填料吸收塔设计方案
水吸收SO2过程填料吸收塔的设计

水吸收SO2过程填料吸收塔的设计水吸收SO2过程是一种常见的燃煤电厂烟气脱硫方法,其原理是利用水溶液与SO2发生反应生成硫酸,将SO2从烟气中去除。
水吸收SO2过程中的填料吸收塔设计对于脱硫效率和运行成本有很大的影响。
接下来,将从选型、装置结构和操作参数等方面进行详细的论述。
一、填料选型填料是填充在吸收塔内以增大吸收表面积的材料。
常见的填料有板式填料、环状填料和均质球状填料等。
在设计填料吸收塔时,应根据脱硫效率、压降和流动特性等因素选择合适的填料类型。
通常情况下,板式填料的压降小,但对液体分布要求较高;环状填料的压降适中,且容易清洗和维修;均质球状填料的压降较大,但吸收效率高,适合于高浓度SO2气体吸收。
二、填料吸收塔结构填料吸收塔的结构主要包括上部分和下部分。
上部分主要有进气管口、烟气分布装置和吸收剂分布装置等,用于将烟气和吸收剂均匀分布到填料上。
下部分则有塔底底板、收集液管口、流动层、内排套管和废液排出口等,用于收集和排除吸收后的液体。
在设计填料吸收塔时,需要考虑以下因素:1.塔底底板的设计:底板内设流动层,使流化床层变厚,有利于液体与气体的充分接触,提高脱硫效率。
2.收集液管口和废液排出口的位置:应设计在塔底的低点,以保证吸收后的液体能够顺利排出,减少液体滞留,防止结垢和堵塞。
3.塔体结构的牢固性:由于塔内液体的冲击和流动压力较大,塔体结构需要有足够的强度和刚度以承受这种压力,同时要考虑良好的密封性。
4.渗漏和冲击的处理:填料吸收塔内常常存在渗漏和冲击现象,应设计避免二次喷洒和渗漏的结构,同时防止冲击和振动对填料吸收塔的影响。
三、操作参数填料吸收塔的操作参数对于脱硫效率和运行成本也有重要影响,其中包括液气比、塔温和pH值等。
1.液气比:液气比是指吸收液和烟气之间的质量比。
液气比较小时,吸收剂的成本较低,但吸收效率较低,反之亦然。
因此,在设计填料吸收塔时,需要根据脱硫要求和成本考虑确定液气比。
填料吸收塔的设计

化工原理课程设计任务书
一、设计题目:填料吸收塔的设计
二、设计内容(含技术指标)
1. 工艺条件与数据
煤气中含量2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。
2. 操作条件
吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。
3. 设计内容
① 吸收塔、解吸塔填料层的高度计算和设计;
② 塔径的计算;
③ 其他工艺尺寸的计算。
三、基本要求
1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
2. 图纸1套:包括工艺流程图(3号图纸)。
填料吸收塔的设计化工原理课程设计

一、设计任务书1、设计题目:填料吸收塔的设计2、设计任务:试设计一填料吸收塔,用于脱除合成氨尾气中的氨气,要求塔顶排放气体中含氨低于200ppm,采用清水进行吸收3、工艺参数与操作条件(1)工艺参数表1—1(2)操作条件①常压吸收:P=②混合气体进塔温度:30℃③吸收水进塔温度:20℃。
4、设计项目:(1)流程的确定及其塔型选择;(2)吸收剂用量的确定;(3)填料的类型及规格的选定;(4)吸收塔的结构尺寸计算及其流体力学验算,包括:塔径、填料层高度及塔高的计算;喷淋密度的校核、压力降的计算等;(5)吸收塔附属装置选型:喷淋器、支承板、液体再分布器等;(6)附属设备选型:泵、风机附:1、NH3~H2O系统填料塔吸收系数经验公式:k G a=cG m WLnk L a=bWLP式中ka——气膜体积吸收系数,kmol/——液膜何种吸收系数,l/h GG——气相空塔质量流速,kg/——液相空塔流速,kg/WL2、(氨气—水)二成分气液平衡数据表1—3二、工艺流程示意图(带控制点)三、流程方案的确定及其填料选择的论证1、塔型的选择:塔设备是能够实现蒸馏的吸收两种分离操作的气液传质设备,广泛地应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。
在工业生产中,一般当处理量较大时采用板式塔,而当处理量小时多采用填料塔。
填料塔不仅结构简单,而且阻力小,便于用耐腐蚀材料制造,对于直径较小的塔,处理有腐蚀性的物料或要求压降较小的真空蒸馏系统,填料塔都具有明显的优越性。
根据本设计任务,是用水吸收法除去合成氨生产尾气的氨气,氨气溶于水生成了具有腐蚀性的氨水;本设计中选取直径为600mm,该值较小,且Φ800mm以下的填料塔对比板式塔,其造价便宜。
基于上述优点,因此本设计中选取填料塔。
2、填料塔的结构填料塔的主要构件为:填料、液体分布器、填料支承板、液体再分器、气体和液体进出口管等。
3、操作方式的选择对于单塔,气体和液体接触的吸收流程有逆流和并流两种方式。
水吸收二氧化硫填料吸收塔课程设计完整版

水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。
为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。
本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。
二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。
2.考虑填料吸收塔的经济性、可靠性和环保性。
3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。
4.对填料吸收塔的设计进行优化,以提高吸收效率。
三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。
在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。
四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。
聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。
2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。
塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。
3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。
(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。
(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。
五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。
但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。
化工原理填料吸收塔课程设计

化工原理填料吸收塔课程设计引言:填料吸收塔是化工工艺中常用的一种设备,用于将气体中的有害物质通过吸收剂吸附或反应的方式去除。
本次课程设计旨在通过对填料吸收塔的设计和工艺参数的优化,实现高效的气体净化效果。
一、填料吸收塔的基本原理及结构填料吸收塔是利用填料表面积大、内部通道多、与气体充分接触的特点,通过物理吸附或化学吸收的方式将气体中的有害成分去除。
其基本结构包括进气口、出气口、填料层和液体循环系统等。
二、填料的选择及特性填料是填料吸收塔中起到关键作用的部分,其选择应根据气体的性质和处理效果的要求来确定。
常用的填料包括球状填料、骨架填料和网状填料等,它们具有不同的表面积、孔隙率和液体分布性能,对吸收效果和塔内气液分布起到重要影响。
三、填料吸收塔的设计步骤及要点1. 确定气体的物理和化学性质,包括流量、温度、压力、组成等;2. 选择合适的填料类型和尺寸,考虑填料的表面积、孔隙率和液体分布性能;3. 确定填料层数和塔径高比,以及液体循环系统的设计参数;4. 进行塔内气液分布的模拟和优化,保证填料与气体充分接触;5. 进行设备的结构设计和材料选择,考虑耐腐蚀性和操作安全性;6. 进行设备的动态模拟和优化,确定最佳操作条件和效果。
四、填料吸收塔的性能评价及优化填料吸收塔的性能评价主要包括吸收效率、压降和能耗等指标。
通过调整填料层数、液体循环系统和操作条件等参数,可以实现吸收效率的提高和能耗的降低。
同时,还应考虑填料的寿命和维护等方面的因素,以保证设备的稳定运行和经济性。
五、填料吸收塔的应用及发展趋势填料吸收塔广泛应用于化工、环保和能源等行业,用于废气处理、脱硫和脱硝等工艺。
随着环保要求的提高和技术的进步,填料吸收塔的设计和优化将更加注重能耗和运行成本的降低,同时也将更加重视对废气中微量有害物质的去除效果。
结论:填料吸收塔作为一种重要的气体净化设备,在化工工艺中发挥着重要作用。
通过合理的设计和优化,可以实现高效的气体净化效果和能耗降低。
填料吸收塔的设计

填料吸收塔的设计
填料吸收塔是一种常见的化工设备,用于将气体或气固混合物中的污染物吸收或分离。
以下是填料吸收塔的设计步骤:
1. 确定塔的尺寸和容积:根据处理气体的流量和所需分离效率,确定塔的高度和直径,计算塔的容积。
2. 确定填料类型和填充比等:填料的类型和填充比将影响到气体与液体之间的接触面积和阻力,这些参数的选择会影响到吸收效率和能耗。
3. 确定喷淋液体流量和浓度:根据塔的尺寸和填料类型等参数,计算出需要喷淋的液体流量和浓度,以达到最佳吸收效果。
4. 确定气流速度和液流速度:通过计算确定气体和液体在塔内的流速,以确保在塔内形成适宜的气液接触以及液体流淌和分布的均匀性。
5. 确定塔的操作条件:包括操作温度、压力以及液体喷淋位置和方式等,这些操作条件将直接影响到填料吸收塔的运行效果和寿命。
6. 进行塔的模拟和试验:采用模拟计算或实验试验的方式,验证设计参数的合理性和吸收效果,以及寻找优化的方案。
7. 选择适当的材料和安装方式:填料吸收塔通常使用不锈钢、
玻璃钢等材料制作,根据具体情况选择合适的材料和制造方式,并根据塔的尺寸和位置等确定合适的安装方案。
化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。
其次,填料的表面
积大,对氨气的吸附强度较高。
二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。
结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。
三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。
v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。
四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。
我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。
填料吸收塔的设计

填料吸收塔的设计一、填料吸收塔的设计原则:1.吸收效率:填料吸收塔的设计要保证充分的气液接触,提高气体吸收效率。
这可以通过增加填料表面积、增加气液接触时间和提高液体分布效果来实现。
2.填料选择:根据气体和液体的性质和吸收的要求,选择适合的填料材料和形状。
常见的填料材料有塑料和金属材料,常见的形状有球状、环状和片状等。
3.填料层数:填料层数的设置要兼顾气液相接触和液滴碰撞的效果。
填料层数过多会增加气体液体流阻,降低吸收效率,填料层数过少则会减少气液接触面积。
4.液体分布:设计合理的液体分布系统可以保证液体均匀分布在填料表面,避免干点和湿点的出现。
常见的液体分布系统有喷淋系统和分布管系统等。
5.塔底设计:填料吸收塔的塔底设计要考虑液体和气体的平衡、流动和分离。
常见的塔底结构有分流器和收集器等。
二、填料的选择:填料是填料吸收塔中起关键作用的部分,其选择要兼顾各种因素。
常见的填料材料有聚丙烯、聚氨酯、陶瓷和金属材料等。
在选择填料时要考虑以下几个方面:1.填料表面积:填料表面积越大,气液接触面积越大,吸收效果越好。
聚氨酯和陶瓷等材料的填料表面积较大,适合用于吸收性能要求较高的场合。
2.填料孔隙率:填料的孔隙率决定了气体和液体在填料中的通道。
孔隙率过高会导致液体层不稳定,孔隙率过低会增加气阻。
填料的孔隙率一般为40%~95%。
3.填料形状:填料的形状也会影响气液接触效果。
环状和球状填料的气液接触效果较好,片状填料则适用于在高液体负荷下运行的塔。
4.填料强度:填料的强度决定了填料在使用过程中的耐久性和机械性能。
填料吸收塔中较常用的填料有波纹填料、环形填料、骨架填料和多孔填料等。
三、液体的分布:液体的均匀分布对填料吸收塔的性能有着至关重要的影响。
设计合理的液体分布系统可以有效地保证液体在填料中的分布。
常见的液体分布系统有:1.喷淋系统:喷淋系统通过喷头喷洒液体来实现分散。
喷淋系统一般采用喷嘴式分布器,通过喷嘴的设计和安装位置来实现液体的均匀分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填料吸收塔设计方案1、设计方案简介1.1吸收剂的选择根据所处理混合气体,可采用洗油为吸收剂,其物理化学性质稳定,选择性好,符合吸收过程对吸收剂的基本要求。
1.2吸收流程该吸收过程可采用简单的一步吸收流程,同时应对吸收后的洗后进行再生处理。
以混合气体原有的状态即27℃和1atm条件下进行吸收,流程如图2-1所示。
混合气体进入吸收塔,与洗油逆流接触后,得到净化气排放,吸收苯后的洗油,经富液泵送入再生塔塔顶,用过热水蒸气进行气提解吸操作,解吸后的洗油经贫油泵,送回吸收塔塔顶,循环使用,气提气则进入冷凝系统进行苯水分离。
1.3吸收塔设备及塔填料选择该过程处理量不大,所用的塔直径不会太大,故采用填料塔较为适宜,并选用25mm塑料作阶梯环填料,其主要性能参数如下。
经查表将25mm塑料阶梯环的主要物性参数见下表1-1。
表1-1 25mm塑料阶梯环的物性参数[]1比表面积α填料因子孔隙率ε填料的对应A值泛点填料因子填料的表面张力228 260 0.9 0.204 176 751.4解吸塔设备及塔填料选择解吸塔采用水蒸气加热再生法,并选用25mm碳钢阶梯环填料,其主要性能参数见下表1-2。
表1-2 25mm碳钢阶梯环的物性参数[]1比表面积α填料因子孔隙率ε填料的对应A值泛点填料因子填料的表面张力220 273 0.93 0.106 176 751.5操作参数选择操作参数主要包括吸收(解吸)压力、温度及吸收因子(解吸因子)。
吸收过程:1atm、27℃;解析过程:1atm、120℃。
吸收因子(解吸因子)通过工艺过程设计计算得出。
1.6提高能量利用率尽量保持气体吸收前后压力1atm,避免气体解压后重新加压;设计时尽量减小各部分的阻力损失,以减少气体输送过程的能量损失;回收系统内部热量。
2、流程的设计及说明图2-1 从水煤气中回收粗苯的流程示意[]2采用常规逆流操作流程。
流程说明:煤气由塔底进入吸收塔,其中粗苯蒸气被塔顶淋下的洗油吸收后,由塔顶送。
富含溶质的溶液从吸收液贮槽以泵送往脱吸部分,此次脱吸是利用使溶液升温以减小气体溶质的溶解度,换热升温的富液进入脱吸塔的顶部,塔底通入水蒸气,将富液中的粗苯逐出,并带出塔顶,一道进入冷却-冷凝器,冷凝后的粗苯和洗油在液体分层器中分层后分别引出,从塔顶流至塔底的洗油含苯量已脱得很低,经冷却后可直接进入吸收塔的顶部继续做吸收剂,完成吸收-脱吸的整体操作。
3、吸收塔的设计计算3.1 设计方案的确定3.1.1设计任务是利用洗油从煤气中回收苯,应采用吸收—脱吸流程。
设计中采用塑料阶梯环填料,将混合气与洗油通过填料层。
该操作属于低浓度吸收,操作回流比取最小回流比的1.5倍。
3.1.2吸收塔设备及填料选择由于生产能力不大,所选用的塔直径不会太大,出初步计算,填料选用25mm 的塑料阶梯环,而填料材质与塔径有很大关系,经查表将25mm 塑料阶梯环的主要物性参数见下表。
表3-1 25mm 塑料阶梯环的物性参数[]1比表面积α 填料因子 孔隙率ε 填料的对应A 值 泛点填料因子 228 260 0.9 0.204 1763.2 基础物性数据3.2.1 液相物性参数洗油的物性数据,由手册[]3可查如下:相对分子量 260=M g/mol 黏度 .21=μmPa ⋅s表面张力 l σ=283-10⨯N/m密度 =L ρ8001000.80=⨯kg/m 3-3.2.2 气相物性参数 煤气进塔的温度为27℃混合气体的平均摩尔质量44.9197816.001916.00-1v =⨯+⨯=)(M g/mol 混合气体的平均密度 1.80300145.3844.919325.101=⨯⨯==RT PM VM G ρkg/m 3- 混合气体的黏度可近似于空气的黏度,查手册[]4可知 5-10.81⨯=μPa ⋅s3.3物料衡算、热量衡算3.3.1 物料衡算吸收塔进出口组成如下:21106.1016.0-⨯==y42104.6016.0)96.01(-⨯=⨯-=y混合气进塔气相摩尔比0163.0016.01016.01y 111=-=-=y Y 混合气出塔气相摩尔比()()01008.0084.901163.00112=-⨯=-=ψY Y于是可得吸收塔进口的组成应低于其平衡浓度,该系统的相平衡关系可以表示为y*=0.125x于是可得吸收塔进口液相的平衡浓度为3421012.5125.0104.6125.0--⨯=⨯==y x *2吸收入口的浓度应低于其平衡浓度,其值的确定应考虑其吸收和解吸的操作,兼顾者经优化计算后方能确定,这里取2x =23-10⨯进塔惰性气体流量()5.97916.001300273.4222000=-⨯=V kmol/h 该过程为低浓度吸收,平衡关系为直线,故最小液气比可以这样计算:ab b B X X Y Y G L --=⎪⎪⎭⎫ ⎝⎛*am i n S (a X =0) 式中a X 表示进塔液相组成 又有y*=0.125x故最小液气比12.00125.00163.0001008.00163.0m2*212*121min =--=--=--=⎪⎪⎭⎫ ⎝⎛X Y Y Y X X Y Y G L B S 操作气液比为8.1012.05.1).5(1min =⨯==BS G L G L3.3.2 吸收剂用量的计算处理煤气体积流率 h q v /m 20003= 摩尔流率 h q nG /kmol 29.894.222000==质量流率 h kg M q q V nG mG /8.1780944.1929.89=⨯=⋅= 实际操作气液比为 8.1=GL(已计算) 吸收剂用量为:07.1618.029.89=⨯=⎪⎭⎫⎝⎛⋅=G L q q nG nl kmol/h2.417826007.16=⨯=⋅=L nl ml M q q kg/h 22.58002.4178===lmlvl q q ρ m 3/h=1.45 m 3/h3.3.3热量衡算(1) 冷却过的洗油与水的热量衡算[]14冷洗油与热洗油的热量交换设1X 为C 。
50则经查资料[]3: 1P C (冷洗油)=1.9 KJ/kg·℃ 2P C (热洗油)=2.05 KJ/kg·℃所以有)120()2750(221X C m C m Q P s P s -⋅=-⋅= =4178.2÷3600⨯1.9⨯2.3 =50.718(kJ)参考工程实际,查化工设计手册表选取:管壳式换热器,其总结热系数是:K =280 w/m 2⋅K传热温差:()()⎪⎭⎫ ⎝⎛--=27506898120ln 27506898120.--.-mΔT =22.16℃传热面积 :16.22280718.50⨯=∆⋅=m T K Q A =8.174 m 2 同理,可获得其他换热设备的传热面积A传热面积A 及传热系数K 只能作为选用和设计换热器的初值。
每台换热器还应结合其他形式结构尺寸,操作条件进行严格的传热计算,进一步确认所需换热器的各个工业尺寸。
(2)冷却过的洗油与冷却水的热量横算:查表:kg/h结合工程实际应用,参考相关文献采用管壳式换热器 其总结构K =480 w/m 2⋅K传热温差: 624.1425275068.96ln )2527()5068.96(=⎪⎭⎫ ⎝⎛-----=∆m T (︒C) 24.614480)2527()508.698(⨯---=A =23.466(m 2)3.4 工艺计算3.4.1 塔径的计算查资料[]6贝恩-霍根公式计算泛点气速的公式如下:8141203275.1lg ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯L G mG ml .L L G fq q A μρρεαg u ρρ (3—1) 代入数据有81412.0328001.80.41780.2417875.1204.0lg ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯L L G fa g u μρρε =-0.71195.0u 2.032=L LG f g μρεαρ 54.22.181.02288009.081.9195.02.02=⨯⨯⨯⨯⨯=f u (m/s) 液泛气速是操作气速的最大极限速度,所以操作气速必须小于液泛气速,一般取操作气速是液泛气速的0.5-0.8倍,即f u u )8.05.0(-=。
若泛率小,操作气速小,压降小,能耗低,操作弹性大但管径大,设备投资高,生产能力低,同时不利于气液同时接触,致使分离效率低;反之,压降过大,能耗多,且操作不平稳,难以控制,分离效果更差,此次操作取u=0.7f u ,则:u =0.7778.125.27.0=⨯=f u (m/s)查表3-2知,此操作气速符合一般操作气速要求故可以进行下一步操作。
表3-2 填料塔的一般气速操作范围表[]7吸收系统 操作气速(m/s ) 气体溶解度很大的吸收过程 1-3 气体溶解度中等或稍小的吸收过程 1.5-2.0 气体溶解度很低的吸收过程 0.3-0.8 纯碱吸收2co 的吸收过程 1.5-2.0 一般除尘 1.8-2.8D =uq uq G mGv∏⨯⨯=∏360044ρ==⨯⨯778.114.361.040.662(m)塔的直径有一定规格,需对计算结果进行圆整,才可以投入使用,现将计算结果与表3-3对比,结果如下:表3-3 塔径圆整规格[]8塔径D (mm ) 圆整间隔 举例 ≤700 50或100 600 650 700 700-1000 100 700 800 900≥1000 200 1200 1400 1600取塔径D =0.7m气速校检:)/(44.17.0785.0360020002s m u =⨯⨯=57.054.244.1==f u u (在允许范围内,符合要求) 所以塔的总截面积为:22.7085.704⨯=∏=D s =0.385 ( m 2) 根据塔径与填料的直径对填料规格见下表(表3-4)校检:2825700==d D >8 所以填料塔中填料符合规格要求。
表3-4填料规格[]8填料种类 dD 的推荐值拉西环 ≥20-30 鞍环 ≥15 鲍尔环 ≥10-15 阶梯环 >8 环矩鞍 >8喷淋量的校核:吸收剂的喷淋密度 U =L/S (3—2) U =Sq vL(3—3) 由公式(3—3)可得: )(h m Svl U ⋅===2/3m 74.41385.007.16q 润湿率:t W a U L /m i n = (3—4) 由公式(3—4)可得:183.022874.41min ===ta U L (h m ⋅23/m )对于直径小于75mm 的环形填料,必须满足润湿率的的最小值L min W >0.08满足最小喷淋密度要求。