七年级下册整式的乘除单元测试题
整式的乘除测试题[3套]与答案解析
![整式的乘除测试题[3套]与答案解析](https://img.taocdn.com/s3/m/e625030f580216fc700afddf.png)
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。
3 B。
4 C。
5 D。
62.下列计算正确的是A。
2x^2·6x^4=12x^8 B。
(y^4)m/(y^3)m=ymC。
(x+y)^2=x^2+y^2 D。
4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。
b^2-a^2 B。
a^2-b^2 C。
-a^2-2ab+b^2 D。
-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。
5a^2-2a-3 B。
a^2-8a-3 C。
-a^2-3a-5 D。
a^2-8a+55.下列结果正确的是A。
-2/(1/3)=-6 B。
9×5=45 C。
(-5)³=-125 D。
2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。
10 B。
52 C。
20 D。
327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。
15xy B。
±15xy C。
30xy D。
±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。
2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。
七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。
七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。
(完整版)整式的乘除(单元测试卷及答案)

整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. B. C. D. 954a a a =+33333a a a a =⋅⋅954632a a a =⨯()743aa=- ( ) =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. B. 1 C. 0 D. 19971- 3.设,则A=( )()()A b a b a +-=+223535 A. 30 B. 60 C. 15 D. 12ab ab ab ab 4.已知则( ) ,3,5=-=+xy y x =+22y x A. 25. B C 19 D 、25-19- 5.已知则( ),5,3==bax x =-ba x 23 A 、B 、C 、D 、522527109536. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 810.已知(m 为任意实数),则P 、Q 的大小关系为( )m m Q m P 158,11572-=-=A 、B 、C 、D 、不能确定Q P >Q P =Q P <二、填空题(共6小题,每小题4分,共24分)11.设是一个完全平方式,则=_______。
(完整版)整式的乘除单元测试卷及答案

整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D.()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( )A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④ ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定nmab a二、填空题(共6小题,每小题4分,共24分) 11.设12142++mx x 是一个完全平方式,则m =_______。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)

一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1B .2C .3D .42.已知4,6m n x x ==,则2-m n x 的值为( ) A .9B .34C .83D .433.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( ) A .4-B .2-C .2D .44.下列运算正确的是( )A .3333x x -=B .()4410a a a ÷=≠ C .()222424mn m n -=-D .()232a b abab ÷-=5.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④6.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( ) A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米7.下列计算中,错误的是( ) A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+8.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .129.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 11.数151025N =⨯是( ) A .10位数 B .11位数C .12位数D .13位数12.计算()233a a ⋅的结果是( ) A .9aB .8aC .11aD .18a二、填空题13.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 14.已知,a b 满足1,2a b ab -==,则a b +=____________ 15.若多项式225a ka ++是完全平方式,则k 的值是______. 16.若代数式21x mx ++是完全平方式,则m 的值为______.17.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 18.观察下列各式: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4 ………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.19.计算20202019133⎛⎫⨯ ⎪⎝⎭的结果是_20.若(x-2)(x+3)=x 2+px+q,则p+q=____________.三、解答题21.计算:(1)()22142xy z x yz--÷-(2)()()()221214x x x x x +----22.图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于 .(2)观察图2你能写出下列三个代数式(m +n )2,(m ﹣n )2,mn 之间的等量关系 .(3)运用你所得到的公式,计算若mn =﹣2,m ﹣n =4,求: ①(m +n )2的值. ②m 4+n 4的值.(4)用完全平方公式和非负数的性质求代数式x 2+2x +y 2﹣4y +7的最小值. 23.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积: 方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.24.已知正方形ABCD 的边长为b ,正方形EFGH 的边长为()a b a >.(1)如图1,点H 与A 重合,点E 在边AB 上,点G 在边AD 上,请用两种不同的方法求出阴影部分1S 的面积(结果用a ,b 表示).(2)如图2,在图1的正方形位置摆放的基础上,在正方形ABCD 的右下角又放了一个和正方形EFGH 一样的正方形,使一个顶点和点C 重合,两条边分别落在BC 和DC 上.若题(1)中14S =,图2中21S =,求阴影部分3S 的面积.(3)如图3,若正方形EFGH 的边GF 和正方形ABCD 的边CD 在同一直线上,且两个正方形均在直线CD 的同侧,若点D 在线段GF 上,满足14DF GF =,连结AH ,HF ,AF ,当三角形AHF 的面积为3时,求三角形EFC 的面积,写出求解过程. 25.先化简,再求值.(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,其中 1.5x =-,2y =.(2)已知2830a a --=,求(1)(3)(5)(7)a a a a --+--的值. 26.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_________.(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=__________.(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为()()33++a b a b 长方形,则x y z ++=_________.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:_________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m nx x ==,2-m n x =2m n x x ÷=2()m nx x ÷,∴原式=246=83;故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.3.B解析:B 【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值; 【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- ,∵ 2x 的系数为3, ∴ 1-m=3, 解得m=-2, 故选:B . 【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.4.B解析:B 【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可. 【详解】33332x x x -=,故A 选项错误;()4410a a a ÷=≠,故B 选项正确;()222424mn m n -=,故C 选项错误; ()232a b ab ab ÷-=-,故D 选项错误;故选B . 【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.5.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.6.C解析:C 【分析】把微米转化为纳米,再写成科学记数法即可. 【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米. 故选:C . 【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可. 【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意;B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意; D. ()m x y mx my -+=--,计算错误,符合题意; 故选D . 【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.8.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.9.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得. 【详解】 原式63a a =⋅,9a =,故选:A . 【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】 ∵222(2)444x x x x bx ±±=+=++,∴b=4±, 故答案为:4±. 【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.14.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键 解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案. 【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=, ∴3a b +=±, 故答案为:3±. 【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 15.【分析】利用完全平方公式的结构特征判断即可得到结果【详解】∵是完全平方式∴∴故答案为:【点睛】本题考查了完全平方式熟练掌握完全平方公式的结构特征是解本题的关键解析:10±【分析】利用完全平方公式的结构特征判断即可得到结果.【详解】∵225a ka ++是完全平方式,∴2?•510ka a a =±=±,∴10k =±,故答案为:10±.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.16.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 18.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.19.【分析】逆用同底数幂乘法公式把化为再根据积的乘方运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法积的乘方等知识能逆用同底数幂的乘法公式是解题关键 解析:13【分析】 逆用同底数幂乘法公式把202013⎛⎫ ⎪⎝⎭化为20191133⎛⎫⨯ ⎪⎝⎭,再根据积的乘方运算即可. 【详解】 解:20202019201920192019201911111113=3=3=1=3333333⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:13【点睛】本题考查了同底数幂的乘法,积的乘方等知识,能逆用同底数幂的乘法公式是解题关键. 20.-5【分析】利用多项式乘以多项式法则直接去括号再得出p 和q 的值进而得出答案【详解】解:∵(x-2)(x+3)=x2+x-6=x2+px+q ∴p=1q=-6∴p+q 的值为-5故答案为-5【点睛】此题主解析:-5【分析】利用多项式乘以多项式法则直接去括号,再得出p 和q 的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x 2+x-6=x 2+px+q ,∴p=1,q=-6,∴p+q 的值为-5.故答案为-5.【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解题关键.三、解答题21.(1)322x yz -;(2)3294x x -+-【分析】(1)根据单项式与单项式的除法法则计算即可;(2)先算乘法,再去括号合并同类项;【详解】解:(1)()22142xy z x yz--÷- =1221112x y z +-+-=322x yz -;(2)()()()221214x x x x x +---- =x 3+x 2-x-(2x 3-8x 2-x+4)=x 3+x 2-x-2x 3+8x 2+x-4=3294x x -+-.【点睛】本题考查了整式的混合运算,熟练掌握单项式与单项式的除法法则、单项式与多项式的乘法法则、多项式与多项式的乘法法则是解答本题的关键.22.(1)m ﹣n ;(2)(m ﹣n )2=(m +n )2﹣4mn ;(3)①8;②136(4)2【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答即可;(2)根据大正方形的面积减去四个长方形的面积等于阴影部分小正方形的面积解答即可; (3)把数据代入(3)的数量关系计算即可得解;(4)根据完全平方公式配方,再根据非负数的性质即可得解.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m ﹣n ;故答案为:m ﹣n ;(2)根据正方形的面积公式,阴影部分的面积为(m ﹣n )2,还可以表示为(m +n )2﹣4mn ,∴(m ﹣n )2=(m +n )2﹣4mn ,故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)①∵mn =﹣2,m ﹣n =4,∴(m +n )2=(m ﹣n )2+4mn =42+4×(﹣2)=16﹣8=8,②m 2+n 2=(m ﹣n)2+2mn=42+2×(﹣2)=16﹣4=12,∴m 4+n 4=(m 2+n 2)2﹣2 m 2·n 2=122﹣2×(﹣2)2=136;(4)x 2+2x +y 2﹣4y +7,=x 2+2x +1+y 2﹣4y +4+2,=(x +1)2+(y ﹣2)2+2,∵(x +1)2≥0,(y ﹣2)2≥0,∴(x +1)2+(y ﹣2)2≥0,∴当x =﹣1,y =2时,代数式x 2+2x +y 2﹣4y +7的最小值是2.【点睛】本题考查了完全平方公式的几何意义、平方数的非负性,准确识图,能用两种不同的方式表示阴影的面积,灵活运用完全平方公式解决问题是解答的关键.23.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.24.(1)221S b a =-,两种方法见解析;(2)314S =;(3)△EFC 的面积为3. 【分析】(1)根据面积等于大正方形面积-小正方形面积或等于两个长方形面积之和即可得出结论;(2)用a ,b 表示1S 和2S ,根据14S =,21S =求得3252a b ⎧=⎪⎪⎨⎪=⎪⎩,再根据图象可知23(2)a S b =-,将值代入计算即可; (3)记AD 与HF 的交点为M ,用a ,b 表示△AHF 的面积,根据它的面积为3可得21328a ab -=,再表示△EFC 的面积,根据所求的代数式即可求得. 【详解】解:(1)由题得:221ABCD HGFE S S S b a =-=-正正,或1()()S b b a b a a =⨯-+-22b ab ab a =-+-22b a =-;(2)由题得:221()()4S b a b a b a =-=+-=,22()1S b a =-=,1a b ∴-=,4a b ∴+=,由41b a b a +=⎧⎨-=⎩, 3252a b ⎧=⎪⎪⎨⎪=⎪⎩, 22351(2)(3)24a b S =-=-=∴; (3)如图,记AD 与HF 的交点为M ,∵GFEH 为正方形,HF 为对角线,90,45MDF DFM ∴∠=∠=︒︒,∴△DMF 为等腰直角三角形,1,4EF a DF G H F GF G ====, 3,,.444a a DG a DF DM DF =∴=== 又∵,DC BC AD ABb ==== ∴4a AM AD DM b =-=-, ∴211333()2244832AHM a S AM DG b a ab a ∆=⋅=-⨯=-, 211()2244832AMF a a ab a S AM DF b ∆=⋅=-⨯=-, ∵3AHF AHM AMF S S S ∆∆∆=+=, ∴22333832832ab a ab a -+-=, ∴21328a ab -=, 又∵12EFC S FC EF ∆=⨯, ∵,4a FC DC DF b EF a =-=-=, ∴21()32428EFC a ab a S b a ∆=-⋅=-=. 故△EFC 的面积为3.【点睛】本题考查多项式乘多项式与图形面积.掌握割补法求图形面积的方法是解决(1)的关键;(2)(3)中解题的关键是正确理解图象面积公式和会表示对应线段的长度. 25.(1)43344193x y x y -,36;(2)()22838a a -+,44 【分析】(1)先算积的乘方同时计算中括号内的单项式乘以多项式,合并同类项,再算单项式乘以多项式,赋值,计算即可;(2)先利用多项式乘以多项式法则展开,合并同类项,再整理,将条件整体代入求值即可.【详解】解:(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,2222221=2229x y x y xy x y xy ⎡⎤⋅-+-⎣⎦, 22221=439x y x y xy ⎡⎤⋅-⎣⎦, 43344193x y x y =-, 把 1.5x =-,2y =, 原式()()433441-1.52-1.5293=⨯-⨯⨯⨯, 43344313-2-29232⎛⎫⎛⎫=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⨯⨯, 4811278+1691638=⨯⨯⨯⨯, 36=;(2)(1)(3)(5)(7)a a a a --+--,22431235a a a a =-++-+,221638a a =-+,()22838a a =-+,∵2830a a --=,∴283a a -=,原式233844=⨯+=.【点睛】本题考查整式乘除乘方混合运算化简求值问题,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序是解题关键.26.(1)()2222222a b c a b c ab ac bc ++=+++++;(2)30;(3)16;(4)()()311x x x x x -=+-.【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式; (2)依据a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(3a+b )(a+3b )=3a 2+9ab+ab+3b 2=3a 2+3b 2+10ab ,即可得到x ,y ,z 的值;(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc , ∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,故答案为:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100-70=30,故答案为:30;(3)由题意得:(3a+b)(a+3b)=xa2+yb2+zab,∴3a2+10ab+3b2=xa2+yb2+zab,∴x=3,y=3,z=10,∴x+y+z=16,故答案为:16;(4)∵原几何体的体积=x3-1×1•x=x3-x,新几何体的体积= x(x+1)(x-1),∴x3-x= x(x+1)(x-1).故答案为:x3-x=x(x+1)(x-1).【点睛】本题主要考查了整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除测试题
一、选择题(每题3分,共36分)
1.计算22(3)x x ⋅-的结果是 ( ) A .26x - B .35x C .36x D .36x - 2.下列运算中,正确的是 ( )
A .2054a a a =
B .4312a a a =÷
C .532a a a =+
D .a a a 45=-
3.计算:)3
4
()3(42y x y x -⋅的结果是 ( )
A.26y x
B.y x 64-
C. 264y x -
D. y x 83
5
4.÷c b a 468( )=224b a ,则括号内应填的代数式是 ( )
A 、c b a 232
B 、232b a
C 、c b a 242
D 、c b a 242
1
5.下列从左边到右边的变形,属于因式分解的是 ( )
A. 1)1)(1(2-=-+x x x
B. 1)2(122+-=+-x x x x
C. )4)(4(422y x y x y x -+=-
D. )3)(2(62-+=--x x x x
6.如果()()q px x x x ++=+-232恒成立,那么q p ,的值为 ( ) A 、=p 5,=q 6 B 、=p 1, =q -6 C 、=p 1,=q 6 D 、=p 5,=q -6 7.如果:()
1593
82b a b a n m m =⋅+,则 ( )
A 、2,3==n m
B 、3,3==n m
C 、2,6==n m
D 、5,2==n m
8.若()(8)x m x +-中不含x 的一次项,则m 的值为 ( )
A 、8
B 、-8
C 、0
D 、8或-8
9.等式()()2
2b a M b a +=+-成立,则M 是 ( )
A 、ab 2
B 、ab 4
C 、-ab 4
D 、-ab 2
10.下列多项式,能用公式法分解因式的有 ( ) ① 22y x + ② 22y x +- ③ 22y x -- ④ 22y xy x ++ ⑤ 222y xy x -+ ⑥ 2244y xy x -+-
A. 2个
B. 3个
C. 4个
D. 5个
11、如果x 2+kxy+4y 2是关于x 、y 的完全平方式,那么k 的值是 ( ).
(A)2 (B)4 (C) -4 (D)4或-4
12、计算:(-2)2003·(2
1
)2002等于 ( ).
(A)-2 (B)2 (C)-21 (D)2
1
二、填空题(每小题3分,共24分)
13.计算._______53=⋅a a ._______2142=÷-a b a ._____)2(23=-a 14.计算:.___________________)3)(2(=+-x x 15、.计算:._________________)12(2=-x 16.已知
3x x 1
=+,22x
1x += . 17.若35,185==y x , 则y x 25-= 。
18.若122=+a a ,则1422++a a = 。
19.代数式2439x mx ++是完全平方式,m =___________ 。
20.已知03410622=++-+n m n m ,则n m += 。
三、解答题:(共60分) 21、计算:(3+4+4+5=16分) (1)、22332)6()4()3(ab b a ÷⋅ (2)、)32)(32()2(2y x y x y x -+-+
(3)、222232
5(3)(3)(5)xy x xy x y xy ⎡⎤-+÷⎣⎦ (4)、(a+3)2-2(a +3)(a -3)+(a -3)2
22、因式分解:(3+3+4+5+5=20分)
(1)239a ab - (2)2294m n - (3)32221218a a b ab -+
(4)、 24415n n +- (5)2222a ab b m ++-
23、(4分)化简求值:()()()()a b a b a b a b -++-++-33552222,其中a b =-=-86, 24、(6分)已知2()4x y -=,2()64x y +=;求下列代数式的值:
(1)22x y +; (2)xy
25、(6分)如图,在半径为R 的圆形钢板上,切掉半径为r 的四个小圆,求剩余部分的面积.如果R=8.8cm,r=0.6cm 呢?(π=3.14,结果保留2个有效数字)
26、(8分)某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:
3(4+1)(42+1)=(4-1) (4+1)(42+1)= (42-1)(42+1)=162-1=255.
请借鉴该同学的经验,计算:158422
1211211211211+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
+⎪⎭⎫ ⎝⎛+.
附加题:(每小题各10分,共20分) 1、观察下列算式,你发现了什么规律? 12=6321⨯⨯;12+22=6532⨯⨯;12+22+32 =6743⨯⨯;12+22 +32 + 42 =6954⨯⨯;…
1)你能用一个算式表示这个规律吗?
2)根据你发现的规律,计算下面算式的值:12+22 +32 + … +82
2、我们可以用几何图形来解释一些代数恒等式,
请构图解释:
(1)(a-b)2=a2-2ab+b2
(2)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac。