七年级下册数学整式的乘除
七年级数学下册整式的乘除计算题练习(无答案)北师大版

1 整式的乘除计算
一:知识网络归纳
22
222
()(,,)()()()():()()()2m n m n
m n mn n n n
a a a a a m n a
b ab a b m a b ma mb
m n a b ma mb na nb
a b a b a b a b a ab b 特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式
单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:二:小试牛刀
专题一巧用乘法公式或幂的运算简化计算
方法 1 逆用幂的三条运算法则简化计算
例1 (1) 计算:19961996
31()(3)103。
(2) 已知3×9m ×27 m =321,求m 的值。
(3) 已知x 2n =4,求(3x 3n )2-4(x 2) 2n 的值。
2、已知:693273m m ,求m .
方法 2 巧用乘法公式简化计算。
例2 计算:24815111
11
(1)(1)(1)(1)22222.
思路分析:在进行多项式乘法运算时,应先观察给出的算式是否符合或可转化成某公式的形式,如果符合则应用公式计算,若不符合则运用多项式乘法法则计算。
观察本题容易发现缺少因式1(1)2,如果能通过恒等变形构造一个因式1
(1)2,则运用平方差公式就会迎刃而解。
方法 3 将条件或结论巧妙变形,运用公式分解因式化简计算。
整式
的乘法。
初中数学_北师大版数学七年级下册第一章《整式的乘除》讲评课教学设计学情分析教材分析课后反思

四、巩固提升归纳第一章《整式的乘除》中出现的三类典型的蕴含重要数学思想的题型,让学生对知识的运用形成体系,明确在具体题目当中出现的数学方式,并能较好的进行分析和解决。
1.公式的灵活应用将多项式4x2+1加上一个单项式后,使它能成为一个形如(a+b)的完全平方,则添加单项式的方法共有多少种2.数形结合思想我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用如图所示的面积关系来说明。
(1)根据图形请你写出一个等式:(2)根据等式请你画出一个能说明等式成立的图形:(2a+b)(a+3b)=2a2+7ab+3b2从代数到图形,从图形到代数,彼此是互相支撑互相补充的关系。
对于给出的代数恒等式(2a+b)(a+b)=2a2+3ab+b2,可以用同一个图形的面积相等去解释等号左右相等,所谓“以形助数”使代数问题几何化。
另外一方面,给出一个图形,学生也可以根据面积相等列出一个代数恒等式,所谓的“以数辅形”,使几何问题代数化。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,初中数学中实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系。
学情分析学生的知识技能基础:学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
但这一章的运算法则较多,公式也容易混淆,而且学生对这些知识的理解缺乏整体认知,还没形成体系.学生活动经验基础:在学习整式乘除法的过程中,学生经历了许多数学活动,积累了一定的经验.但是学生有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的经验,需要进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
学生在进行完章测试之后,迫切希望知道成绩以及自己知识点上的欠缺,所以讲评课要抓住学生的这种心理,趁热打铁,促进知识的稳固和提升。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
北师大版七年级数学下册 第一章 整式的乘除(二) 讲义(无答案)

第一章整式的乘除(二)一、整式的乘法1. 单项式与单项式相乘:法则:把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(-5a2b2)·(-4 b2c)·(-ab)= [(-5)×(-4)×(-1)]·(a2·a)·(b2·b2)·c=-30a3b4c2.单项式与多项式相乘法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.用字母表示:a(b+c+d)= ab + ac + ad例:= (-3x2)·(-x2)+(-3x2)·2 x一(-3x2)·1=3.多项式与多项式相乘法则:多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.用字母表示:( a+b)(c+d)= ac + ad + bc + bd例:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb二、乘法公式1. 平方差公式:两数和与这两数差的积,等于它们的平方差。
(a+b)(a-b)=a2-b2例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(-m+n )( m+n ) = ( ) ( )=___________________;③=( ) ( )=___________;④(2a+b+3)(2a+b-3) =( )2-( )2=______________= ;⑤(2a—b+3)(2a+b-3)=()()=( )2-( )2⑥ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______; ⑦ (x +3y )( ) = 9y 2-x 22. 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)们的 积的2倍。
【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)

(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳
1.4整式的乘法课件数学北师大版七年级下册

3
感悟新知
知1-练
1-2. 计算:
(1)(-3x2y)2·- · xz2;
解:原式=9x4y2· - · xz2=- x6y3z3;
(2)(-4ab3 ) ·- -
2 4
原式= a b -
2
4
ab=
2.
和,即ap+aq+bp+bq. 所以(a+b)(p+q)=ap+aq+bp+bq.
感悟新知
知3-讲
特别解读
1. 多项式乘多项式法则的实质是将多项式与多项式相乘
转化为几个单项式相乘的和的情势.
2. 多项式与多项式相乘的结果仍为多项式,在合并同类
项之前,积的项数应该是两个多项式的项数之积.
3. 计算结果一定要注意合并同类项.
感悟新知
知2-练
2-2. 计算:
3ab(a2b-ab2-ab)-ab2(2a2-3ab+2a).
解:原式=3a3b2 -3a2b3 -3a2b2 -2a3b2 +3a2b3
-2a2b2= a3b2-5a2b2.
感悟新知
知识点 3 多项式与多项式相乘
知3-讲
1. 多项式乘多项式法则 多项式与多项式相乘,先用一个
多项式的每一项乘另一个多项式的每一项,再把所得的
积相加. 用字母表示为(a+b)·(m+n)=am+bm+an+bn(m,
n,a,b 都是单项式).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学整式的乘除
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘。
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘除法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:a m .a n =a m+n (其中m 、n 为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。
数学符号表示:(a m )n =a mn (其中m 、n 为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
)
数学符号表示:(ab )n =a n b n (其中n 为正整数)
4、同底数的幂除法:
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:a m ÷a n =n -m a (其
中m 、n 为正整数,a ≠0)
5、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
6、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
7、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
疑难点解析:
例题:1.(1)2--)(a a ⋅
注意:①a -的指数是1,不是0;②由同底数幂相乘的法则知,能运用它的前提必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。
例题:2.)()(232x x x -⋅⋅-
注意:区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-
对应练习:n x -与n x )(-的关系正确的是( )
A .相等
B .互为相反数
C .当n 为奇数时它们互为相反数,当n 为偶数时它们相等
D .当n 为奇数时它们相等,当n 为偶数时它们互为相反数
例题:3.已知3,2==n n y x ,求n y x 22)(的值。
分析:本题只有把n y x 22)(化成n n y x ⋅为底的幂的乘积,利用整体带入的思想求解
对应练习:已知2=m x ,3=n x ,求n m x 23-.
已知2=m x ,3=n x ,求n m x 23-.
例4.若()()3
0622----x x 有意义,那么x 的范围是( ). A .2>x B .3<x
C .3≠x 或2≠x
D .3≠x 且2≠x
对应练习:下列四个式子.①1)1(0-=-,②1)1(1=--,③21222=⨯-,④)0(31322≠=-a a
a ,其中正确的有( ). A .1个 B .2个 C .3个 D .4个
例5.()193+-=⋅n n ,括号内应填入的式子为( ).
A .13+n
B .23+n
C .23+-n
D .13+-n
例6.已知40101-a 2=,1-1b 2410=+,求b 2a 299⨯的值
作业(1):
1、()()532532-+++y x y x
2、化简再求值:()()x x y x x 2122++-+,其中251=x ,25-=y 。
3、若4=m x ,8=n x ,求n m x -3的值。
作业(2):
记忆:11²=121 12²=144 13²=169 14²=196 15²=225
作业(3):扩展理解n m n m n
m n m a a a a a a -+=÷=•
抛开m 、n 取值范围,融合2个公式,例如当m=3,n=-2时
5)2-(-32-31
2-32-3a a a a a a a a ==÷==•+)(,自行举例思考。