密码子,防止移码突变。

相关文档
最新文档