弹性力学有限元习题答案
试题及其答案--弹性力学与有限元分析

8、表示位移分量与应力分量之间关系的方程为物理方程。(×)
9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√)
10、当物体的位移分量完全确定时,形变分量即完全确定。(√)
11、按应力求解平面问题时常采用位移法和应力法。(×)
12、按应力求解平面问题,最后可以归纳为求解一个应力函数。(×)
10、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变
答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。因此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。
4、简述平面应力问题与平面应变问题的区别。
答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有 , , 。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v
13、在有限单元法中,结点力是指单元对结点的作用力。(×)
14、在有限单元法中,结点力是指结点对单元的作用力。(√)
15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ )
三、简答题
1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。
在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。
弹性力学及有限元习题参考答案(赵均海、汪梦甫)汇编

(1,1)
4
(0,0)
5
(1,1)
(0,0)
(1,0)
号
③
2
(1,1)
5
(1,0)
6
(2,0)
④
2
(1,1)
3
(2,1)
6
(2,0)
元
②
1
2
1
2
1
2
cm
1
-1
-1
0
0
-1
1
0
-1
K11
K K 21
K31
1
2
K12
K 22
K32
0
1
-1
1
-1
0
1
0
-1
0
-1
1
K13
K 23 (i 1, j 2, m 3)
(3)主方向:
l( − ) + + = 0
+ ( − ) + = 0
+ + ( − ) = 0
2 + 2 + 2 = 1
第一主方向:将1 = −46 MPa 及个分量代入上式,有:
101l + 40 = 0
0
0
0
0
5 2
7 17
0
0
0
0
5 12
0
0
17
0 12 2
0
0
0
0
0
17
5
5
0
0
0
0 12 5
34
0 12 5
0
0
弹性力学及有限元法答案下载

弹性力学及有限元法答案下载一、是非题(下列各题,你认为正确的,请在题干的括号内打“√”,错的打“×”。
每题3分,共12分)1、按应力求解平面问题时,若应力分量满足平衡方程,且在边界上满足应力边界条件即为正确解答。
…………………………………………………………………………………………()2、图示弹性体在两种荷载作用下,若lh,则A点的应力分量是相同的。
…………………()3、用有限单元法求解平面应力问题时,单元刚度矩阵的子块kij的物理意义是:仅当第j个结点沿坐标正向发生x或y方向的单位位移,在i结点处引起的沿x或y 方向的结点力。
……()4、等厚度旋转圆盘以等角速度ω旋转时,该问题应属平面应变问题。
……………………()二、单选题(在本题的每一小题的备选答案中,只有一个是正确的,请把你认为正确答案的题号,填入题干的括号内。
多选不给分。
每题材5分,共15分)1、图示半平面体受集中力P作用,其应力边界条件为………………………………………()①θ=0,π,σθ=σr=0 ②θ=0,π,σθ=τθr =0③θ=0,π,r≠0,σθ=τθr=0 ④θ=0,π,r≠0,σθ=τθr=02、铅直平面内正方形薄板,边长为2a,周长固定,只受重力作用。
用瑞次法求解,其位移表达式应为…………………………………………………………………………………………()3、不计体力,图示弹性体的应力函数为………………………………………………………()①υ=τ0xy-(qy3)/6b ②υ=τxy+(qy3)/6b③υ=-τ0xy-(qy3)/6b ④υ=-τxy+(qy3)/6b三、填空题1、(3分)按应力求解平面问题。
若认应力函数υ=ax5y+bxy5(a、b 不等于零),则系数b、b应满足关系()。
2、(4分)已知一点应力状态为σx =100,σy=50,τxy=10,则σ1=(),σ2=()。
3、(3分)图示薄板,设其厚度t=1。
弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年

弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年1.建立平衡微分方程时,用到了下列哪些假定()、()。
参考答案:连续性_小变形2.有限单元法中的单元仍然满足()、()、()、()的理想弹性体。
参考答案:完全弹性_均匀性_各向同性_连续性3.应力边界条件是指在边界上()之间的关系式。
参考答案:应力与面力4.面力是指分布在物体的力。
参考答案:表面上##%_YZPRLFH_%##表面5.位移是指一点的移动。
参考答案:位置6.线应变(或正应变)以为正。
参考答案:伸长7.极坐标系下的几何方程有()。
参考答案:3个8.极坐标系下的平衡微分方程有()。
参考答案:2个9.应力是指上的内力。
参考答案:单位面积##%_YZPRLFH_%##单位截面10.地面的沉陷与地基的弹性模量无关。
()参考答案:错误11.弹性力学问题中,仅对位移分量要求单值。
()参考答案:错误12.在小边界上按圣维南原理列写的三个边界条件是方程。
参考答案:代数##%_YZPRLFH_%##积分13.在大边界上按精确的应力边界条件,列出的两个边界条件是方程。
参考答案:函数14.精确的应力边界条件可理解为,边界上的应力分量应等于对应的。
参考答案:面力分量15.当体力为常量时,按应力求解可简化为按求解。
参考答案:应力函数16.常体力,是指。
参考答案:体力是常量##%_YZPRLFH_%##体力等于常量##%_YZPRLFH_%##体力为常量17.体力是指分布在物体的力。
参考答案:体积内##%_YZPRLFH_%##体积18.在弹性力学中,可以应用叠加原理。
参考答案:正确19.逆解法先假设应力分量的函数形式进行求解。
参考答案:错误20.应力的量纲与面力的量纲是一样的。
参考答案:正确21.弹性力学中应力的符号与面力的符号规定,在正、负坐标面上是一致的。
参考答案:错误22.弹性力学和材料力学中关于切应力的符号规定是一样的。
参考答案:错误23.小变形假定可简化()、()为线性方程。
有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。
7、在弹性和小变形下,节点力和节点位移关系是线性关系。
8、弹性力学问题的方程个数有15个,未知量个数有15个。
9、弹性力学平面问题方程个数有8,未知数8个。
10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
弹性力学与有限元法习题集.. 共72页

试检验这些应力公式是否满足变形协调方程 ?
2019/7/20
slide7
答案 返回
8.下图示梁作用有分布载荷q (x),体力忽略不计,已知 ,其中 M(x)为梁的截面弯矩,I为截面惯性矩。试根据单元体的平衡 方程式,求应力 。6. 题答案由:源自xu x,
y
v y
2x 2y 2xy
y2 x2 yy
,
xy
v x
u y
x 2u
y xy
,
2 x 3u
y2 xy2
y 2v
x xy
,
2 y
x 2
3v yx 2
6. 应用几何方程推导应变分量应满足下列变形协调方程。
2x
y2
2x2y
2xy
xy
2019/7/20
slide6
答案 返回
7. 悬臂梁在三角形分布载荷作用下,可以看成平面应力问题,
应力分量表达式为,x4q a3x3y2x3y5 6a2xy,y qx4ya33 34ay12
弹性力学与有限元法习题集 与参考答案
2019/7/20
单丽君
大连交通大学
2009年10月
slide1
第一章 第二章
第三章
参考试卷
第四章 第五章
2019/7/20
slide2
第一章习题与答案
1. 有限单元法的含义? 2. 有限单元法的解题思路? 3. 有限单元法的优点?
2019/7/20
slide3
x y 2 1 E x y 2 1 E 8 q 3 3 a 2 a 2 x y 2 1 5 a 4 y 4 5 6 a 2 y 2
弹性力学与有限元分析试题及参考答案

按应力求解平面应变问题的相容方程:
将已知应力分量 , , 代入上式,可知满足相容方程。
4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。
(1) , , ;
(2) , , ;
(3) , , ;
其中,A,B,C,D为常数。
弹性力学与有限元分析试题及参考答案
四、分析计算题
1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1) , , ;
(2) , , ;
其中,A,B,C,D,E,F为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ;(2)在区域内的相容方程 ;(3)在边界上的应力边界条件 ;(4)对于多连体的位移单值条件。
6、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
解:将应力函数 代入相容方程
可知,所给应力函数 能满足相容方程。
由于不计体力,对应的应力分量为
, ,
对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:
上边, , , , , ;
解:应变分量存在的必要条件是满足形变协调条件,即
将以上应变分量代入上面的形变协调方程,可知:
(1)相容。
(2) (1分);这组应力分量若存在,则须满足:B=0,2A=C。
(3)0=C;这组应力分量若存在,则须满足:C=0,则 , , (1分)。
5、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
有限元法基础习题答案

有限元法基础习题答案有限元法是一种常用的工程分析方法,广泛应用于结构力学、热传导、流体力学等领域。
它通过将复杂的物理问题离散化为一系列简单的子问题,并利用数值方法求解这些子问题,从而得到整体问题的近似解。
在学习有限元法的过程中,习题是必不可少的一环。
本文将给出一些有限元法基础习题的答案,希望能够帮助读者更好地理解和掌握这一方法。
习题一:一维线性弹性力学问题考虑一根长度为L的弹性杆,杆的截面积为A,杨氏模量为E。
在杆的一端施加一个沿杆轴向的拉力F,另一端固定。
假设杆轴向变形u(x)满足以下方程:EAu''(x) = -F,0 < x < Lu(0) = 0, u(L) = 0其中,u''(x)表示u(x)对x的二阶导数。
解答:根据上述方程,我们可以得到杆的位移函数u(x)的表达式。
首先,对方程两边进行积分,得到:EAu'(x) = -Fx + C1其中,C1为积分常数。
再次对方程两边进行积分,得到:EAu(x) = -F/2*x^2 + C1*x + C2其中,C2为积分常数。
根据边界条件u(0) = 0,可得C2 = 0。
代入边界条件u(L) = 0,可得:EAu(L) = -F/2*L^2 + C1*L = 0由此可得C1 = F/2*L。
将C1代入上式,可得:EAu(x) = -F/2*x^2 + F/2*L*x最终得到杆的位移函数u(x)的表达式为:u(x) = (-F/2*E)*(x^2 - L*x),0 < x < L习题二:二维平面弹性力学问题考虑一个正方形薄板,边长为L,板的厚度为h。
假设薄板的杨氏模量为E,泊松比为ν。
在薄板的一侧施加一个沿法向的均匀表面压力P,另一侧固定。
求薄板的位移和应力分布。
解答:根据平面弹性力学理论,我们可以得到薄板的位移和应力分布。
首先,根据杨氏模量E、泊松比ν和薄板的厚度h,可以计算出薄板的弹性模量D:D = E*h^3 / (12*(1-ν^2))接下来,根据薄板的边界条件和平衡方程,可以得到薄板的位移和应力分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学有限元习题答案
弹性力学有限元习题答案
弹性力学是研究物体在受力作用下产生的变形和应力分布的学科。
有限元方法
是一种数值计算方法,用于求解复杂的力学问题。
在弹性力学有限元习题中,
我们需要运用弹性力学理论和有限元方法来解答问题。
下面,将给出一些常见
的弹性力学有限元习题的解答。
1. 问题描述:一根长为L的均匀梁,两端固定支承,受到均匀分布载荷q作用。
求梁的挠度分布和最大挠度。
解答:首先,我们可以根据弹性力学理论得到梁的挠度方程。
然后,将梁分割
为若干个小段,利用有限元方法近似求解挠度分布。
最后,通过计算得到的挠
度分布,可以找到最大挠度的位置和数值。
2. 问题描述:一个矩形薄板,边长为a和b,厚度为t。
板的一侧边固定支承,
另一侧边受到均匀分布载荷q作用。
求板的应力分布和最大应力。
解答:根据弹性力学理论,可以得到薄板的应力分布方程。
然后,将薄板分割
为若干个小单元,利用有限元方法近似求解应力分布。
最后,通过计算得到的
应力分布,可以找到最大应力的位置和数值。
3. 问题描述:一个长方体结构,由若干个杆件和节点组成。
杆件的长度、截面
积和杨氏模量已知。
节点上的载荷和位移边界条件已知。
求结构的应力分布和
变形。
解答:首先,我们可以根据弹性力学理论得到结构的应力分布方程和变形方程。
然后,将结构分割为若干个小单元,利用有限元方法近似求解应力分布和变形。
最后,通过计算得到的应力分布和变形,可以分析结构的受力情况和变形情况。
以上是一些常见的弹性力学有限元习题的解答方法。
在实际应用中,弹性力学有限元方法可以用于求解各种复杂的力学问题,如梁、板、壳体、结构等。
通过运用弹性力学理论和有限元方法,可以得到准确的应力分布和变形情况,为工程设计和分析提供有力的支持。
总结起来,弹性力学有限元习题的解答需要运用弹性力学理论和有限元方法,通过建立适当的数学模型和边界条件,求解应力分布和变形情况。
这些解答方法在实际工程中具有广泛的应用价值,可以帮助工程师和科研人员分析和解决各种力学问题。
弹性力学有限元习题的解答过程需要细致入微的思考和计算,但通过不断的练习和实践,我们可以掌握这一重要的工程分析方法。