(完整版)两角和与差的正弦余弦正切公式

合集下载

两角和与差的正弦、余弦、正切(一)

两角和与差的正弦、余弦、正切(一)

一、知识概述(一)、两角和与差的余弦公式在直角坐标系内作出角α、β、-β,得到单位圆内的两条弦长相等,然后运用平面内两点间的距离公式,推导出两角和的余弦公式.cos(α+β)=cosαcosβ-sinαsinβ在上式中用-β代替β即得到差角的余弦公式.cos(α-β)=cosαcosβ+sinαsinβ(二)、两角和与差的正弦公式和诱导公式,可推出两角和的正弦公式:运用Cα+βsin(α+β)=sinαcosβ+cosαsinβ用-β代替β可得差角的正弦公式:sin(α-β)=sinαcosβ-cosαsinβ(三)、两角和与差的正切公式,Cα+β及商数关系可得到两角和的正切公式.运用Sα+β同理在上式中用-β代替β,可得.二、重难点知识归纳及讲解(一)、对于正、余弦、正切的和(差)角公式,不仅要会“正用”,而且还要会“逆用”、“变用”。

例1、cos82.5°cos52.5°+cos7.5°cos37.5°=________.分析:此题考查和(差)角的正、余弦公式的逆用,注意82.5°与7.5°,52.5°与37.5°是互余关系.解法一:解法二:例2、(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°) =________.分析:此题考查和角的正切公式的变形用法,注意到21°+24°=45°,22°+23°=45°.解:同理可得(1+tan22°) (1+tan23°)=2∴(1+tan21°) (1+tan22°) (1+tan23°) (1+tan24°)=4.(二)、和(差)角公式在求值、化简、证明中的应用.例3、已知,α,β均为锐角,求cosβ的值.分析:注意已知角与要求的角的关系β =(α+β)-α故cosβ=cos(α+β)cosα+sin(α+β)sinα.因此要求出sinα、cosα以及sin(α+β).解:∵tan α =4,α为锐角.又∵,α、β均为锐角.例4、化简.分析:注意观察角之间的联系。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

[典例] (2012· 广东高>0,x∈R)的最小正周期为 10π. 6
(1)求 ω 的值; π 5π 6 0, ,f5α+ =- ,f (2)设 α,β∈ 3 2 5
5β-5π=16,求 cos(α+β). 6 17
典题导入
Go the distance
sin α+cos α [例 3] (1)(2012· 温州模拟)若 =3,tan(α-β)=2,则 tan(β-2α)=________. sin α-cos α π 4 π (2)(2012· 江苏高考)设 α 为锐角,若 cos α+6=5,则 sin2α+12的值为________. sin α+cos α tan α+1 [自主解答] (1)由条件知 = =3, sin α-cos α tan α-1 则 tan α=2. 故 tan(β-2α)=tan [(β-α)-α] = tanβ-α-tan α -2-2 4 = = . 1+tanβ-αtan α 1+-2×2 3
Go the distance
的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统 一角和角与角转换的目的. 以题试法 π 3 1.(1)已知 sin α= ,α∈ 2,π,则 5 cos 2α π 2sin α+4 =________.
(2)(2012· 济南模拟)已知 α 为锐角,cos α= A.-3 4 C.- 3 cos 2α 1 B.- 7 D.-7
三角函数公式的应用
典题导入 1 π [例 1] (2011· 广东高考)已知函数 f(x)=2sin 3x-6,x∈R. 5π (1)求 f 4 的值; π π 10 6 (2)设 α,β∈ 0,2,f3α+2=13,f(3β+2π)=5,求 cos(α+β)的值. 1 π [自主解答] (1)∵f(x)=2sin 3x-6, 5π π 5π π ∴f 4 =2sin12-6=2sin4= 2. π π 10 6 (2)∵α,β∈ 0,2,f3α+2=13,f(3β+2π)=5, π 6 10 β+ = . ∴2sin α= ,2sin 2 5 13 5 3 即 sin α= ,cos β= . 13 5 12 4 ∴cos α= ,sin β= . 13 5 ∴cos(α+β)=cos αcos β-sin αsin β = 12 3 5 4 16 × - × = . 13 5 13 5 65 由题悟法 两角和与差的三角函数公式可看作是诱导公式的推广,可用 α、β 的三角函数表示 α± β

高中数学-两角和与差的正弦余弦和正切公式

高中数学-两角和与差的正弦余弦和正切公式

§4.3 两角和与差的正弦、余弦和正切公式考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用.知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=cos αcos β+sin αsin β;(2)公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;(3)公式S (α-β):sin(α-β)=sin αcos β-cos αsin β;(4)公式S (α+β):sin(α+β)=sin αcos β+cos αsin β;(5)公式T (α-β):tan(α-β)=;tan α-tan β1+tan αtan β(6)公式T (α+β):tan(α+β)=.tan α+tan β1-tan αtan β2.辅助角公式a sin α+b cos α=sin(α+φ),其中sin φ=,cos φ=.a 2+b 2ba 2+b 2aa 2+b 2知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-=-1.tan α+tan βtan (α+β)tan α-tan βtan (α-β)思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任tan α+tan β1-tan αtan β意角α,β都成立.( × )(4)sin α+cos α=sin .( × )3212(α+π3)教材改编题1.若cos α=-,α是第三象限角,则sin等于( )45(α+π4)A .-B.210210C .- D.72107210答案 C解析 ∵α是第三象限角,∴sin α=-=-,1-cos2α35∴sin=sin αcos +cos αsin =-×+×=-.(α+π4)π4π43522(-45)2272102.计算:sin 108°cos 42°-cos 72°sin 42°= .答案 12解析 原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=.123.若tan α=,tan(α+β)=,则tan β=.1312答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α==.12-131+12×1317题型一 两角和与差的三角函数公式例1 (1)(2022·包头模拟)已知cos α+cos =1,则cos 等于( )(α-π3)(α-π6)A. B.1312C. D.2233答案 D解析 ∵cos α+cos=1,(α-π3)∴cos α+cos α+sin α=cos α+sin α12323232=3(32cos α+12sin α)=cos=1,3(α-π6)∴cos=.(α-π6)33(2)化简:①sin x +cos x =.3答案 2sin(x +π3)解析 sin x +cos x =23(12sin x +32cos x)=2sin.(x +π3)②sin +cos =.24(π4-x )64(π4-x )答案 sin 22(7π12-x )解析 原式=22[12sin (π4-x )+32cos (π4-x)]=sin 22(π4-x +π3)=sin .22(7π12-x)教师备选1.(2020·全国Ⅲ)已知sin θ+sin =1,则sin 等于( )(θ+π3)(θ+π6)A. B. C. D.12332322答案 B解析 因为sin θ+sin(θ+π3)=sin +sin (θ+π6-π6)(θ+π6+π6)=sincos -cos sin +sin cos +cos sin (θ+π6)π6(θ+π6)π6(θ+π6)π6(θ+π6)π6=2sincos =sin =1.(θ+π6)π63(θ+π6)所以sin=.(θ+π6)332.已知sin α=,α∈,tan(π-β)=,则tan(α-β)的值为( )35(π2,π)12A .- B. C. D .-211211112112答案 A解析 ∵α∈,(π2,π)∴cos α=-,tan α=-,4534又tan(π-β)=,12∴tan β=-,12∴tan(α-β)===-.tan α-tan β1+tan α·tan β-34+121+(-34)×(-12)211思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)函数y =sin +sin 的最小值为( )(2x +π4)(2x -π4)A. B .-22C .- D.23答案 C解析 y =sin+sin(2x +π4)(2x -π4)=sin 2x cos +cos 2x sin +sin 2x cos -cos 2x sin =sin 2x .π4π4π4π42∴y 的最小值为-.2(2)已知cos=cos α,tan β=,则tan(α+β)=.(α+π6)333答案 -33解析 因为cos=cos α-sin α=cos α,所以-sin α=cos α,故tan α=-,(α+π6)3212333所以tan(α+β)==tan α+tan β1-tan αtan β-3+331+3×33==-.-233233题型二 两角和与差的三角函数公式的逆用与变形例2 (1)(多选)已知α,β,γ∈,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法(0,π2)正确的是( )A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案 AD解析 由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴cos(β-α)=,即选项A 正确,B 错误;12∵γ∈,(0,π2)∴sin γ=sin β-sin α>0,∴β>α,而α,β∈,(0,π2)∴0<β-α<,π2∴β-α=,π3即选项D 正确,C 错误.(2)在△ABC 中,C =120°,tan A +tan B =,则tan A tan B 的值为( )233A. B.1413C. D.1253答案 B解析 ∵C =120°,∴tan C =-.3∵A +B =π-C ,∴tan(A +B )=-tan C .∴tan(A +B )=,3tan A +tan B =(1-tan A tan B ),3又∵tan A +tan B =,233∴tan A tan B =.13延伸探究 若将本例(2)的条件改为tan A tan B =tan A +tan B +1,则C 等于( )A .45° B .135°C .150° D .30°答案 A解析 在△ABC 中,因为tan A tan B =tan A +tan B +1,所以tan(A +B )==-1=-tan C ,tan A +tan B1-tan A tan B 所以tan C =1,所以C =45°.教师备选1.若α+β=-,则(1+tan α)(1+tan β)= .3π4答案 2解析 tan=tan(α+β)==1,所以1-tan αtan β=tan α+tan β,(-3π4)tan α+tan β1-tan αtan β所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=.答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-,12∴sin(α+β)=-.12思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.跟踪训练2 (1)设a =cos 50°cos 127°+cos 40°cos 37°,b =(sin 56°-cos 56°),c =22,则a ,b ,c 的大小关系是( )1-tan239°1+tan239°A .a >b >c B .b >a >c C .c >a >b D .a >c >b答案 D解析 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =(sin 56°-cos 56°)22=sin 56°-cos 56°2222=sin(56°-45°)=sin 11°,c =1-tan239°1+tan239°=1-sin239°cos239°1+sin239°cos239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x 在x ∈上单调递增,[0,π2]所以sin 13°>sin 12°>sin 11°,所以a >c >b .(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .答案 4解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4.题型三 角的变换问题例3 (1)已知α,β∈,若sin=,cos =,则sin(α-β)的值为( )(π3,5π6)(α+π6)45(β-5π6)513A. B.16653365C. D.56656365答案 A解析 由题意可得α+∈,π6(π2,π)β-∈,5π6(-π2,0)所以cos =-,(α+π6)35sin=-,(β-5π6)1213所以sin(α-β)=-sin[(α+π6)-(β-5π6)]=-×+×45513(-35)(-1213)=.1665(2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)=,tan α=.答案 -1 12解析 ∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)==.-1-(-3)1+(-1)×(-3)12教师备选(2022·华中师范大学第一附属中学月考)已知α,β为锐角,tan α=,cos(α+β)=-.4355(1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=,43tan α=,sin αcos α所以sin α=cos α.43因为sin 2α+cos 2α=1,所以cos 2α=,925因此,cos 2α=2cos 2α-1=-.725(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-,55所以sin(α+β)==,1-cos2(α+β)255因此tan(α+β)=-2.因为tan α=,43所以tan 2α==-,2tan α1-tan2α247因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-.211思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=-=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;+α=-α+β2α-β2π4π2等.(π4-α)跟踪训练3 (1)已知sin α=,sin(α-β)=-,α,β均为锐角,则β=.551010答案 π4解析 因为α,β均为锐角,所以-<α-β<.π2π2又sin(α-β)=-,1010所以cos(α-β)=.31010又sin α=,55所以cos α=,255所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.5531010255(-1010)22所以β=.π4(2)已知0<α<<β<π,tan α=,cos(β-α)=,则sin α=,cos β=.π243210答案 -4522解析 因为0<α<,且tan α=,π243所以sin α=,cos α=,4535由0<α<<β<π,π2则0<β-α<π,又因为cos(β-α)=,210则sin(β-α)=,7210所以cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α=×-×=-.2103572104522课时精练1.(2022·北京模拟)tan 105°等于( )A .2- B .-2-33C.-2 D .-33答案 B解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)==-2-.4+23-232.已知点P (x ,2)是角α终边上一点,且cos α=-,则cos 等于( )213(π6+α)A .-B.3+2263+226C.D.3-22622-36答案 A解析 因为点P (x ,2)是角α终边上一点,2则有cos α==,xx 2+(22)2xx 2+8而cos α=-,13于是得=-,解得x =-1,xx 2+813则sin α==,22x 2+8223因此,cos =cos cos α-sin sin α(π6+α)π6π6=×-×32(-13)12223=-,3+226所以cos =-.(π6+α)3+2263.等于( )sin 10°1-3tan 10°A .1 B.14C. D.1232答案 B解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4(12cos 10°-32sin 10°)=sin 20°4sin (30°-10°)=.144.已知锐角α,β满足sin α=,cos β=,则α+β等于( )5531010A. B.或3π4π43π4C. D .2k π+(k ∈Z )π4π4答案 C解析 由sin α=,cos β=,5531010且α,β为锐角,可知cos α=,sin β=,2551010故cos(α+β)=cos αcos β-sin αsin β=×-×25531010551010=,22又0<α+β<π,故α+β=.π45.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A ,方法一 原式=cos(30°-45°)=cos30°·cos45°+sin30°sin45°=×+×=.322212226+24方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=×+×=,A 错误.223222126+24对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=,C 正确.12对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=,D 正确.126.(多选)已知cos(α+β)=-,cos 2α=-,其中α,β为锐角,以下判断正确的是( )55513A .sin 2α=B .cos(α-β)=121319565C .cos αcos β=D .tan αtan β=8565118答案 AC解析 因为cos(α+β)=-,55cos 2α=-,其中α,β为锐角,513所以sin 2α==,故A 正确;1-cos22α1213因为sin(α+β)=,255所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=×+×=,(-513)(-55)121325529565故B 错误;cos αcos β=[cos(α+β)+cos(α-β)]12==,12(-55+29565)8565故C 正确;sin αsin β=[cos(α-β)-cos(α+β)]12==,12[29565-(-55)]21565所以tan αtan β=,故D 错误.2187.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.已知α,β∈,sin(α+β)=-,sin =,则cos =.(3π4,π)35(β-π4)1213(α+π4)答案 -5665解析 因为α,β∈,(3π4,π)所以<α+β<2π,3π2<β-<,π2π43π4因为sin(α+β)=-,35sin=,(β-π4)1213所以cos(α+β)=,45cos=-,(β-π4)513所以cos(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos+sin(α+β)sin (β-π4)(β-π4)=×+×45(-513)(-35)1213=-.56659.已知0<β<<α<π,且cos=-,sin =,求cos(α+β)的值.π2(α-β2)19(α2-β)23解 ∵0<β<<α<π,π2∴-<-β<,π4α2π2<α-<π,π4β2∴cos ==,(α2-β)1-sin2(α2-β)53sin==,(α-β2)1-cos2(α-β2)459∴cos =cosα+β2[(α-β2)-(α2-β)]=cos cos +sin sin(α-β2)(α2-β)(α-β2)(α2-β)=×+×(-19)5345923=,7527∴cos(α+β)=2cos 2-1=2×-1=-.α+β249×572923972910.已知α,β均为锐角,且sin α=,tan(α-β)=-.3513(1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈,∴-<α-β<.(0,π2)π2π2又∵tan(α-β)=-<0,13∴-<α-β<0.π2∴sin(α-β)=-.1010(2)由(1)可得,cos(α-β)=.31010∵α为锐角,且sin α=,∴cos α=.3545∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.453101035(-1010)9105011.已知cos =2cos(π-α),则tan 等于( )(π2-α)(π4+α)A .-3B.13C .-D .313答案 C解析 由cos =2cos(π-α)得(π2-α)sin α=-2cos α,即tan α=-2,∴tan =(π4+α)tan π4+tan α1-tan π4tan α==-.1-21-1×(-2)1312.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .3sin x +3cos x =3sin1555(x +π6)C .f (x )=sin +cos 的最大值为2x2x2D .tan 12°+tan 33°+tan 12°tan 33°=1答案 AD解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B ,3sin x +3cos x =61555(32sin x +12cos x)=6sin,故B 错误;5(x +π6)对于C ,f (x )=sin +cos =sin ,x2x22(x 2+π4)所以f (x )的最大值为,故C 错误;2对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.13.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈,则(-π2,π2)α+β= .答案 -3π4解析 依题意有Error!所以tan(α+β)=tan α+tan β1-tan α·tan β==1.-3a 1-(3a +1)又Error!所以tan α<0且tan β<0,所以-<α<0且-<β<0,π2π2即-π<α+β<0,结合tan(α+β)=1,得α+β=-.3π414.(2022·阜阳模拟)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=,π2∴Error!即≤α≤π,π2∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)(2α-α+π2)=cos α+sin α=sin .2(α+π4)∵≤α≤π,π2∴≤α+≤,3π4π45π4∴-1≤sin≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].2(α+π4)15.(2022·河北五校联考)已知x ,y ∈,sin(x +y )=2sin(x -y ),则x -y 的最大值为( )(0,π2)A. B. C. D.π3π6π4π8答案 B解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y =2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y1+tan x tan y==≤,2tan y1+3tan2y 21tan y+3tan y33当且仅当tan y =时等号成立,33由于f (x )=tan x 在x ∈上单调递增,(0,π2)又x ,y ∈,(0,π2)则x -y 的最大值为.π616.如图,在平面直角坐标系Oxy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B两点,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM =,点B 的纵坐标是.55210(1)求cos(α-β)的值;(2)求2α-β的值.解 (1)由题意知,|OA |=|OM |=1,因为S △OAM =|OA |·|OM |sin α=,1255所以sin α=,255又α为锐角,所以cos α=.55因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是,210所以sin β=,cos β=-,2107210所以cos(α-β)=cos αcos β+sin αsin β=×+×=-.55(-7210)2552101010(2)因为sin α=,cos α=,25555cos(α-β)=-,1010sin(α-β)=sin αcos β-cos αsin β=×-×=-,255(-7210)5521031010所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-,22因为α为锐角,sin α=>,25522所以α∈,所以2α∈,(π4,π2)(π2,π)又β∈,(π2,π)所以2α-β∈,(-π2,π2)所以2α-β=-.π4。

3.1.2 两角和与差的正弦、余弦、正切公式

3.1.2 两角和与差的正弦、余弦、正切公式

3.12 两角和与差的正弦、余弦、正切公式知识点一 两角和的余弦公式解决给角求值问题的策略(1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.(2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子.分母形式进行约分,解题时要逆用或变用公式.1.sin7°cos37°-sin83°sin37° 2.sin50°-sin20°cos30°cos20°3、sin14°cos16°+sin76°cos74°4、sin7°+cos15°sin8°cos7°-sin15°sin8°5、已知角α的终边经过点(-3,4),则sin ⎝ ⎛⎭⎪⎫α+π4的值为6.求函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域.类型二 给值求值1、已知sin ⎝ ⎛⎭⎪⎫3π4+α=513,cos ⎝ ⎛⎭⎪⎫π4-β=35,且0<α<π4<β<3π4,求cos(α+β).2、已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),求sin x 的值。

3.已知锐角α,β满足sin α=255,cos β=1010,求α+β。

类型三 辅助角公式对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =++++a b x a a bx b a b222222(sin cos )··。

上式中的a a b22+与b a b22+的平方和为1,故可记a a b22+=cos θ,b a b22+=sin θ,则。

)x sin(b a )sin x cos cos x (sin b a y 2222θ++=θ+θ+=1、求值(1)cos π12+3sin π12 (2)sin π12-3cos π12(3)2cos π12+6sin π12 (4)当函数y =sin x -3cos x (0≤x ≤2π)取得最大值时,求x.2、求周期求函数y x x x =+-+24432cos()cos()sin ππ的最小正周期。

第3讲 两角和与差的正弦、余弦和正切公式

第3讲 两角和与差的正弦、余弦和正切公式

第3讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . 3.三角公式的关系判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) 答案:(1)√ (2)× (3)× (4)√ (5)√(教材习题改编)化简cos 18°cos 42°-cos 72°sin 42°的值为( ) A .32B .12C .-12D .-32解析:选B .法一:原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.(教材习题改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A .725B .-725C .1625D .-1625解析:选A .由sin(α-k π)=35(k ∈Z )得sin α=±35.所以cos 2α=1-2sin 2α=1-2×(±35)2=1-1825=725.故选A .(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)的值为( )A .210B .-210C .7210D .-7210解析:选A .因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22×(-35)-22×(-45)=210.(2017·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75(教材习题改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33.答案:33三角函数公式的直接应用[典例引领](1)已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C .12D .1(2)(2017·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=__________. 【解析】 (1)因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以tan α=sin αcos α=-1,故选A .(2)因为α∈⎝⎛⎭⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=22×⎝⎛⎭⎫255+55=31010. 【答案】 (1)A (2)31010三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.[注意] 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.解析:因为sin α=35,α∈⎝⎛⎭⎫π2,π,所以cos α=-45. 所以cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α=-75.答案:-752.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=2sin αcos α=-sin α, 所以cos α=-12.又α∈⎝⎛⎭⎫π2,π,所以sin α=32, 所以tan α=- 3.所以tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.答案: 3三角函数公式的逆用与变形应用[典例引领](1)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32(2)已知θ∈⎝⎛⎭⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=( )A .23B .43C .34D .32【解析】 (1)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.(2)由sin θ-cos θ=-144得sin ⎝⎛⎭⎫π4-θ=74, 因为θ∈⎝⎛⎭⎫0,π4,所以0<π4-θ<π4, 所以cos ⎝⎛⎭⎫π4-θ=34.2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=cos 2θsin ⎝⎛⎭⎫π4-θ=sin ⎝⎛⎭⎫π2-2θsin ⎝⎛⎭⎫π4-θ=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-θsin ⎝⎛⎭⎫π4-θ =2cos ⎝⎛⎭⎫π4-θ=32. 【答案】(1)B (2)D(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系.②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[通关练习]1.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B .22C .12D .-12解析:选B .由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235B .235C .45D .-45解析:选D.由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45.角的变换[典例引领](1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A .2525B .255C .2525或255D .55或525(2)对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=________. 【解析】 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)由于α为锐角,且sin ⎝⎛⎭⎫α-π12=35,可得cos ⎝⎛⎭⎫α-π12=45,那么cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-π12+π4=cos ⎝⎛⎭⎫α-π12cos π4-sin ⎝⎛⎭⎫α-π12sin π4=210,于是cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫2102-1=-2425.【答案】 (1)A (2)-2425利用角的变换求三角函数值的策略(1)当“已知角”有两个时:一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时:此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.[注意] 常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3的值为( ) A .23B .12C .34D .45解析:选B .tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan(α+β)-tan ⎝⎛⎭⎫α-π31+tan(α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C .14D .78解析:选A .cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α =-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-78.两角和、差及倍角公式的逆用和变用(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β),(3)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.1.cos 15°+sin 15°cos 15°-sin 15°的值为( )A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.2.(1+tan 18°)·(1+tan 27°)的值是( ) A . 3 B .1+ 2C .2D .2(tan 18°+tan 27°)解析:选C .原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C .3.已知sin α+cos α=13,则sin 2(π4-α)=( )A .118B .1718C .89D .29解析:选B .由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos(π2-2α)2=1-sin 2α2=1+892=1718.4.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A .45B .-45C .35D .-35解析:选C .由sin ⎝⎛⎭⎫α-π4=7210得 sin α-cos α=75,①由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725,② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.5.已知cos(π3-2x )=-78,则sin(x +π3)的值为( )A .14B .78C .±14D .±78解析:选C .因为cos [π-(π3-2x )]=cos(2x +2π3)=78,所以有sin 2(x +π3)=12(1-78)=116,从而求得sin(x +π3)的值为±14,故选C .6.已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. 解析:由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6=-1213×32-⎝⎛⎭⎫-513×12=5-12326.答案:5-123267.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33=-1. 答案:-18.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.答案:129.已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R . (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ=45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35. 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2 θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35, 得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.1.3cos 10°-1sin 170°=( ) A .4 B .2C .-2D .-4 解析:选D.3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin(10°-30°)12sin 20°=-2sin 20°12sin 20°=-4,故选D. 2.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( )A .22 B .210 C .22或-210 D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A . 3.3tan 12°-3sin 12°(4cos 212°-2)=________. 解析:原式=3×sin 12°cos 12°-3sin 12°(4cos 212°-2)=3sin 12°-3cos 12°2sin 12°cos 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°sin 24°cos 24° =23sin(12°-60°)12sin 48°=-4 3. 答案:-4 34.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2425,cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 答案:172505.若sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,且0<α<π4<β<34π,求cos(α+β)的值. 解:因为0<α<π4<β<34π. 所以34π<34π+α<π,-π2<π4-β<0. 又sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,所以cos ⎝⎛⎭⎫34π+α=-1213,sin ⎝⎛⎭⎫π4-β=-45, 所以cos(α+β)=sin ⎣⎡⎦⎤π2+(α+β)=sin ⎣⎡⎦⎤⎝⎛⎭⎫34π+α-⎝⎛⎭⎫π4-β =sin ⎝⎛⎭⎫34π+αcos ⎝⎛⎭⎫π4-β-cos ⎝⎛⎭⎫34π+αsin ⎝⎛⎭⎫π4-β=-3365. 6.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解:(1)因为cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 所以sin ⎝⎛⎭⎫2α+π3=-12. 因为α∈⎝⎛⎭⎫π3,π2,所以2α+π3∈⎝⎛⎭⎫π,4π3, 所以cos ⎝⎛⎭⎫2α+π3=-32, 所以sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)因为α∈⎝⎛⎭⎫π3,π2,所以2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,所以cos 2α=-32. 所以tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。

3、5第五节 两角和与差的正弦、余弦和正切公式

3、5第五节 两角和与差的正弦、余弦和正切公式
第五节
两角和与差的正弦、余弦和正切公式
一、两角和与差的三角函数公式 sin (α±β)=
sin αcos β±cos αsin β cos αcos β∓sin αsin β tan α± β tan 1∓tan αtan β . tan (α+β)(1-tan αtan β)

cos (α±β)=
3 4 2 42 = 2× × - 2×5 -1 5 5 2 12 2 7 2 17 2 = - = . 25 50 50
17 2 [答案] (1)A (2) 50
2.(2013 年哈师大附中月考)设 α、β 都是锐角,且 cos α= 3 +β)= ,则 cos β=( 5 2 5 A. 25 2 5 2 5 C. 或 25 5 ) 2 5 B. 5 5 5 D. 或 5 25
1-cos2α =
5 ,sin(α 5
解 析 : 依 题 意 得 sin α =
2
2 5 , cos(α + β) = 5
4 ± 1-sin α+β=± ; α、β 均为锐角, 又 因此 0<α<α+β<π,cos α>cos(α 5 4 5 4 4 +β),注意到 > >- ,所以 cos(α+β)=- . 5 5 5 5
(1)正弦公式概括为“正余,余正符号同”.
“符号同”指的是前面是两角和,则后面中间为“+” 号;前面是两角差,则后面中间为“-”号.
(2)余弦公式概括为“余余,正正符号异”.
(3)二倍角公式实际就是由两角和公式中令β=α所得.特 别地,对于余弦:cos 2α=cos2 α-sin2α=2cos2α-1=1 -2sin2α,这三个公式各有用处,同等重要,特别是逆 用即为“降幂公式”,在考题中常有体现.

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式首先,让我们从两角和的正弦公式开始推导。

假设有两个角A和B,那么它们的和角可以表示为A+B。

根据三角函数的定义,正弦函数的定义式为:sin(x) = 对边 / 斜边我们可以将角A和B的对边和斜边代入这个公式中,得到:sin(A + B) = (sin(A) * 斜边A + sin(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的正弦之和等于各自正弦的乘积与对应斜边的和再除以总斜边。

另外,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:sin(A + B) = 2 * sin((A + B) / 2) * cos((A - B) / 2)接下来,让我们推导两角和的余弦公式。

余弦函数的定义式为:cos(x) = 临边 / 斜边同样地,根据这个定义式,我们可以得出两角和的余弦公式:cos(A + B) = (cos(A) * 斜边A + cos(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的余弦之和等于各自余弦的乘积与对应斜边的和再除以总斜边。

同样地,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:cos(A + B) = 2 * cos((A + B) / 2) * cos((A - B) / 2)最后,让我们推导两角和的正切公式。

正切函数的定义式为:tan(x) = 对边 / 临边我们可以将角A和B的对边和临边代入这个公式中,得到:tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这个公式告诉我们,两个角的正切之和等于各自正切的和再除以1减去各自正切的乘积。

总结一下,两角和与差的正弦、余弦、正切公式如下:sin(A + B) = sin(A) * cos(B) + cos(A) * sin(B)cos(A + B) = cos(A) * cos(B) - sin(A) * sin(B)tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这些公式在解决三角函数运算、证明恒等式和简化复杂的三角函数表达式等方面都非常有用。

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

=-89.
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)sin 40°·tan 10°-
3
=sin 40°·csoin
40°·sin
10°- cos
3cos 10°
10°
=sin
40°·221sin
10°- 23cos cos 10°
α,故
tan
α=-
3,所以
tan(α

β)

tan α+tan β 1-tan αtan β

- 1+
3+ 3×
333=-223 3
3 =-
3 3 .]
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
3.已知
α∈π2,π,sin
α=
5 5.
(1)求 sinπ4+α的值;
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
2.三角函数公式逆用和变形使用应注意的问题 (1)公式逆用时一定要注意公式成立的条件和角之间的关系; (2)注意特殊角的应用,当式子中出现12,1, 23, 3等这些数值 时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
5π 6 cos
2α+sin
5π 6
sin
2α=-
23×35+12×-45=-4+130
3 .
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的正弦余弦正切公式教学目标1.能根据两角差的余弦公式推导出两角和与差的正弦、余弦公式,并灵活运用.(重点)2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.(难点)3.掌握两角和与差的正切公式及变形应用.(难点、易错点)[基础·初探]教材整理1 两角和与差的余弦公式阅读教材P128“思考”以下至“探究"以上内容,完成下列问题。

cos 75°cos 15°-sin 75°sin 15°的值等于________.【解析】逆用两角和的余弦公式可得cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)=cos 90°=0.【答案】0教材整理2 两角和与差的正弦公式阅读教材P128“探究"以下内容,完成下列问题.1.公式2.重要结论-辅助角公式y=a sin x+b cos x=错误!sin(x+θ)(a,b不同时为0),其中cos θ=错误!,sin θ=错误!.判断(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.()(2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.( )(3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.()(4)sin 54°cos 24°-sin 36°sin 24°=sin 30°。

( )解:(1)√.根据公式的推导过程可得.(2)√.当α=45°,β=0°时,sin(α-β)=sin α-sin β.(3)×.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立.(4)√.因为sin 54°cos 24°-sin 36°sin 24°=sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°)=sin 30°,故原式正确.【答案】(1)√(2)√(3)×(4)√教材整理3两角和与差的正切公式阅读教材P129“探究”以下至“例3”以上内容,完成下列问题.判断(正确的打“√”,错误的打“×")(1)存在α,β∈R,使tan(α+β)=tan α+tan β成立.( )(2)对任意α,β∈R,tan(α+β)=错误!都成立.( )(3)tan(α+β)=错误!等价于tan α+tan β=tan(α+β)·(1-tan αtan β).( )解:(1)√。

当α=0,β=错误!时,tan(α+β)=tan错误!=tan 0+tan 错误!,但一般情况下不成立.(2)×.两角和的正切公式的适用范围是α,β,α+β≠kπ+错误!(k∈Z).(3)√。

当α≠k π+π2(k ∈Z ),β≠k π+错误!(k ∈Z ),α+β≠k π+错误!(k ∈Z )时,由前一个式子两边同乘以1-tan αtan β可得后一个式子.【答案】 (1)√ (2)× (3)√[小组合作型]灵活应用和、差角公式化简三角函数式 (1)(2016·济宁高一检测)错误!=()A .-错误!B .-错误!C .错误!D .错误!(2)化简求值: ①错误!;②sin (θ+75°)+cos (θ+45°)-错误!cos (θ+15°);③(2016·遵义四中期末)tan 20°+tan 40°+3tan 20°·tan 40°。

(1)化简求值应注意公式的逆用.(2)对于非特殊角的三角函数式化简应转化为特殊角的三角函数值. 解:(1)sin 47°-sin 17°cos 30°cos 17°=错误! =错误!=错误!=sin 30°=错误!. 【答案】 C (2)①原式=错误!=tan(45°+75°)=tan 120°=-错误!。

∴原式=-错误!.②设α=θ+15°,则原式=sin(α+60°)+cos(α+30°)-错误!cos α=错误!+错误!-错误!cos α=0。

∴原式=0.③原式=tan 60°(1-tan 20°tan 40°)+错误!tan 20°·tan 40°=错误!.∴原式=3。

1.公式T(α+β),T(α-β)是变形较多的两个公式,公式中有tan α·tan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β)).三者知二可表示出或求出第三个.2.化简过程中注意“1”与“tan 错误!”、“错误!”与“tan 错误!"、“错误!”与“cos 错误!”等特殊数与特殊角的函数值之间的转化.[再练一题]1.化简求值:(1)cos 61°cos 16°+sin 61°sin 16°;(2)sin 13°cos 17°+cos 13°sin 17°;(3)错误!.解:(1)原式=cos(61°-16°)=cos 45°=错误!.(2)原式=sin(13°+17°)=sin 30°=错误!.(3)原式=错误!=-错误!=-错误!。

给值求值(2016·普宁高一检测)已知错误!<α〈错误!,0〈β<错误!,cos错误!=-错误!,sin错误!=错误!,求sin(α+β)的值。

【导学号:00680069】可先考虑拆角,π+α+β=错误!+错误!,然后再利用sin(α+β)=-sin(π+α+β)求值.解:因为错误!〈α<错误!π,所以错误!<错误!+α〈π。

所以sin错误!=错误!=错误!。

又因为0〈β〈错误!,错误!π<错误!π+β〈π,所以cos错误!=-错误!=-错误!,所以sin(α+β)=-sin(π+α+β)=-sin错误!=-错误!=-错误!=错误!。

1.本题属于给值求值问题,求解时,关键是从已知角间的关系入手,分析出已知角和待求角的关系.如本题中巧用β=(α+β)-α这一关系.2.常见角的变换为(1)2α+β=(α+β)+α,2α-β=(α-β)+α;(2)错误!=错误!-错误!,错误!=错误!-错误!;(3)错误!+错误!=错误!+(α+β);(4)错误!+错误!=错误!+(α-β).[再练一题]2.已知cos α=-错误!,α∈错误!,tan β=-错误!,β∈错误!,求cos(α+β).解:因为α∈错误!,cos α=-错误!,所以sin α=-错误!.因为β∈错误!,tan β=-错误!,所以cos β=-错误!,sin β=错误!.所以cos(α+β)=cos αcos β-sin αsin β=-错误!×错误!-错误!×错误!=错误!。

给值求角已知sin α=错误!,sin β=错误!,且α,β为锐角,求α+β的值.sin α,sin β→错误!→错误!→确定α+β的范围→错误!解:∵sin α=错误!,α为锐角,∴cos α=错误!=错误!错误!.又sin β=错误!,β为锐角,∴cos β=错误!=错误!错误!.∴cos(α+β)=cos αcos β-sin αsin β=错误!×错误!-错误!×错误!=错误!.又α,β∈错误!,∴0<α+β<π,因此α+β=错误!。

1.求解该类问题常犯的错误是对角的范围讨论程度过大(小),导致求出的角不合题意或者漏解.2.求角的大小,要解决两点:(1)确定所求角的范围,(2)求角的某一三角函数值,特别是要根据角的范围确定取该角的哪一种三角函数值.[再练一题]3.若把本例题的条件改为“α∈错误!,β∈错误!,且cos(α-β)=错误!,sin β=-错误!”,试求角α的大小.解:∵α∈错误!,β∈错误!,∴α-β∈(0,π),由cos(α-β)=错误!,知sin(α-β)=错误!.由sin β=-错误!,知cos β=错误!.∴sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=错误!×错误!+错误!×错误!=错误!。

又α∈错误!,∴α=错误!。

[探究共研型]辅助角公式的应用探究1函数y=sin x+cos x(x∈Z)的最大值为2对吗?为什么?【提示】不对.因为sin x+cos x=错误!错误!=错误!错误!=错误!sin错误!。

所以函数的最大值为 2.探究2函数y=3sin x+4cos x的最大值等于多少?【提示】因为y=3sin x+4cos x=5错误!,令cos φ=错误!,sin φ=错误!,则y=5(sin x cos φ+cos x sin φ)=5sin(x+φ),所以函数y的最大值为5.探究3如何推导a sin x+b cos x=错误!sin(x+φ)错误!公式.【提示】a sin x+b cos x=错误!错误!,令cos φ=错误!,sin φ=错误!,则a sin x+b cos x=a2+b2(sin x cos φ+cos x sin φ)=错误!sin(x+φ)(其中φ角所在象限由a、b的符号确定,φ角的值由tan φ=错误!确定,或由sin φ=错误!和cos φ=错误!共同确定).当函数y=sin x-错误!cos x(0≤x〈2π)取得最大值时,x=________。

可先用公式Sα±β将函数化为y=A sin(ωx+φ)形式再求最大值对应的x值.解:函数为y=sin x-错误!cos x=2错误!=2错误!=2sin错误!,当0≤x<2π时,-错误!≤x-错误!<错误!,所以当y取得最大值时,x-错误!=错误!,所以x=错误!。

【答案】错误!1.对于形如sin α±cos α,错误!sin α±cos α的三角函数式均可利用特殊值与特殊角的关系,运用和差角正、余弦公式化简为含有一个三角函数的形式.2.在解法上充分体现了角的变换和整体思想,在三角函数求值化简的变换过程中,一定要本着先整体后局部的基本原则.[再练一题]4.函数f(x)=sin x-cos错误!的值域为()A.[-2,2] B.错误!C.[-1,1]D.错误!解:f(x)=sin x-cos错误!=sin x-错误!cos x+错误!sin x=错误!sin x-错误!cos x=错误!sin错误!,所以函数f(x)的值域为[-错误!,错误!].故选B.【答案】B[构建·体系]1.(2016·清远期末)化简:sin 21°cos 81°-cos 21°·sin 81°等于() A.错误!B.-错误!C.错误!D.-错误!解:原式=sin(21°-81°)=-sin 60°=-错误!.故选D.【答案】D2.已知α是锐角,sin α=错误!,则cos错误!等于( )A.-错误!B.错误!C.-错误!D.错误!解:因为α是锐角,sin α=35,所以cos α=错误!,所以cos错误!=错误!×错误!-错误!×错误!=错误!.故选B.【答案】B3.函数y=sin x-cos x的最小正周期是( )A.错误!B.πC.2πD.4π解:y=sin x-cos x=2sin错误!,所以T=2π.【答案】C4.计算错误!=________.解:错误!=错误!=tan 45°=1.【答案】15.已知α,β均为锐角,sin α=错误!,cos β=错误!,求α-β.解:∵α,β均为锐角,sin α=错误!,cos β=错误!,∴sin β=错误!,cos α=错误!.∵sin α<sin β,∴α<β,∴-错误!〈α-β〈0,∴sin(α-β)=sin αcos β-cos αsin β=55×错误!-错误!×错误!=-错误!,∴α-β=-错误!。

相关文档
最新文档