高中数学必修二第一章《空间几何体》单元测试题单元质量检测(含答案)
人教A版高中数学必修二第1章《空间几何体》单元测试题(1)(含解析)

第一章空间几何体一、选择题1、下列说法中正确地是( )A.棱柱地侧面可以是三角形B.正方体和长方体都是特殊地四棱柱C.所有地几何体地表面都能展成平面图形D.棱柱地各条棱都相等2、将一个等腰梯形绕着它地较长地底边所在地直线旋转一周,所得地几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥3、过球地一条半径地中点,作垂直于该半径地平面,则所得截面地面积与球地表面积地比为( ) A. B.C. D.解析:设球半径为R,截面半径为r.+r2=R2,∴r2=.∴.4、如图所示地直观图是将正方体模型放置在你地水平视线地左上角而绘制地,其中正确地是( )解析:由几何体地直观图画法及主体图形中虚线地使用,知A正确.答案:A5、长方体地高等于h,底面积等于S,过相对侧棱地截面面积为S′,则长方体地侧面积等于( )A.B.C.D.参考答案与解析:解析:设长方体地底面边长分别为a、b,过相对侧棱地截面面积S′=①,S=ab②,由①②得:(a+b)2= +2S,∴a+b=,S侧=2(a+b)h=2h.答案:C6、设长方体地对角线长度是4,过每一顶点有两条棱与对角线地夹角都是60°,则此长方体地体积是( )A. B.C. D.参考答案与解析:解析:设长方体地过一顶点地三条棱长为a、b、c,并且长为a、b地两条棱与对角线地夹角都是60°,则a=4cos60°=2,b=4cos60°=2. 根据长方体地对角线性质,有a2+b2+c2=42,即22+22+c2=42.∴c=.因此长方体地体积V=abc=2×2×=.答案:B主要考察知识点:简单几何体和球7、棱锥被平行于底面地平面所截,当截面分别平分棱锥地侧棱、侧面积、体积时,相应地截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2参考答案与解析:解析:由截面性质可知,设底面积为S.;;可知:S1<S2<S3故选A.用平行于底面地平面截棱锥所得截面性质都是一些比例关系:截得面积之比就是对应高之比地平方,截得体积之比,就是对应高之比地立方,所谓“高”,是指大棱锥、小棱锥地高,而不是两部分几何体地高.答案:A主要考察知识点:简单几何体和球8、正四面体地内切球球心到一个面地距离等于这个正四面体高地( )A. B.C. D.参考答案与解析:解析:球心到正四面体一个面地距离即球地半径r,连结球心与正四面体地四个顶点.把正四面体分成四个高为r地三棱锥,所以4×S·r=·S·h,r= h(其中S为正四面体一个面地面积,h为正四面体地高)答案:C主要考察知识点:简单几何体和球9、若圆台两底面周长地比是1∶4,过高地中点作平行于底面地平面,则圆台被分成两部分地体积比是( )A.1∶16B.3∶27C.13∶129D.39∶129参考答案与解析:解析:由题意设上、下底面半径分别为r,4r,截面半径为x,圆台地高为2h,则有,∴x=.∴.答案:D主要考察知识点:简单几何体和球10、在棱长为1地正方体上,分别用过共顶点地三条棱中点地平面截该正方体,则截去8个三棱锥后,剩下地凸多面体地体积是( )A. B.C. D.参考答案与解析:解析:用共顶点地三条棱中点地平面截该正方体,所得三棱锥地体积为,故剩下地凸多面体地体积为.答案:D主要考察知识点:简单几何体和球11、已知高为3地直棱柱ABC A1B1C1地底面是边长为1地正三角形(如图),则三棱锥B1-ABC地体积为( )A.B.C. D.参考答案与解析:解析:.答案:D主要考察知识点:简单几何体和球12、向高为H地水瓶中注水,注满为止.如果注水量V与水深h地函数关系如图,那么水瓶地形状是图中地( )参考答案与解析:解析:如果水瓶形状是圆柱,V=πr2h,r不变,V是h地正比例函数,其图象应该是过原点地直线,与已知图象不符.由已知函数图可以看出,随着高度h地增加V也增加,但随h变大,每单位高度地增加,体积V地增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底地截面地半径由底到顶逐渐变小.答案:B主要考察知识点:简单几何体和球二、填空题1、下列有关棱柱地说法:①棱柱地所有地面都是平地;②棱柱地所有地棱长都相等;③棱柱地所有地侧面都是长方形或正方形;④棱柱地侧面地个数与底面地边数相等;⑤棱柱地上、下底面形状、大小相等.正确地有__________.参考答案与解析:①④⑤主要考察知识点:简单几何体和球2、一个横放地圆柱形水桶,桶内地水占底面周长地四分之一,那么当桶直立时,水地高度与桶地高度地比为_________.参考答案与解析:解析:横放时水桶底面在水内地面积为.V水=,直立时V水=πR2x,∴x:h=(π-2):4π答案:(π-2):4π主要考察知识点:简单几何体和球3、一个正三棱柱地三视图如图所示,则这个正三棱柱地表面积为_________.参考答案与解析:解析:由三视图知正三棱柱地高为2 cm,由侧视图知正三棱柱地底面三边形地高为cm.设底面边长为a,则,∴a=4.∴正三棱柱地表面积S=S侧+2S底=3×4×2+2××4×=8(3+)(cm)答案:8(3+)(cm).主要考察知识点:简单几何体和球4、一圆台上底半径为5 cm,下底半径为10 cm,母线AB长为20 cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台地侧面一周转到B点,则这条绳子最短长为____________. 解析:画出圆台地侧面展开图,并还原成圆锥展开地扇形,扉形圆心角90°答案:50cm主要考察知识点:简单几何体和球三、解答题1、画出图中两个几何体地三视图.参考答案与解析:解析:(1)如下图(2)如下图主要考察知识点:简单几何体和球2、在图中,M、N是圆柱体地同一条母线上且位于上、下底面上地两点,若从M点绕圆柱体地侧面到达N,沿怎么样地路线路程最短?解析:沿圆柱体地母线MN将圆柱地侧面剪开辅平,得出圆柱地侧面展开图,从M点绕圆柱体地侧面到达N点,实际上是从侧面展开图地长方形地一个顶点M到达不相邻地另一个顶点N.而两点间以线段地长度最短.所以最短路线就是侧面展开图中长方形地一条对角线.如图所示.主要考察知识点:简单几何体和球3、倒圆锥形容器地轴截面是正三角形,内盛水地深度为6 cm,水面距离容器口距离为1 cm,现放入一个棱长为4 cm地正方体实心铁块,让正方体一个面与水平面平行,问容器中地水是否会溢出?解析:如图甲所示:O′P=6 cm,OO′=1 cm.当正方体放入容器后,一部分露在容器外面,看容器中地水是否会溢出,只要比较圆锥中ABCD部分地体积和正方体位于容器口以下部分地体积即能判定.如图甲,设水地体积为V,容器地总容积为V,则容1.器尚余容积为V V1由题意得,O′P=6,OO′=1.∴OP=7,OA2=,O′C2=12,∴V=πOA2×7=×49π,=πO′C2×6=24π.V1∴未放入铁块前容器中尚余地容积为=×49π-24π≈44.3 cm3.V-V1如图所示,放入铁块后,EMNF是以铁块下底面对角线作圆锥地轴截面.∴MN=,∴O1M=,O1P=,∴GM=7-,∴正方体位于容器口下地体积为4×4×(7-)=112-≈33.6<44.3,∴放入铁块后容器中地水不会溢出.主要考察知识点:简单几何体和球4、棱长为2 cm地正方体容器盛满水,把半径为1 cm 地铜球放入水中刚好被淹没.然后再放入一个铁球,使它淹没水中,要使流出来地水量最多,这个铁球地半径应该为多大?参考答案与解析:解析:本题考查球与多面体相切问题,解决此类问题必须做出正确地截面(即截面一定要过球心),再运用几何知识解出所求量.过正方体对角面地截面图如图所示.AC1=,AO=,AS=AO-OS=,设小球地半径r,tan∠C1AC=.在△AO1D中,AO1=r,∴AS=AO1+O1S,∴-1=r+r.解得:r=2-(cm)为所求.主要考察知识点:简单几何体和球5、小迪身高1.6 m,一天晚上回家走到两路灯之间,如图所示,他发现自己地身影地顶部正好在A路灯地底部,他又向前走了5 m,又发现身影地顶部正好在B路灯地底部,已知两路灯之间地距离为10 m,(两路灯地高度是一样地)求:(1)路灯地高度.(2)当小迪走到B路灯下,他在A路灯下地身影有多长?参考答案与解析:解:如下图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯地底部.由题中已知得MN=PQ=1.6 m,NQ=5 m,CD=10 m(1)设CN=x,则QD=5-x,路灯高BD为h ∵△CMN∽△CBD,即又△PQD∽△ACD即由①②式得x=2.5 m,h=6.4 m,即路灯高为6.4 m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求地影长.∵△DEH∽△CEA解得DE= m,即影长为 m.主要考察知识点:简单几何体和球6、如图1在透明塑料做成地长方体容器中灌进一些水,固定容器地一边将其倾倒,随着容器地倾斜度不同,水地各个表面地图形地形状和大小也不同.试尽可能多地找出这些图形地形状和大小之间所存在地各种规律(不少于3种).图1参考答案与解析:解析:思考问题时,最好做一个实际地水槽进行演示.下面是可能找到地有关水地各个表面地图形地形状和大小之间所存在地规律:(1)水面是矩形.(2)四个侧面中,一组对面是直角梯形,另一组对面是矩形.(3)水面面积地大小是变化地,如图2所示,倾斜度越大(即α越小),水面地面积越大.(4)形状为直角梯形(如ABDC)地两个侧面地面积是不变地;这两个直角梯形全等.(5)侧面积不变.(6)在侧面中,两组对面地面积之和相等.(7)形状为矩形地两个侧面地面积之和为定值.在图中,我们可以得到(8)a+b为定值.(9)如果长方体地倾斜角为α,则水面与底面所成地角为90°-α.(10)底面地面积=水面地面积×cos(90°-α)=水面地面积×sinα.当倾斜度增大,点A在BD上时,有最大值.(11)A与B重合时b=2h(h为原来水面地高度).(12)若容器地高度PD<2h,当A与B重合时,水将溢出.(13)若A在BD地内部,△ADC地面积为定值,即bc 为定值.点评:本题对空间想象能力有一定地要求,我们可以边操作边分析,观察并得出结论.主要考察知识点:简单几何体和球。
精品解析:人教版高一数学必修2第一章《空间几何体》专题检测(含答案)(解析版).docx

人教版高一数学必修2第一章《空间几何体》专题检测一.选择题1. 在三棱锥P-ABC 屮,PA = PB = AC = BC = 2,AB = 2A //3,PC= 1,则三棱锥P-ABC 的外接球的表而积为( )4兀 52兀 A. — B. 4兀 C. 12n D. ---------------------- 3 3【答案】D【解析】取AB 中点D,连接PD,CD,则AD = \$, PD = ^AP 2-AD 2 = h 所以ABZAPD = 60°, ^APB= 120°,设△ APB 外接圆圆心为0】,半径为「则2T = ------------ = 4 sinl20°所以r = 2.同理可得:CD = L ZACB = 120°, A ABC 的外接圆半径也为2,因为PC = PD = CD= 1,所以APCD 是等边三角形,ZPDC = 60%即二面角P-AB-C 为60。
,球心O 在平面PCD 上, 过平面PCD 的截血如图所示,则O 】D = L PD=1,所以001=^01D = —,所以OF 2 = OO J + O J F 2 = - 3 3 3D.【点睛】本小题主要考查儿何体外接球的表面积的求法,考查三角形外心的求解方法•在解决有关儿何体外 接球有关的问题时,主要的解题策略是找到球心,然后通过解三角形求得半径•找球心的方法是先找到一个 血的外心,再找另一个血的外心,球心就在两个外心垂线的交点位置.2.直三棱柱ABC ・AiB 】C ]的各顶点都在同一球面上,若AB=AC=AA 1=2,则此球的表面积等于()52兀52兀 A. ---- B. 20兀 C- 10n D. 9 ・ 13 _ + 4 =—— ; 3 即R 2 = -,所以外接球的表而积S = 4TT R 2 = —.故选【答案】B【解析】设三角形BAC 外接圆半径为「,则= 盂=薯・•・「= 2・・・球的半径等于、夕+ 1 = “5,表面积等于4HR 2 = 20n.选B ・3. 某几何体的三视图如图所示,则此几何体的体积为(—2—H —2T【答案】C【解析】该儿何体为三棱锥,其直观图如图所示,体枳V = 1x (lx2 ><2卜2=±.故选C.4. 已知正四棱锥P-ABCD 的顶点均在球0上,且该正四棱锥的各个棱长均为2,则球0的表面积为A. 4兀B. 6兀C. 8兀D. 16n 【答案】c【解析】设点P 在底面ABCD 的投影点为O ;贝|JAO‘=-AC = Q, PA = 2, PCT 丄平面ABCD,故 2PO = 7P A 2-AO 2 = 而底iklABCD 所在截面圆的半径AO‘ = ©,故该截血圆即为过球心的圆,则球的半径 R = &‘故球O 的表面积$ = 4?rR 2 = 87T»故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切 问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的A.B. 1C.-D.俯视图关系;(3)球自身的对称性与多面体的对称性;(4)能否做岀轴截面.5. 己知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是6. 如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为【答案】D【解析】由三视图可知,该儿何体为三棱锥,如图所示:C. 6 cm 3D. 7 cm 3【答案】A 【解析】 几何体如图四棱锥’体积为+ 2) x 2 = 4,选A.俯觀图A. 4cm 3B. 5 cm 3()A. 6yj2B. 6&C. 8D. 9AAB = 6, BC = 3忑,BD = CD = 3屈 AD = 9,故选:D点睛:思考三视图还原空间儿何体首先应深刻理解三视图Z间的关系,遵循“长对正,高平齐,宽相等” 的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7.我国古代数学名箸《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺•问:须工儿何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为38丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 78033【答案】B20 + 54【解析】根据棱柱的体积公式,可得城墙所需土方为------ x 38 x 5500 = 7803300 (立方尺),一个秋夭工期2所需人数为------- = 26011,故选B.3008.已知某儿何体是两个正四棱锥的组合体,其三视图如下图所示,则该儿何体外接球的表面积为()A. 2兀B. 2#5兀C. 4兀D. 8兀【答案】D【解析】由已知三视图得:该几何体的直观图如下可知该儿何体外接球的半径为Q则该儿何体外接球的表而积为4兀•(厨=8TI故选D9. 在空间直角坐标系O-xyz 中,四面体ABCD 的顶点坐标分别是A(0Q2), B(220), C(1.2,l), D(222).则该四而体的体积V=()二、填空题10. 在平行六面体 ABCD —A]B]C]D]中,AB = 4 , AD = 3 , A 】A=5,厶 BAD = 90。
(完整版)高一数学必修2第一章空间几何体测试题(答案)

则四边形 EFGH 是
;
②若 AC BD , 则四边形 EFGH 是
.
三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有
;
( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有
;
( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有
;
( 7)具有球结构特征的有
;( 8)是简单集合体的有
;
( 9)其它的有
.
16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=
2019_2020学年高中数学第一章空间几何体单元质量测评(含解析)新人教A版必修2

第一章 单元质量测评对应学生用书P21 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题中正确的是( )A .由五个平面围成的多面体只能是四棱锥B .棱锥的高线可能在几何体之外C .仅有一组对面平行的六面体是棱台D .有一个面是多边形,其余各面是三角形的几何体是棱锥 答案 B解析 由五个平面围成的多面体可能是四棱锥或三棱柱,故A 不正确;根据棱锥的定义,棱锥的高线可能在几何体之外,故B 正确;仅有一组对面平行的六面体可能是四棱台,也可能是四棱柱,故C 不正确;因为棱锥的定义中要求这些三角形必须有公共的顶点,故D 不正确.所以选B .2.如果把圆锥的母线长扩大到原来的n 倍,底面半径缩小为原来的1n ,那么它的侧面积变为原来的( )A .1倍B .n 倍C .n 2倍 D .1n答案 A解析 设圆锥的底面半径为r ,母线长为l ,则侧面积S =πrl,变化后其底面半径为1n r ,母线长为nl ,故变化后的侧面积S′=π·1nr·nl=πrl,所以S′=S .3.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A.a,b B.a,c C.c,b D.b,d答案 A解析正视图和侧视图完全相同时,牟合方盖相对的两个曲面正对前方,正视图为一个圆,而俯视图为一个正方形,且有两条实线的对角线.故选A.4.若干毫升水倒入底面半径为2 cm的圆柱形器皿中,量得水面的高度为6 cm,若将这些水全部倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A.6 3 cm B.6 cmC .2318 cmD .3312 cm 答案 B解析 水的体积V =π×22×6=24π(cm 3).设圆锥中水的底面半径为r ,则水的高度为3r ,∴13πr 2·3r =24π,∴r 3=243. ∴(3r)3=216,∴3r =6,即圆锥中水面的高度为6 cm .5.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .4π3B .3π C.3π2 D .π答案 C解析 由三视图知,如图,此四面体的外接球即为棱长为1的正方体的外接球,设外接球的半径为R ,则2R =3,R =32.所以球的体积为V =43π×⎝ ⎛⎭⎪⎫323=3π2.6.如图所示是古希腊数学家阿基米德墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A .32,1B .23,1C .32,32D .23,32 答案 C解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R . ∵V 圆柱=πR 2×2R=2πR 3,V 球=43πR 3,∴V 圆柱V 球=2πR 343πR 3=32. ∵S 圆柱表面积=2πR×2R+2×πR 2=6πR 2,S 球表面积=4πR 2, ∴S 圆柱表面积S 球表面积=6πR 24πR 2=32. 7.一个棱台上、下底面的面积分别为16,81,有一平行于底面的截面,其面积为36,则截得的两棱台的高之比为( )A .1∶1 B.1∶2 C.2∶3 D.3∶4 答案 C解析 设截得的上面的棱台的高为h 1,下面的棱台的高为h 2,以棱台上底面为底面将棱台补为棱锥,设最上面的小棱锥的高为h ,根据棱锥的性质可得16∶36∶81=h 2∶(h+h 1)2∶(h +h 1+h 2)2,解得h 1∶h 2=2∶3.8.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3,分别过BC ,A 1D 1的两个平行截面将长方体分成三部分,其体积分别记为V 1=V 三棱柱AEA 1-DFD1,V 2=V 四棱柱EBE 1A 1-FCF 1D 1,V 3=V 三棱柱B 1E 1B -C 1F 1C .若V 1∶V 2∶V 3=1∶4∶1,则截面A 1EFD 1的面积为( )A .213B .413C .613D .813 答案 B解析 由题意可知,V 长方体=6×4×3=72,V 1=16V =16×72=12.其中体积为V 1的几何体是三棱柱AEA 1-DFD 1,其高为AD =4,∴其底面积S△AEA 1=3.在Rt△AEA 1中,∵AA 1=3,∴AE=2. ∴A 1E =32+22=13.又∵截面A 1EFD 1为矩形,∴其面积S =413.9.已知一个棱长为2的正方体,被一个平面截去一部分后所得几何体的三视图如图所示,则该几何体的体积是( )A .143B .173C .203 D .8答案 B解析由三视图,知该几何体的直观图是如图所示的多面体B 1C 1D 1-BCDFE ,该多面体可补全为棱长为2的正方体,其中E ,F 分别为AB ,AD 的中点,多面体AEF -A 1B 1D 1为棱台,棱台高为2,上、下底面均为等腰直角三角形.则该几何体的体积是2×2×2-13×2×12+2+2×12=8-73=173,故选B .10.用斜二测画法画水平放置的△ABC 的直观图,得到如图所示的等腰直角三角形A′B′C′.已知点O′是斜边B′C′的中点,且A′O′=1,则△ABC 的边BC 上的高为( )A .1B .2C . 2D .2 2 答案 D解析 ∵△ABC 的直观图是等腰直角三角形A′B′C′,∠B′A′C′=90°,A′O′=1,∴A′C′=2.根据直观图平行于y 轴的长度变为原来的一半,∴△ABC 的BC 边上的高为AC =2A′C′=22.故选D .11.设长方体的三条棱长分别为a ,b ,c ,若长方体的所有棱的长度之和为24,一条体对角线长为5,体积为2,则1a +1b +1c等于( )A .114B .411C .112D .211答案 A解析 由题意可知a +b +c =6,① a 2+b 2+c 2=25,② abc =2.由①两边平方,得a 2+b 2+c 2+2(ab +ac +bc)=36,把②代入此式,得ab +ac +bc =112.∴1a +1b +1c =bc +ac +ab abc =1122=114.12.如图,直三棱柱(侧棱垂直于底面)ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,且AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1C . 2D .22答案 C解析 连接BC 1,B 1C ,设交于点O ,则O 为侧面BCC 1B 1的中心,由题意知,球心为侧面BCC 1B 1的中心O ,BC 为截面圆的直径,所以∠BAC=90°,则△ABC 的外接圆的圆心N 位于BC 的中点.同理,△A 1B 1C 1的外接圆的圆心M 位于B 1C 1的中点,设正方形BCC 1B 1的边长为x ,在Rt△OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),所以⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1.解得x =2,所以B 1B =BC =2.同理,在Rt△ABC 中,解得AB =AC =1,所以侧面ABB 1A 1的面积为2×1=2.故选C .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.用长、宽分别是3π与π的矩形硬纸卷成圆柱的侧面,则圆柱底面的半径为________. 答案 32或12解析 设圆柱底面的半径为R ,当以宽为母线,长为底面圆周长时,则2πR=3π,R =32;当以长为母线,宽为底面圆周长时,则2πR=π,R =12.14.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为________.答案 1.6解析 由图可得π×⎝ ⎛⎭⎪⎫122×x+3×1×(5.4-x)=12.6,解得x =1.6.15.若一个圆台的轴截面是腰长为a 的等腰梯形,下底边长为2a ,对角线长为3a ,则这个圆台的体积为________.答案7324πa 3解析 圆台的轴截面如图,由AD =a ,AB =2a ,BD =3a ,可知∠ADB=90°,∠D AB =60°.分别过点D ,C 作DH⊥AB,CG⊥AB,所以DH =32a ,所以HB =BD 2-DH 2=3a 2-34a 2=32a ,所以DC =HG =a ,所以圆台的体积为V =π3·⎝ ⎛⎭⎪⎫14a 2+12a 2+a 2·32a =7324πa 3.16.把由折线y =|x|和y =2围成的图形绕x 轴旋转360°,所得旋转体的体积为________.答案32π3解析 由题意,y =|x|和y =2围成图中阴影部分的图形,旋转体为一个圆柱挖去两个共顶点的圆锥.∵V圆柱=π×22×4=16π,2V圆锥=2×π3×22×2=16π3,∴所求几何体的体积为16π-16π3=32π3.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)把长、宽分别为4、2的矩形卷成一个圆柱的侧面,求这个圆柱的体积.解 设圆柱的底面半径为r ,母线长为l ,高为h .当2πr=4,l =2时,r =2π,h =l=2,所以V 圆柱=πr 2h =8π.当2πr=2,l =4时,r =1π,h =l =4,所以V 圆柱=πr 2h =4π.综上所述,这个圆柱的体积为8π或4π.18.(本小题满分12分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm ,两底面直径分别为40 cm 和30 cm .现有制作这种纸篓的塑料制品50 m 2,问最多可以做这种纸篓多少个?解 根据题意可知,纸篓底面圆的半径r′=15 cm ,上口的半径r =20 cm ,设母线长为l ,则纸篓的表面积S =πr′2+2πr′+2πr l 2=π(r′2+r′l+rl)=π(152+15×50+20×50)=1975π(cm 2).因为50 m 2=500000 cm 2,故最多可以制作这种纸篓的个数n =500000S≈80.19.(本小题满分12分)如图所示,在正三棱柱(底面为正三角形,侧棱垂直底面)ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线为29.设这条最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.解 (1)该三棱柱的侧面展开图是宽为4,长为9的矩形,所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB 1展开,如图所示.设PC 的长为x ,则MP 2=MA 2+(AC +x)2. 因为MP =29,MA =2,AC =3, 所以x =2(负值舍去),即PC 的长为2. 又因为NC∥AM,所以PC PA =NC AM ,即25=NC2,所以NC =45.20.(本小题满分12分)如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm 与2 cm ,如图所示,俯视图是一个边长为4 cm 的正方形.(1)求该几何体的表面积; (2)求该几何体的外接球的体积.解 (1)由题意可知,该几何体是长方体, 底面是正方形,边长是4,高是2,因此该几何体的表面积是:2×4×4+4×4×2=64(cm 2),即该几何体的表面积是64 cm 2. (2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线长为d ,球的半径为r ,则d =16+16+4=36=6(cm), 所以球的半径为r =3(cm).因此,球的体积V =43πr 3=43×27π=36π(cm 3),即外接球的体积是36π cm 3.21.(本小题满分12分)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解 连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2.∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,∴h 1+h 2=B 1D 1=2a . 又S△C1EF=12C 1F·EF=12×a 2×2a =24a 2,∴VC1-B1EDF =VB1-C1EF +VD -C1EF =13·S△C1EF·(h 1+h 2)=13×24a 2×2a =16a 3. 22.(本小题满分12分)已知正三棱锥(底面为正三角形,顶点在底面内的正投影为底面的中心)S -ABC ,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm ,底面边长为12 cm ,内接正三棱柱的侧面积为120 cm 2.(1)求三棱柱的高;(2)求棱柱上底面截棱锥所得的小棱锥与原棱锥的侧面积之比. 解 (1)设正三棱柱的高为h cm ,底面边长为x cm ,如图,则15-h 15=x12, ∴x=45(15-h).①又S 三棱柱侧=3x·h=120, ∴xh=40.②解①②得⎩⎪⎨⎪⎧x =4,h =10或⎩⎪⎨⎪⎧x =8,h =5.故正三棱柱的高为10 cm 或5 cm . (2)由棱锥的性质,得S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-10152=19或S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-5152=49.。
高中数学必修二第一章空间几何体单元测试题附答案

(数学必修2)第一章空间几何体一、选择题1下图是由哪个平面图形旋转得到的()A B C D2过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A1:2:3B1:3:5C1:2:4D1:3:93在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A23B76C45D564已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V和2V,则12:V V=()A1:3B1:1C2:1 D3:15如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A8:27B2:3C4:9D2:96有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A224cmπ,212cmπB215cmπ,212cmπC224cmπ,236cmπD以上都不正确二、填空题1若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______2 一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是3 球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍4 一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米5 已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________三、解答题1 (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积2 如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积参考答案一、选择题1 A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2 B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l ==12312132::1:4:9,:():()1:3:5S S S S S S S S =--= 3 D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥 4 D 121:():()3:13V V Sh Sh == 5 C 121212:8:27,:2:3,:4:9V V r r S S === 6 A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面2134123V ππ=⨯⨯= 二、填空题1 设圆锥的底面半径为r ,母线为l ,则123r l ππ=,得6l r =,226715S r r r r ππππ=+⋅==,得r =,圆锥的高h =211153377V r h ππ==⨯=2 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅== 3 8 21212,8r r V V ==4 12 234,123V Sh r h R R ππ=====5 28 '11()(416)32833V S S h ==⨯+⨯= 三、解答题1 解:圆锥的高h ==1r =,22(2S S S πππ=+=+=侧面表面底面 1. 解:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=V V V =-圆台圆锥222112211()331483r r r r h r h πππ=++-=友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高中数学必修二第一章测试题及答案(人教版)

第一章空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个().主视图左视图俯视图(第1题)A.棱台B.棱锥C.棱柱D.正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是().A.2+2B.221+C.22+2D.2+13.棱长都是1的三棱锥的表面积为().A.3B.23C.33D.434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().A.25πB.50πC.125πD.都不对5.正方体的棱长和外接球的半径之比为().A.3∶1B.3∶2C.2∶3D.3∶36.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是().A.29πB.27πC.25πD.23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().A.130B.140C.150D.1608.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=23,且EF与平面ABCD的距离为2,则该多面体的体积为().A.29B.5C.6D.2159.下列关于用斜二测画法画直观图的说法中,错误..的是().A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m (底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径,l =2225+4+3=52,2R =52,R=225,S =4πR2=50π. 5.C解析:正方体的对角线是外接球的直径.6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π. 7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a2,a =8,S 侧面=4×8×5=160.8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.平行于z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D.二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a . 解析:画出正方体,平面A B1D 1与对角线A 1C 的交点是对角线的三等分点,三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a3. 另法:三棱锥O-A B1D1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D1为底面.14.参考答案:平行四边形或线段. 15.参考答案:6,6.解析:设a b=2,b c=3,ac =6,则V = abc =6,c =3,a =2,b =1,l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr2h=34πR 3,R =32764×=12. 三、解答题17.参考答案:V =31(S +S S ′+S)h ,h=S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题) 在Rt △C'CO 中,由勾股定理,得CC'2+OC 2=OC'2,即 a 2+(22a )2=R2. ∴R =26a ,∴V 半球=26πa3,V 正方体=a 3.C OA∴V 半球 ∶V 正方体=6π∶2.19.参考答案:S表面=S 下底面+S 台侧面+S锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π.V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m,则仓库的体积V1=31Sh =31×π×(216)2×4=3256π(m 3). 如果按方案二,仓库的高变成8 m ,则仓库的体积V2=31Sh =31×π×(212)2×8=3288π(m 3). (2) 参考答案:如果按方案一,仓库的底面直径变成16 m,半径为8 m . 棱锥的母线长为l =224+8=45,仓库的表面积S1=π×8×45=325π(m 2).如果按方案二,仓库的高变成8 m.棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S2<S 1,∴方案二比方案一更加经济些.。
人教A版高一数学必修二第一章空间几何体单元测试卷(含答案)

(人教A 版)高一数学必修二第一章空间几何体单元测试卷(含答案)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .C ..123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是() A.B .C .D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) ABCD5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .B .C .D .7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π1353R 3R 3R 3R 163π193π1912π43π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .C .D .9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛10的内切球,则此棱柱的体积是( )A .B .C .D .11.如图,网格纸上正方形小格的边长为1(表示),图中粗线画出的是某零件的三视图,该零件由一个底面半径为,高为的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .B .C .D .1213161.623354cm 327cm 31cm 3cm 6cm 17275910271312.如图,有一个水平放置的透明无盖的正方体容器,容器高,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为,如果不计容器的厚度,则球的体积为( )A .B .C .D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是,母线长为.求圆锥的母线长.8cm 6cm 3500cm 3π3cm 3866π3cm 31372π3cm 32048π1:410cm18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,制造这个塔顶需要多少铁板?m22.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.(人教A 版)高一数学必修二第一章空间几何体单元测试卷参 考 答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D . 2.【答案】D【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15则这个菱柱的侧面积为.故选A . 164122OAB S =⨯⨯=△45=4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为,所以圆锥的体积.故选A . 5.【答案】D【解析】.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222119212R ⎛⎫=+= ⎪⎝⎭⎝⎭,因此所求球的表面积是, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则,故选C .9.【答案】B【解析】设圆锥底面半径为r,则,∴,所以米堆的体积为,故堆放的米约为,故选B . 10.【答案】B【解析】由题意知棱柱的高为, ∴底面正三角形的边长为,正三棱柱的底面面积为,∴此三棱柱的体积2R 23132R R R ⎛⎫⨯π⨯= ⎪⎝⎭()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭2191944123R ππ=π⨯=2111133V =⨯⨯=12384r ⨯⨯=163r =21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭320 1.62229÷≈cm 6cm 2.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6π×22×4π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤. 14.15.【答案】11【解析】设棱台的高为x ,则有,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为.()354cm V ==--2165016512x -⎛⎫= ⎪⎝⎭1346168361282V =⨯⨯⨯+π⨯=+π三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】. 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以.18.【答案】(1)正六棱锥;(2)见解析,;(3).【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即,AD 是正六棱锥的高,即,所以该平面图形的面积为.(3)设这个正六棱锥的底面积是S ,体积为V ,则, 所以.19.【答案】不会,见解析.【解析】因为,,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】. 403cm cm 403l=232a 332a BC=AD=21322a=226S =231332V a ==()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球()22311412201cm 33V r h =π=π⨯⨯≈圆锥74V π=【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和的同心圆,故该几何体的体积为.21.【答案】.【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,,,所以, 则△SAB 的面积是.所以四棱锥的侧面积是,即制造这个塔顶需要铁板.22.【答案】(1;(2).【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴,∴三棱锥A ′-BC ′D 的表面积为.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =.3223741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭2m )m SO =()11m 2OP BC ==)m SP =)212m 2⨯⨯=)24m ⨯=2m 33a A B A C A D BC BD C D ''''''=====2142⨯=332114323a a a a -⨯⨯⨯=。
高中数学必修二第一章《空间几何体》单元练习题(含答案)

高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成3.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.24.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是 ( )A.B.C.1D.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是 ( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.8.在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.3.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2【解析】选B.由该四面体的三视图可知,该四面体的直观图如图所示:其中侧面PAC⊥底面ABC,且△PAC≌△BAC,由三视图中所给数据可知PA=PC=AB=BC=,取AC的中点O,连接PO,BO,则在Rt△POB中,PO=BO=1,可得PB=,所以S=2××2+×2×2=2+.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS【解析】选B.设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A. B. C.1 D.【解析】选D.设上、下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r2=4r1,r0=r1,所以==.6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D 中扇形时,几何体为圆柱的,且体积为. 二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.【解析】设球的半径为rcm,则πr 2×8+πr 3×3=πr 2×6r.解得r=4. 答案:48.(2015·四川高考)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .【解析】V=××=.答案:9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.【解析】以4为高卷起,则2πr=8,所以2r=,所以轴截面面积为cm 2;若以8为高卷起,则2πR=4,所以2R=,所以轴截面面积为cm 2.答案:三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=S ABCD×PE=×2×4×2=.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?【解析】设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53=(cm3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二第一章《空间几何体》单元测试(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共计60分)1.过棱柱不相邻两条侧棱的截面是( ).A.矩形B.正方形C.梯形D.平行四边形2.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如右图;②存在四棱柱,其正视图、俯视图如右图;③存在圆柱,其正视图、俯视图如右图.其中真命题的个数是( ).A.3 B.2C.1 D.03.若某空间几何体的三视图如图所示,则该几何体的体积是( ).A.13B.23C.1 D.24.已知水平放置的△ABC是按“斜二测画法”得到如右图所示的直观图,其中1B OC O''=''=,2A O''=,那么原△ABC是一个( ).A.等边三角形B.直角三角形C.三边中有两边相等的等腰三角形D.三边互不相等的三角形5.轴截面为正方形的圆柱的侧面积与全面积的比是( ).A.1∶2 B.2∶3C.1∶3 D.1∶46.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A.①②B.①③C.①④D.②④7.一平面截一球得到直径是6 cm的圆面,球心到这个平面的距离是4 cm,则该球的体积是( ).A.1003πcm3 B.2083πcm3C.5003πcm3 cm38.一圆台上底面半径为5 cm,下底面半径为10 cm,母线AB长为20 cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为( ).A.30 cm B.40 cmC.50 cm D.60 cm9.圆台的母线长扩大到原来的n倍,两底面半径都缩小为原来的1n,那么它的侧面积为原来的__________倍.( ).A.1 B.n C.n2 D.1 n10.设下图是某几何体的三视图,则该几何体的体积为( ).A.9π+42 B.36π+18C.9122π+ D.9182π+11.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,右图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是( ).A.0 B.9 C.快D.乐12.如图,在一个盛满水的圆柱形容器内的水面下有一个用细绳吊着的薄壁小球,小球下方有一个小孔,当慢慢地、匀速地将小球从水下面往上拉动时,圆柱形容器内水面的高度h与时间t的函数关系图象大致为( ).二、填空题(本大题共4小题,每小题4分,共16分)13.若球O1、O2表面积之比124S S =,则它们的半径之比12RR=__________.14.一个正四棱柱的各个顶点都在一个直径为2 cm的球面上.如果正四棱柱的底面边长为1 cm,那么该棱柱的表面积为__________cm2.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是__________cm3.16.一个无盖的正方体盒子展开后的平面图,如图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=__________.三、解答题(本题共6小题,满分74分)17.(12分)画出如图所示几何体的三视图.18.(12分)一个直角梯形的两底长为2和5,高为4,将其绕较长的底旋转一周,求所得旋转体的侧面积.19.(12分)一个正三棱柱的三视图如图,求这个正三棱柱的表面积.20.(12分)如图所示是一个正方体,H、G、F分别是棱AB、AD、AA1的中点.现在沿△GFH所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?21.(12分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边长为6,高为4的等腰三角形.求:(1)该几何体的体积V;(2)该几何体的侧面面积S.22.(14分)如图是从上下底面处在水平状态下的棱长为a的正方体ABCDA 1B1C1D1中分离出来的.(1)∠DC1D1在图中的度数和它表示的角的真实度数都是45°,对吗?(2)∠A1C1D的真实度数是60°,对吗?(3)设BC=1,如果用图示中这样一个装置来盛水,那么最多能盛多少体积的水?答案与解析1.答案:D解析:侧棱平行且相等.2.答案:A解析:①正确,一直三棱柱,其中四边形BCC1B1与四边形BAA1B1是全等的矩形,且面BCC1B1⊥面BAA1B1,即满足要求.②正确,如图一正四棱柱ABCDA1B1C1D1,即满足要求.③正确.横卧的圆柱即可.如图.3.答案:C解析:根据三视图可以推测出该物体应该为一个三棱柱,底面是直角三角形,因此1(1)12V Sh ===,选C.4.答案:A解析:依据斜二测画法的原则可得,2BC B C ''==,22OA =⨯=, ∴AB =AC =2,故△ABC 是等边三角形. 5.答案:B解析:设圆柱的底面半径为r ,母线长为l ,依题意得l =2r ,而S 侧=2πrl ,S 全=2πr 2+2πrl ,∴S 侧∶S 全=2πrl ∶(2πr 2+2πrl )=2∶3,故选B. 6.答案:D解析:正方体的三视图都是正方形,所以①不符合题意,排除A 、B 、C. 7.答案:C解析:根据球的截面性质,截面小圆的圆心与球心的连线与截面垂直,因此球心到截面的距离、小圆半径与球的半径构成直角三角形.由勾股定理得球的半径为5 cm ,故球的体积为34500533ππ⨯=cm 3. 8.答案:C解析:画出圆台的侧面展开图,并还原成圆锥展开的扇形,则扇形圆心角为90°,且圆锥的母线长为40 cm 50= (cm).9.答案:A解析:设改变之前圆台的母线长为l ,上底半径为r ,下底半径为R ,则侧面积为π(r +R )l ,改变后圆台的母线长为nl ,上底半径为r n ,下底半径为R n,则侧面积为()()r Rnl r R l nππ+=+,故它的侧面积为原来的1倍. 10.答案:D解析:由三视图可知,该几何体是一个球体和一个长方体的组合体.其中,3439()322V ππ=⋅=球,V 长方体=2×3×3=18.所以9+182V π=总11.答案:B解析:本题考查了正方体的表面展开图,选B. 12.答案:C解析:由球顶到球中心被拉出时,小球的体积越露越大,水面高度下降得快,所以曲线向上弯;当球从中心开始到整个球被拉出水面时,球的体积变化越来越小,水面高度下降得慢,所以曲线向下弯.在整个过程中,函数关系图象大致为C.13.答案:2解析:由S =4πR 2易知.14.答案:2+解析:设正四棱柱的高为a ,由长方体与球相接的性质知4=1+1+a 2,则a =∴正四棱柱的表面积为S =1×1×2+4×1(2=+cm 2. 15.答案:144解析:由几何体的三视图知该几何体是正四棱台与长方体的组合体,所以几何体的体积为V =13×(4×464)×3+4×4×2=144.16.答案:90°解析:如下图所示,折成正方体,很明显,点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.17.解:该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18.解:如图所示,梯形ABCD 中,AD =2,AB =4,BC =5. 作DM ⊥BC ,垂足为点M , 则DM =4,MC =5-2=3,在Rt △CMD 中,由勾股定理得5CD ==在旋转生成的旋转体中,AB 形成一个圆面,AD 形成一个圆柱的侧面,CD 形成一个圆锥的侧面,设圆柱与圆锥的侧面积分别为S 1,S 2,则S 1=2π×4×2=16π,S 2=π×4×5=20π, 故此旋转体的表面积为S =S 1+S 2=36π.19.解:由题意可知正三棱柱的高为2,底面三角形的高为角形的边长为a =∴a =4,∴22444S a ===底. 正三棱柱侧面积S 侧=3×2×4=24.∴正三棱柱表面积S 表=S 侧+2S 底=20.解:设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是Rt △AGF ,即∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,所以AF =AG =12a .所以△AGF 的面积为211112228a a a ⨯⨯=.又因AH 是三棱锥的高,H 又是AB 的中点,所以12AH a =.所以锯掉的部分的体积为23111132848a a a ⨯⨯=.又因33114848a a ÷=,所以锯掉的那块的体积是原正方体体积的148. 21.解:由已知知该几何体是一个四棱锥,记P ABCD . 如图所示,由已知,知AB =8,BC =6,高h =4.由俯视图知:底面ABCD 是矩形,连接AC ,BD 交于点O ,连接PO ,则PO =4,即为棱锥的高.作OM ⊥AB 于M ,ON ⊥BC 于N ,连接PM ,PN , 因为PA =PB =PC ,M 、N 为AB 、BC 的中点, 则PM ⊥AB ,PN ⊥BC .故5PM ==,PN ==(1)V =13Sh =13×(8×6)×4=64.(2)S 侧=2S △PAB +2S △PBC=AB ·PM +BC ·PN=8×5+6×22.解:(1)对.因为四边形DD 1C 1C 是正方形,且是正对的后面,即恰好是正投影.所以∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°.(2)对.事实上,连接DA 1以后,△DA 1C 1的三条边都是正方体的面对角线,,所以△DA 1C 1是等边三角形,所以∠A 1C 1D =60°.(3)如果用图示中的装置来盛水,那么最多能盛水的体积等于三棱锥C 1CB 1D 1的体积,111111-111·36C CB D B C D V S CC ==V ,所以最多能盛水的体积为16.。