两角和与差的正切

合集下载

两角和与差的正切公式。

两角和与差的正切公式。

两角和与差的正切公式。

两角和与差的正切公式如下:
1.两角和公式:
tan(A + B) = (tan A + tan B) / (1 - tan A * tan B)
2.两角差公式:
tan(A - B) = (tan A - tan B) / (1 + tan A * tan B)
这些公式可以用来计算两个角的和或差的正切值。

它们在三角函数的计算中很有用,尤其是在解决三角函数方程或证明三角函数恒等式时。

拓展:
这些公式可以通过三角恒等式的推导得到,可以帮助我们更好地理解三角函数之间的关系。

除了正切函数之外,正弦、余弦等三角函数也有类似的两角和与差的公式。

掌握这些公式可以帮助我们更好地理解三角函数的性质和用途。

两角和与差的正切公式的记忆口诀

两角和与差的正切公式的记忆口诀

两角和与差的正切公式的记忆口诀下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、说明正切公式的重要性。

正切公式是解决三角函数中两个角的和或差的正切值的计算问题的重要工具。

两角和与差的正切

两角和与差的正切
学习目标
XUE XI MU BIAO
1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.

知识梳理

题型探究

随堂演练

课时对点练
1
PART ONE
知识梳理
知识点 两角和与差的正切公式
=1t-antaαn-αβ-+βttaannαα=1-12+12×31 31=1.
∵tan α=13>0,tan β=-17<0, ∴α∈0,π2,β∈π2,π,∴α-β∈(-π,0).
又∵tan(α-β)=12>0, ∴α-β∈-π,-π2,2α-β=α+(α-β)∈(-π,0). 而 tan(2α-β)=1,∴2α-β=-34π.
例3
(1)已知 tan α=2,证明:sin2α+sin αcos α=65-
1+tan 3-
1-tan
5π 12 5π. 12
证明 因为tan α=2,
所以左边=sins2iαn+2α+sincoαsc2oαs α=tanta2nα2+α+tan1 α=44+ +21=65.
右边=65-
1+tan 3-
tan(α-β)=1t+antaαn-αt·atannββ=1+13-13×--22=7.
(2)角α+β的值.
解 又
0<∵α<taπ2n,(απ2+<ββ<)=π,1t-antaαn+αt·atannββ=1-13+13×--22=-1,
∴π2<α+β<32π,
∴α+β=34π.
三、两角和与差的正切公式的综合应用

3.1.2 两角和与差的正切公式(张奕辉用)

3.1.2  两角和与差的正切公式(张奕辉用)
3 解:由sinα = − , α 是第四象限的角,得 5 4 3 cos α = 1 − sin 2 α = 1 − (− 5 )2 = , 5 3 − sin α 3 所以 tan α = = 5 =− . 4 cos α 4 5
π 4 = tan α − 1 tan(α − ) = 4 1 + tan α tan π 1 + tan α 4 3 − −1 = 4 = −7. 3 1 + (− ) 4
0 + tan45 解: 1 tan105 = tan(60 + 45 ) = () =−2 − 3. 1− tan60 ⋅ tan45
tan45 + tan30 = 2 + 3. () 2 tan75 = tan(45 +30 ) = 1− tan45 ⋅ tan30
3 π (3)已知 sin α = − , α 是第四象限角,求 tan(α − )的值. 5 4
=1+ tan(α + β )(1− tanα tan β ) + tanα tan β =1+ tan = 2.
π
解 (1+ tanα)(1+ tan β ) =1+ tanα + tan β + tanα ⋅ tan β :
π
4
(1− tanα tan β ) + tanα tan β.
5.已 知 A , , 是 非 直 角 ∆ ABC 的 三 内 角 , B C 求 证 : A + tan B + tan C = tan A tan B tan C . tan
2
正切: 正切: 符号上同 下反
注 意 遇到

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . 3.三角公式的关系判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) 答案:(1)√ (2)× (3)× (4)√ (5)√(教材习题改编)化简cos 18°cos 42°-cos 72°sin 42°的值为( ) A .32B .12C .-12D .-32解析:选B .法一:原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.(教材习题改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A .725B .-725C .1625D .-1625解析:选A .由sin(α-k π)=35(k ∈Z )得sin α=±35.所以cos 2α=1-2sin 2α=1-2×(±35)2=1-1825=725.故选A .(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)的值为( )A .210B .-210C .7210D .-7210解析:选A .因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22×(-35)-22×(-45)=210.(优质试题·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75(教材习题改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33.答案:33三角函数公式的直接应用[典例引领](1)已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C .12D .1(2)(优质试题·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=__________. 【解析】 (1)因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以tan α=sin αcos α=-1,故选A .(2)因为α∈⎝⎛⎭⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=22×⎝⎛⎭⎫255+55=31010. 【答案】 (1)A (2)31010三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.[注意] 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.解析:因为sin α=35,α∈⎝⎛⎭⎫π2,π,所以cos α=-45. 所以cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α=-75.答案:-752.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=2sin αcos α=-sin α, 所以cos α=-12.又α∈⎝⎛⎭⎫π2,π,所以sin α=32, 所以tan α=- 3.所以tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.答案: 3三角函数公式的逆用与变形应用[典例引领](1)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32(2)已知θ∈⎝⎛⎭⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=( ) A .23B .43C .34D .32【解析】 (1)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.(2)由sin θ-cos θ=-144得sin ⎝⎛⎭⎫π4-θ=74, 因为θ∈⎝⎛⎭⎫0,π4,所以0<π4-θ<π4, 所以cos ⎝⎛⎭⎫π4-θ=34.2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=cos 2θsin ⎝⎛⎭⎫π4-θ=sin ⎝⎛⎭⎫π2-2θsin ⎝⎛⎭⎫π4-θ=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-θsin ⎝⎛⎭⎫π4-θ =2cos ⎝⎛⎭⎫π4-θ=32. 【答案】(1)B (2)D(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系.②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[通关练习]1.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B .22C .12D .-12解析:选B .由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B=-1,即tan(A +B )=2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235B .235C .45D .-45解析:选D.由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45.角的变换[典例引领](1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A .2525B .255C .2525或255D .55或525(2)对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=________. 【解析】 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)由于α为锐角,且sin ⎝⎛⎭⎫α-π12=35,可得cos ⎝⎛⎭⎫α-π12=45,那么cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-π12+π4=cos ⎝⎛⎭⎫α-π12cos π4-sin ⎝⎛⎭⎫α-π12sin π4=210,于是cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫2102-1=-2425.【答案】 (1)A (2)-2425利用角的变换求三角函数值的策略(1)当“已知角”有两个时:一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时:此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.[注意] 常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3的值为( ) A .23B .12C .34D .45解析:选B .tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan(α+β)-tan ⎝⎛⎭⎫α-π31+tan(α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C .14D .78解析:选A .cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α =-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-78.两角和、差及倍角公式的逆用和变用(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β),(3)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.1.cos 15°+sin 15°cos 15°-sin 15°的值为( )A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.2.(1+tan 18°)·(1+tan 27°)的值是( ) A . 3 B .1+ 2C .2D .2(tan 18°+tan 27°)解析:选C .原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C .3.已知sin α+cos α=13,则sin 2(π4-α)=( )A .118B .1718C .89D .29解析:选B .由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos(π2-2α)2=1-sin 2α2=1+892=1718.4.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A .45B .-45C .35D .-35解析:选C .由sin ⎝⎛⎭⎫α-π4=7210得 sin α-cos α=75,①由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725,② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.5.已知cos(π3-2x )=-78,则sin(x +π3)的值为( )A .14B .78C .±14D .±78解析:选C .因为cos [π-(π3-2x )]=cos(2x +2π3)=78,所以有sin 2(x +π3)=12(1-78)=116,从而求得sin(x +π3)的值为±14,故选C .6.已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________.-cos θsin π6=-1213×32-⎝⎛⎭⎫-513×12=5-12326.答案:5-123267.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33=-1. 答案:-18.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.答案:129.已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R . (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ=45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35. 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2 θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角和与差的正弦、余弦与正切公式

两角和与差的正弦、余弦与正切公式
b=
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2

两角和与差的正切公式

两角和与差的正切公式

探求新知
cos cos
分子分母同 除以
方法二:
tan
tan[ ( )]
探求新知
tan tan( ) 1 tan tan( ) tan tan 1 tan tan
归纳对比
正切、余切和、差角公式
tan tan tan 1 tan tan
3 探究、已知 cosα-2cosβ=-2, 1 sinα-2sinβ=3,求 cos(α-β)的值.
• 规律技巧:两式平方相加的方法,是解决具有 本题特征的题目的有效途径.
类型三
1 例 3:已知 α、β∈(0,π),且 tan(α-β)= , 2
1 tanβ=- ,求 tan(2α-β)的值,及此时 2α-β 的值. 7
类型二
公式的变形应用
例 2:求下列各式的值: 1+tan75° (1) ; 1-tan75° (2)tan17° +tan28° +tan17° tan28° ; (3)tan70° -tan10° - 3tan70° tan10° .
tan45° + tan75° 解:(1)解法 1:原式= 1- tan45° tan75° = tan(45° + 75° )= tan120° =- 3. tan45° + tan30° 解法 2: ∵tan75° = tan(45° + 30° )= 1- tan45° tan30° 3 1+ 3 3+ 3 12+ 6 3 = = = = 2+ 3, 6 3 3- 3 1- 3 1+ tan75° 1+ 2+ 3 3+ 3 ∴ = = =- 3. 1- tan75° 1- 2+ 3 - 1- 3
规律技巧:本题从公式逆向变换思想出发,灵活地运用了 正切和角公式的变形式 tanα+tanβ=tan(α+β)· (1-tanαtanβ). 由此可解决一类求值问题: tanα+tanβ+tan(α+β)tanαtanβ=tan(α+β). 例如 tan17° +tan43° + 3tan17° · tan43° = 3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的正切
正切是一个在数学中具有重要意义的函数。

它的定义是,当一条直线
与另一条直线的两个斜率相乘时得到的结果。

正切可以用来描述两角平分
线之间的关系,也可以用来计算两角和与两角差之间的正切。

两角和和差的正切分别为:
和:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ)。

差:tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。

上述结果可以由三角恒等式和正反三角函数的定义来证明,首先是三
角恒等式,sin(α+β)=sinαcosβ+cosαsinβ,
cos(α+β)=cosαcosβ-sinαsinβ,
tan(α+β)=[sin(α+β)/cos(α+β)]=[sinαcosβ+cosαsinβ]/[cos
αcosβ-sinαsinβ],同样的,tan(α-β)=[sin(α-β)/cos(α-
β)]=[sinαcosβ-cosαsinβ]/[cosαcosβ+sinαsinβ],将第一两
项分开,可以得到tan(α+β)= (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/ (1+tanα * tanβ)。

因此,两角和与两角差的正切可以表示为:tan(α+β) = (tanα + tanβ)/ (1-tanα * tanβ),tan(α-β) = (tanα - tanβ)/
(1+tanα * tanβ)。

相关文档
最新文档