因式分解重点难点总结

合集下载

初中数学因式分解教案5篇

初中数学因式分解教案5篇

初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键1、重点:利用平方差公式分解因式。

【知识】因式分解知识点归纳

【知识】因式分解知识点归纳

【关键字】知识因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就能够了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就能够用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

因式分解知识点总结

因式分解知识点总结

第一讲因式分解知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式f几个整式的积例:-ax+-bx=-x(a-∖-b)3 3 3因式分解,应注意以下几点。

1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

'系数一一取各项系数的最大公约数<字母——取各项都含有的字母指数一一取相同字母的最低次塞例:↑2a3b3c-Sa3b2c3+βa4b2c2的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分/匕3g。

302。

3,。

力力:都含有因式/∕c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

例1:把12/b78。

从一2447√分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次耗是ab,故公因式为6abo 解:↑2a2b-↑Sab2-24aV=6ab(2a-3b-4a2b2)例2:把多项式3。

-4)+x(4-R)分解因式解析:由于4-x=-(x-4),多项式3(x-4)+M4-x)可以变形为3(x-4)-X(X-4),我们可以发现多项式各项都含有公因式(工-4),所以我们可以提取公因式(x-4)后,再将多项式写成积的形式.解:3(x-4)+x(4-x)=3(x-4)-x(x-4)=(3-x)(x-4)例3:把多项式-f+2为分解因式解:-X2+2x=-(x2-2x)=-x(x-2)(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

数学因式分解知识点总结

数学因式分解知识点总结

数学因式分解知识点总结一、定义:二、常用的数学因式分解方法:1.分解质因数法:将待分解的数分解为素数的乘积。

2.公式法:利用特定的公式,将数进行因式分解。

3.提公因式法:将多项式中的公因式提出来。

4.柯西分解法:将多项式按照柯西和将一个复数分解为实部和虚部的方式进行分解。

5.平方差公式法:根据平方差公式将平方差形式的多项式进行分解。

6.分解平方法:将平方形式的多项式进行分解。

三、分解质因数法:1.从最小的素数2开始,不断地用这个素数去试除待分解的数。

如果是约数,则继续试除,直到不能整除为止。

2.如果一个数不能被2整除,就试试下一个大于2的素数,一直到最接近待分解数的平方根为止。

3.如果一个数不能再被其他比它小的素数整除,那么它本身就是一个素数。

以分解36为例:36÷2=1818÷2=99÷3=33÷3=1最后得到36=2×2×3×3=2^2×3^2四、公式法:例如,将二次多项式x^2-5x+6进行因式分解。

1. 我们可以使用二次方程的求根公式,即 x = (-b ± √(b^2 - 4ac)) / 2a,对其进行因式分解。

2.根据二次方程求根公式,x^2-5x+6=(x-2)(x-3)。

3.因此,x^2-5x+6=(x-2)(x-3)。

五、提公因式法:例如,将多项式2x^2+3x进行因式分解。

1.首先找到多项式中的公因式,即2x是该多项式中的公因式。

2.提取公因式,得到2x(x+3)。

3.因此,2x^2+3x=2x(x+3)。

六、柯西分解法:例如,将多项式x^2+2x+1进行因式分解。

1.我们可以使用柯西分解法,将该多项式分解为两个复数的乘积,即(x+1)^22.因此,x^2+2x+1=(x+1)^2七、平方差公式法:例如,将多项式x^2-1进行因式分解。

1.根据平方差公式,即a^2-b^2=(a+b)(a-b),我们可以将该多项式分解为(x+1)(x-1)。

数学人教版八年级上册第14章整式的乘法与因式分解小结与(教案)

数学人教版八年级上册第14章整式的乘法与因式分解小结与(教案)
其次,因式分解这一部分,学生对于提公因式法、平方差公式法、十字相乘法等方法的应用还不够熟练。他们有时候不能迅速判断出应该采用哪种方法来分解因式。我觉得在这方面,我需要通过更多的例题和练习,帮助学生总结规律,提高他们解决问题的能力。
此外,在新课讲授过程中,我尽量以生动的语言和实际案例来讲解,让学生能够更好地理解和接受。但从学生的反馈来看,我觉得还可以尝试更多有趣的授课方式,比如运用多媒体教学、实物演示等,以提高学生的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的乘法与因式分解的基本概念。整式的乘法是指将两个或多个整式相乘,它是代数运算的基达式中有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将一个复杂的整式通过因式分解简化,以及它在实际中的应用。
在实践活动和小组讨论环节,学生们表现得相当积极,能够主动参与到讨论和实验操作中。但我也注意到,有些学生在小组讨论中发言不够积极,可能是因为他们对问题不够了解或者缺乏自信。针对这个问题,我打算在今后的教学中多关注这些学生,鼓励他们大胆发言,增强他们的自信心。
最后,通过这节课的教学,我意识到教学反思的重要性。在今后的教学中,我会更加关注学生的学习情况,及时发现并解决他们在学习中遇到的问题。同时,我也会不断调整和改进教学方法,努力提高教学质量,让每个学生都能在数学课堂上有所收获。
6.简单的分组分解法及应用;
二、核心素养目标
本节课旨在培养学生的以下核心素养:
1.掌握整式乘法与因式分解的基本法则,提高学生的数学运算能力;
2.通过运用完全平方公式、平方差公式等,培养学生的逻辑思维能力和数学建模素养;
3.能够灵活运用提公因式法、十字相乘法等分解因式,提升学生的问题解决能力和创新意识;

一元二次方程的解法因式分解法知识点总结

一元二次方程的解法因式分解法知识点总结

一元二次方程的解法--公式法,因式分解法—知识讲解(基础)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式. 【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1)x 2+3x+1=0;(2)2241x x =-; (3)2x 2+3x-1=0.【答案与解析】(1)a=1,b=3,c=1∴x==.∴x 1=,x 2=.(2)原方程化为一般形式,得22410x x -+=.∵2a =,4b =-,1c =,∴224(4)42180b ac -=--⨯⨯=>.∴42221222x ±==±⨯,即1212x =+,2212x =-.(3)∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算24b ac -的值;(3)若24b ac -是非负数,用公式法求解. 举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b 2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==, ∴x 1=,x 2=.2.用公式法解下列方程: (1)(2014•武汉模拟)2x 2+x=2;(2)(2014秋•开县期末)3x 2﹣6x ﹣2=0 ;(3)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c 的值,代入求值即可.【答案与解析】解:(1)∵2x 2+x ﹣2=0,∴a=2,b=1,c=﹣2,∴x===,∴x 1=,x 2=.(2)∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1=,x 2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x==,解得 x 1=,x 2=.【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在240b ac -≥的前提下,代入求根公式可求出方程的根. 举一反三:【变式】用公式法解下列方程: 2221x x +=; 【答案】解:移项,得22210x x +-=.∵ 2a =,2b =,1c =-,224242(1)120b ac -=-⨯⨯-=>,∴ 21213222x -±-±==⨯, ∴ 1132x --=,2132x -+=.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0; (3)x (2x+1)=8x ﹣3.【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程. 【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0, ∴ x 1=1,x 2=-4.(3)去括号,得:2x 2+x=8x ﹣3,移项,得:2x 2+x ﹣8x+3=0合并同类项,得:2x 2﹣7x+3=0, ∴(2x ﹣1)(x ﹣3)=0, ∴2x﹣1=0或 x ﹣3=0,∴,x 2=3.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程: (1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即2(23)0x +=, ∴ 1232x x ==-. (2)移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根. 举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3(21)42x x x +=+【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0 X 1=-6,x 2=-5. (2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=01212,23x x =-=.5.探究下表中的奥秘,并完成填空:一元二次方程 两个根 二次三项式因式分解 x 2﹣2x+1=0 x 1=1,x 2=1 x 2﹣2x+1=(x ﹣1)(x ﹣1) x 2﹣3x+2=0 x 1=1,x 2=2 x 2﹣3x+2=(x ﹣1)(x ﹣2) 3x 2+x ﹣2=0 x 1=,x 2=﹣1 3x 2+x ﹣2=3(x ﹣)(x+1) 2x 2+5x+2=0x 1=﹣,x 2=﹣2 2x 2+5x+2=2(x+)(x+2)4x 2+13x+3=0 x 1= ,x 2= 4x 2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论. 【答案与解析】填空:﹣,﹣3;4x 2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax 2+bx+c=0的两个根为x 1、x 2,则 ax 2+bx+c=a (x ﹣x 1)(x ﹣x 2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程的解法--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2014•泗县校级模拟)下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=72 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( ) A .11x =;24x =- B .11x =-;24x = C .11x =-;24x =- D .11x =;24x =4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法)(2)4x 2﹣6x ﹣3=0(运用公式法)(3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14.用因式分解法解方程(1)x 2-6x-16=0.(2)(2x+1)2+3(2x+1)+2=0.15(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C ;【解析】解:根据分析可知A 、B 、D 适用公式法.而C 可化简为x 2+x ﹣72=0,即(x+9)(x ﹣8)=0, 所以C 适合用因式分解法来解题.故选C .2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6,∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解. 9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2. 12.【答案】 (1) x =5或x =-2;(2) 3692x +=或3692x -=. 【解析】(1)当y =0时(x-5)(x+2)=0,∴ x-5=0或x+2=0,∴ x =5或x =-2.(2)当y =5时(x-5)(x+2)=5,∴ 23150x x --=,3941(15)369212x ±-⨯⨯-±==⨯,∴ 3692x +=或3692x -=. 三、解答题13.【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0,(x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14.【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根;③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.一元二次方程的解法--公式法,因式分解法—知识讲解(提高)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a--=②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③当240b ac ∆=-<时,右端是负数.因此,方程没有实根. 要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2243624|6|2()2()n m m n m m x m n m n -±-±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 23(1)3(1),2(1)2(1)m m m m x m m -±+-±+==-- ∴ 122, 1.1x x m==- 2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ 24(2)56221b b ac m a -±---±==⨯22141142±==±, ∴ 1114m =+,2114m =-.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥ ∴23322m m m m x ±±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=13.4.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。

因式分解的八个注意事项及课本未拓展的五个的方法

因式分解的八个注意事项及课本未拓展的五个的方法

因式分解的‎“八个注意”事项及“课本未拓展‎的五个的方‎法”在因式分解‎这一章中,教材总结了‎因式分解的‎四个步骤,可概括为四‎句话:“先看有无公‎因式,再看能否套‎公式,十字相乘试‎一试,分组分解要‎合适”然而在初学‎因式分解时‎,许多同学在‎解题中还是‎会出现一些‎这样或那样‎的错误,或者都学透‎了,但是试卷上‎给出的题目‎却还是不会‎分解,本文提出以‎下“八个注意”事项及“五大课本未‎总结的方法‎”,以供同学们‎学习时参考‎。

一、“八个注意”事项(一)首项有负常‎提负例1把-a2-b2+2ab+4分解因式‎。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)这里的“负”,指“负号”。

如果多项式‎的第一项是‎负的,一般要提出‎负号,使括号内第‎一项系数是‎正的。

防止出现诸‎如-a2-b2=(-a+b)(-a-b)的错误。

(二)各项有公先‎提公例2因式分‎解8a4-2a2解:8a4-2a2=2a2(4a2-1)=2a2(2a+1)(2a-1)这里的“公”指“公因式”。

如果多项式‎的各项含有‎公因式,那么先提取‎这个公因式‎,再进一步分‎解因式。

防止出现诸‎如4a4-a2=(2a2+a)(2a2-a)而又不进一‎步分解的错‎误.(三)某项提出莫‎漏1例3因式分‎解a3-2a2+a解:a3-2a2+a=a(a2-2a+1)=a(a-1)2这里的“1”,是指多项式‎的某个整项‎是公因式时‎,先提出这个‎公因式后,括号内切勿‎漏掉1。

防止学生出‎现诸如a3‎-2a 2+a=a(a 2-2a)的错误。

(四)括号里面分‎到“底”。

例4 因式分解x ‎4-3x 2-4解:x 4+3x 2-4=(x 2+4)(x 2-1)=(x 2+4)(x +1)(x -1)这里的“底”,指分解因式‎,必须进行到‎每一个多项‎式因式都不‎能再分解为‎止。

即分解到底‎,不能半途而‎废的意思。

因式分解(一)

因式分解(一)

因式分解(一)撰稿:徐长明审稿:张扬责编:孙景艳一、目标认知学习目标:1. 了解因式分解的意义,以及它与整式乘法的关系;2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式;3.会综合运用提公因式法和公式法把多项式分解因式;4.经历综合利用提公因式法和公式法将多项式因式分解的过程,发展综合运用知识的能力和逆向思维的习惯。

知识结构重点难点:重点:因式分解的概念及各种方法的使用条件。

难点:因式分解方法的综合应用。

二、知识要点梳理知识点一:因式分解的概念把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,如:,等。

要点诠释:(1)因式分解的实质就是把加减形式化成乘积形式;(2)因式分解的过程和整式乘法的过程正好相反,即因式分解和整式乘法是互逆的,可表示为:多项式几个因式的乘积;(3)分解要彻底:即要使分解后每个因式(在我们所学的范围内)都不能再进行因式分解(不含有因式了).知识点二:公因式的概念1、公因式的定义:在多项式中各项都有的因式叫做这个多项式的公因式.如:多项式中每项都含有因式k,则k就是这个多项式的公因式.2、公因式的特点:a.公因式的系数是原多项式各项系数的最大公约数;b.公因式中的字母是各项中都含有字母;c.公因式字母的次数是相同字母的最低次.也即:知识点三:提公因式法分解因式把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提取公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即(ma+mb+mc)=m(a+b+c);(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式。

(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号。

(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的一点补充——十字相乘法
教学重点和难点
重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式因式分解。

难点:灵活运用十字相乘法因分解式。

一、导入新课
前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。

因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).
课前练习:下列各式因式分解
1.- x2+2 x+15 2.(x+y)2-8(x+y)+48;
3.x4-7x2+18;4.x2-5xy+6y2。

答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4);
3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。

我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。

对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。

二、新课
例1 把2x2-7x+3因式分解。

分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。

分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。

用画十字交叉线方法表示下列四种情况:
1 1 1 3 1 -1 1 -3
2 ×
3 2 ×1 2 ×-3 2 ×-1
1×3+2×1 1×1+2×3 1×(-3)+2×(-1)1×(-1)+2×(-3)
=5 =7 = -5 =-7
经过观察,第四种情况是正确有。

这是因为交叉相乘后,两项代数和恰等于一次项系数-7。

解2x2-7x+3=(x-3)(2x-1)。

一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:
a1c1
a2×c2
a1c2 + a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2)。

像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。

例2把6x2-7x-5分解因式。

分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
3 ×-5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用直字相乘法分解因式。

解6x2-7x-5=(2x+1)(3x-5)。

指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。

对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。

例如把x2+2x-15分解因式,十字相乘法是
1 -3
1 × 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5)。

例3把5x2+6xy-8y2分解因式。

分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
5 ×-4
1×(-4)+5×2=6
解5x2+6xy-8y2=(x+2y)(5x-4y)。

指出:原式分解为两个关于x,y的一次式。

例4把(x-y)(2x-2y-3)-2分解因式。

分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先化简,进行多项式的乘法运算,把变形后的多项式再因式分解。

问:两个乘积的式子有什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。

解(x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2 1 -2
=2(x-y)2-3(x-y)-2 2 ×+1
=[(x-y)-2][2(x-y)+1]1×1+2×(-2)=-3
=(x-y-2)(2x-2y+1)。

指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

三、课堂练习
1.用十字相乘法因式分解:
(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;
(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27。

2.把下列各式因式分解:
(1)6x2-13x+6y2;(2)8x2y2+6xy-35;
(3)18x2-21xy+5y2;(4)2(a+b)2+(a+b)(a-b)-6(a-b)2。

答案:1.(1)(x-4)(2x+3);(2)(x-2)(3x+1);
(3)(2x-1)(3x-5);(4)(x-3)(7x+2);
(5)(3x-1)(4x-3);(6)(2x+3)(2x+9)。

2.(1)(2x-3y)(3x-2y);(2)(2xy+5)(4xy-7);
(3)(3x-y)(6x-5y);(4)(3a-b)(5b-a)。

四、小结
1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:
(1)正确的十字相乘必须满足以下条件:
a1c1
在式子中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜
a2c2
向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间。


(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项。

(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数),只需把经分解在两个正的因数。

2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式。

3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4。

五、作业
1.用十字相乘法分解因式:
(1)2x2+3x+1;(2)2y2+y-6;(3)6x2-13x+6;(4)3a2-7a-6;
(5)6x2-11xy+3y2;(6)4m2+8mn+3n2;(7)10x2-21xy+2y2;
(8)8m2-22mn+15n2。

2.把下列各式分解因式:
(1)4n2+4n-15;(2)6a2+a-35;(3)5x2-8x-13;
(4)4x2+15x+9;(5)15x2+x-2;(6)6y2+19y+10;
(7)20-9y-20y2;(8)7(x-1)2+4(x-1)(y+2)-20(y+2)2。

答案:
1.(1)(2x+1)(x+1);(2)(y+2)(2y-3);(3)(2x-3)(3x-2);(4)(a-3)(3a+2);
(5)(2x-3y)(3x-y);(6)(2m+n)(2m+3n);(7)(x-2y)(10x-y);(8)(2m-3n)(4m-5n)。

2.(1)(2n-3)(2n+5);(2)(2a+5)(3a-7);(3)(x+1)(5x-13);(4)(x+3)(4x+3);
(5)(3x-1)(5x+2);(6)(2y+5)(3y+2);(7)-(4y+5)(5y-4);(8)(x+2y+3)(7x-10y-27)。

相关文档
最新文档