余弦定理的证明

合集下载

余弦定理的10种证明方法

余弦定理的10种证明方法

余弦定理的10种证明方法一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ∆中,已知AB c =,BC a =,CA b =,则有2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在ABC ∆中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ∆中,由CB AB AC =-可得:()()CB CB AB AC AB AC ⋅=-⋅-222AB AC AB AC =+-⋅222cos b c bc A =+-即,2222cos a b c bc A =+-.证法二:本方法要注意对A ∠进行讨论.(1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-︒=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则在Rt ACD ∆中,cos AD b A =,sin CD b A =.从而,cos BD AB AD c b A =-=-.在Rt BCD ∆中,由勾股定理可得: 222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的图1CAB图2-1DCAB点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上.(3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ∆中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=.从而,cos BD AB AD c b A =+=-.在Rt BCD ∆中,由勾股定理可得:222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则在Rt ABD ∆中,sin BD c α=,cos ADc α=.在Rt ACD ∆中,sin CD b β=,cos ADbβ=.由cos cos()cos cos sin sin A αβαβαβ=+=-可得:2cos AD AD BD CD AD BD CDA c b c b bc-⋅=⋅-⋅=2222AD BD CD bc -⋅=222222c BD b CD BD CD bc -+--⋅=222()2b c BD CD bc +-+=2222b c a bc+-=整理可得2222cos a b c bc A =+-. 证法四:在ABC ∆中,由正弦定理可得sin sin sin sin()a b c cA B C A B ===+. 从而有sin sin b A a B =,………………………………………………………………①sin sin()sin cos cos sin c A a A B a A B a A B =+=+. …………………………②将①带入②,整理可得cos cos a B c b A =-.…………………………………………③ 将①,③平方相加可得22222(cos )(sin )2cos a c b A b A b c bc A =-+=+-.图2-2DBACβα图3DBAC即,2222cos a b c bc A =+-.证法五:建立平面直角坐标系(如图4),则由题意可得点(0,0)A ,(,0)B c ,(cos ,sin )C b A b A ,再由两点间距离公式可得2a =22(cos )(sin )c b A b A -+222cos c cb A b =-+.即,2222cos a b c bc A =+-.证法六:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,222224sin 4sin ()a R A R B C ==+222224(sin cos cos sin 2sin sin cos cos )R B C B C B C B C =++ 222224(sin sin 2sin sin 2sin sin cos cos )R B C B C B C B C =+-+ 2224(sin sin 2sin sin cos())R B C B C B C =+++ 2224(sin sin 2sin sin cos )R B C B C A =+-22(2sin )(2sin )2(2sin )(2sin )cos R B R C R B R B A =+-222cos b c bc A =+-即,结论成立.证法七:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,2222cos a b c bc A =+-22222224sin 4sin 4sin 8sin sin cos R A R B R C R B C A ⇔=+-2222sin 2sin 2sin 4sin sin cos A B C B C A ⇔=+- 22sin 2cos 2cos 24sin sin cos A B C B C A ⇔=-+-222cos 22cos()cos()4sin sin cos A B C B C B C A ⇔-=-+-- 由于cos()cos()cos B C A A π+=-=-,因此2cos cos()cos()2sin sin cos A B C B C B C A ⇔=+-+cos cos()2sin sin A B C B C ⇔=--+cos cos cos sin sin cos()A B C B C B C ⇔=-+=-+. 这,显然成立.xy图4BA(O)C即,结论成立.证法八:如图5,以点C 为圆心,以CA b =为半径作C ,直线BC 与C e 交于点,D E ,延长AB 交C e 于F ,延长AC 交C e 于G .则由作图过程知2cos AF b A =, 故2cos BF b A c =-.由相交弦定理可得:BA BF BD BE ⋅=⋅, 即,(2cos )()()c b A c b a b a ⋅-=+⋅-, 整理可得:2222cos a b c bc A =+-.证法九:如图6,过C 作CD ∥AB ,交ABC ∆的外接圆于D ,则AD BC a ==,BD AC b ==.分别过,C D 作AB 的垂线,垂足分别为,E F ,则cos AE BF b A ==,故2cos CD c b A =-.由托勒密定理可得AD BC AB CD AC BD ⋅=⋅+⋅, 即,(2cos )a a c c b A b b ⋅=⋅-+⋅.整理可得:2222cos a b c bc A =+-.证法十:由图7-1和图7-2可得2a =22(cos )(sin )c b A b A -+, 整理可得:2222cos a b c bc A =+-.bcosA absinAc-bcosAac-bcosAbsinA图7-2图7-1DE DABCC B余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.b ac2bcosA-cb-a bb图5GDE FCAB c b aa 图6F EDCBA。

证明余弦定理的三种方法

证明余弦定理的三种方法

证明余弦定理的三种方法方法一:向量法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,分别向B和C引出向量AB和AC。

根据向量的定义,可以得到向量AB和向量AC的长度分别为a和c,且向量AB与向量AC之间的夹角为角A。

根据向量的加法和减法,可以得到向量AC-向量AB的长度为c-a。

同样地,可以得到向量AB-向量AC的长度为a-c。

根据向量的模长和夹角的余弦关系,可以得到:(c-a)^2 = (b*cosA)^2 + (b*sinA)^2(a-c)^2 = (b*cosA)^2 + (b*sinA)^2将上述两个式子相加,可以得到:(c-a)^2 + (a-c)^2 = 2*(b*cosA)^2 + 2*(b*sinA)^2化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*cos^2A + 2b^2*sin^2A化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*(cos^2A + sin^2A)根据三角恒等式cos^2A + sin^2A = 1,可以得到:c^2 + a^2 - 2ac = 2b^2化简上述式子,可以得到:c^2 + a^2 - 2ac - 2b^2 = 0即:a^2 + b^2 - 2ab*cosC = 0即:a^2 + b^2 = 2ab*cosC这就是余弦定理的向量法证明。

方法二:几何法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,向B和C引出向量AB和AC。

根据三角形的定义,可以得到:AB = b*cosA + b*sinAAC = c根据向量的减法,可以得到:AB - AC = b*cosA + b*sinA - c根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = (b*cosA + b*sinA - c)^2化简上述式子,可以得到:(AB - AC)^2 = (b*cosA)^2 + (b*sinA)^2 - 2*b*cosA*c + c^2 - 2*b*sinA*c + 2*b*cosA*b*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2*(cos^2A + sin^2A) - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA根据三角恒等式cos^2A + sin^2A = 1,可以得到:(AB - AC)^2 = b^2 - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2 + c^2 - 2*b*c*cosA根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = a^2即:b^2 + c^2 - 2*b*c*cosA = a^2即:a^2 = b^2 + c^2 - 2*b*c*cosA这就是余弦定理的几何法证明。

余弦定理的三种几何证明

余弦定理的三种几何证明

余弦定理的三种几何证明余弦定理是在三角形中,通过三边的长度来求解三角形的一些角度的方法,其数学表达式为:c² = a² + b² - 2ab·cos(C)其中,a、b、c表示三角形的三边的长度,C表示对应于边c的角的大小,cos(C)表示角C的余弦值。

余弦定理有多种几何证明方法,下面将分别介绍三种常用的几何证明方法。

方法一:极坐标证明法根据余弦定理的表达式,我们可以将其化简为:cos(C) = (a² + b² - c²) / (2ab)在平面直角坐标系中,我们可以将三角形的三个顶点分别表示为点A(x1,y1),B(x2,y2),C(x3,y3)。

根据点到原点的距离公式,我们有:a=√(x1²+y1²)b=√(x2²+y2²)c=√(x3²+y3²)进一步,我们可以得到:a²+b²-c²=(x1²+y1²)+(x2²+y2²)-(x3²+y3²)=[(x1-x3)²+(y1-y3)²]+[(x2-x3)²+(y2-y3)²]-(x3²+y3²)=2((x1-x3)(x2-x3)+(y1-y3)(y2-y3))cos(C) = (a² + b² - c²) / (2ab)=(2((x1-x3)(x2-x3)+(y1-y3)(y2-y3)))/(2√(x1²+y1²)√(x2²+y2²)) =((x1-x3)(x2-x3)+(y1-y3)(y2-y3))/(√(x1²+y1²)√(x2²+y2²))根据极坐标系中余弦的几何意义,cos(C)可表示为向量AC和向量BC 的内积除以它们的模的乘积。

怎么证明余弦定理

怎么证明余弦定理

怎么证明余弦定理证明余弦定理是高中数学中非常重要的知识点,它在解决平面几何和三角形相关问题时起着至关重要的作用。

接下来,我们将通过推理和几何图形的分析来证明余弦定理。

首先,我们从一个三角形ABC开始,设三角形的三边分别为a、b、c,对应的夹角为A、B、C。

我们需要证明的余弦定理是:c² = a² + b² - 2abcosC在证明过程中,我们将分别考虑三角形的三边之间的关系和夹角之间的关系,并通过几何图形进行辅助分析。

第一步,我们先来看一下三角形的三边之间的关系。

根据勾股定理,我们知道:对于一个直角三角形,斜边的平方等于其他两边平方之和。

因此,我们可以构造一个与三角形ABC有着共同斜边的直角三角形ADB。

我们可以将AB边作为直角三角形ADB的斜边,这样就可以得到:AB² = AD² + BD² (1)同样地,再构造一个与三角形ABC有着共同斜边的直角三角形AEC。

我们可以将AC边作为直角三角形AEC的斜边,这样可以得到:AC² = AE² + EC² (2)继续构造一个与三角形ABC有着共同斜边的直角三角形BFC。

我们可以将BC边作为直角三角形BFC的斜边,这样就可以得到:BC² = BF² + FC² (3)接下来,我们将这三个直角三角形组合在一起构成一个平行四边形ADEB。

根据平行四边形两对对边相等的性质,我们可以得到:AD = EC (4)BD = AE (5)我们将式(1)代入式(4),将式(2)代入式(5),可以得到:AB² = AD² + BD² (6)= EC² + AE²上式说明了AB的平方等于AC的平方加上BC的平方。

现在,让我们转向夹角之间的关系。

考虑三角形ABC的两边AB和AC之间的夹角BAC,以及直角三角形AEC的两个锐角。

证明余弦定理(精选多篇)

证明余弦定理(精选多篇)

证明余弦定理(精选多篇)第一篇:怎么证明余弦定理怎么证明余弦定理证明余弦定理:因为过c作cd垂直于ab,ad=bcosa;所以(c-bcosa)^2+(bsina)^2=a^2。

又因为b^2-(bcosa)^2=(bsina)^2,所以(c-某)^2+b^2-(bcosa)^2=a^2,所以c^2-2cbcosa+(bcosa)^2+b^2-(bcosa)^2=a^2,所以c^2-2cbcosa+b^2=a^2,所以c^2+b^2-a^2=2cbcosa,所以cosa=(c^2+b^2-a^2)/2bc同理cosb=(a^2+c^2-b^2)/2ac,cosc=(a^2+b^2-c^2)/2ab2在任意△abc中,作ad⊥bc.∠c对边为c,∠b对边为b,∠a对边为a-->bd=cosb某c,ad=sinb某c,dc=bc-bd=a-cosb某c勾股定理可知:ac²=ad²+dc²b²=(sinb某c)²+(a-cosb某c)²b²=sin²b某c²+a²+cos²b某c²-2ac某cosbb²=(sin²b+cos²b)某c²-2ac某cosb+a²b²=c²+a²-2ac某cosb所以,cosb=(c²+a²-b²)/2ac2如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为某轴建立直角坐标系,于是c点坐标是(b,0),由三角函数的定义得b点坐标是(ccosa,csina).∴cb=(cc osa-b,csina).现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是(acos(π-c),asin(π-c))即d点坐标是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法1. 平面解析几何证明:设平面内三角形ABC,其中$\\overrightarrow{AB}=\\mathbf{a}$,$\\overrightarrow{BC}=\\mathbf{b}$,$\\overrightarrow{CA}=\\mathbf{c}$,则有以下关系:$$\\begin{cases}\\|\\mathbf{a}+\\mathbf{b}\\|^2=(\\mathbf{a}+\\mathbf{b})\\cd ot (\\mathbf{a}+\\mathbf{b})\\\\ \\|\\mathbf{a}-\\mathbf{b}\\|^2=(\\mathbf{a}-\\mathbf{b})\\cdot (\\mathbf{a}-\\mathbf{b})\\\\\\|\\mathbf{c}\\|^2=\\mathbf{c}\\cdot \\mathbf{c}\\end{cases}$$将这三个式子展开并简化运算,再利用向量的数量积展开,得到余弦定理的表达式。

2. 向量证明:设向量$\\mathbf{a}$和$\\mathbf{b}$的夹角为$\\theta$,则有向量$\\mathbf{a}-\\mathbf{b}$的模长为$\\|\\mathbf{a}-\\mathbf{b}\\|=\\sqrt{\\|\\mathbf{a}\\|^2+\\|\\mathbf{b}\\|^2-2\\|\\mathbf{a}\\|\\|\\mathbf{b}\\|\\cos\\theta}$,再利用向量的数量积展开,即可得到余弦定理的表达式。

3. 平面三角形面积证明:设平面内三角形ABC,其三边长度分别为$a$,$b$,$c$,其对应的高分别为$h_a$,$h_b$,$h_c$,则有以下关系:$$\\begin{cases}S=\\frac{1}{2}bh_a\\\\ S=\\frac{a\\sin C}{2}=\\frac{b\\sinA}{2}=\\frac{c\\sin B}{2}\\end{cases}$$将这两个式子联立并消去$S$,再利用正弦定理展开,得到余弦定理的表达式。

证明余弦定理(精选多篇)

证明余弦定理(精选多篇)

证明余弦定理(精选多篇)第一篇:怎么证明余弦定理怎么证明余弦定理证明余弦定理:因为过c作cd垂直于ab,ad=bcosa;所以(c-bcosa)^2+(bsina)^2=a^2。

又因为b^2-(bcosa)^2=(bsina)^2,所以(c-x)^2+b^2-(bcosa)^2=a^2,所以c^2-2cbcosa+(bcosa)^2+b^2-(bcosa)^2=a^2,所以c^2-2cbcosa+b^2=a^2,所以c^2+b^2-a^2=2cbcosa,所以cosa=(c^2+b^2-a^2)/2bc同理cosb=(a^2+c^2-b^2)/2ac,cosc=(a^2+b^2-c^2)/2ab 2在任意△abc中,作ad⊥bc.∠c对边为c,∠b对边为b,∠a对边为a--bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c勾股定理可知:ac²=ad²+dc²b²=(sinb*c)²+(a-cosb*c)²b²=sin²b*c²+a²+cos²b*c²-2ac*cosbb²=(sin²b+cos²b)*c²-2ac*cosb+a²b²=c²+a²-2ac*cosb所以,cosb=(c²+a²-b²)/2ac2如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为x轴建立直角坐标系,于是c点坐标是(b,0),由三角函数的定义得b点坐标是(ccosa,csina).∴cb=(ccosa-b,csina).现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是(acos(π-c),asin(π-c))即d点坐标是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。

证明余弦定理的方法

证明余弦定理的方法

证明余弦定理的方法余弦定理是解决非直角三角形的一种三角函数关系定理,用于求解任意三角形其中一个角的边之间的关系。

证明余弦定理的方法可以利用向量、三角函数以及勾股定理。

我们假设有一个非直角三角形ABC,三边分别为a,b,c,其中∠A、∠B、∠C 分别对应于边a、b、c。

方法一:利用向量法证明余弦定理将三角形向量化,我们可以得到:向量AB = 向量AC + 向量CB利用向量之间的内积关系:AB * AB = (AC + CB) * (AC + CB)展开和化简上式,我们可以得到:AB * AB = AC * AC + 2 * AC * CB + CB * CB根据向量之间的内积关系以及余弦公式cosθ= (向量A * 向量B) / (∥向量A∥* ∥向量B∥),我们可以将上式变为:AB * AB = AC * AC + CB * CB + 2 * AC * CB * cos∠C根据向量的定义,我们可以得到:AB = √(AB * AB),AC = √(AC * AC),CB = √(CB * CB)将上述关系代入上式,我们可以得到:√(AB * AB) = √(AC * AC) + √(CB * CB) + 2 * √(AC * AC) √(CB * CB) * cosC化简上式,我们可以得到:AB^2 = AC^2 + CB^2 + 2 * AC * CB * cosC即余弦定理。

方法二:利用三角函数法证明余弦定理根据三角函数的定义,我们可以得到:cosA = AC / BCcosB = AB / ACcosC = AB / CB根据向量内积的定义,我们可以得到:AB * BC = ∥AB∥∥BC∥cosAAC * BC = ∥AC∥∥BC∥cosC将上式代入cosB的定义中,我们可以得到:cosB = (AB * BC) / (∥AB∥∥BC∥) = (AB * BC) / (√(AB * AB) √(BC * BC))代入向量AB * BC的定义,我们可以得到:cosB = (AB * AC + AB * CB) / (√(AB * AB) √(AC * AC + CB * CB + 2 * AC * CB * cosC))化简上式,我们可以得到:cosB = (AC + CB * cosC) / √(AC * AC + CB * CB + 2 * AC * CB * cosC)移项化简上式,我们可以得到:AC * AC + CB * CB + 2 * AC * CB * cosC = AC^2 + 2 * AC * CB * cosC + CB^2即余弦定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档