04_3D 隧道TBM
隧道工程第九章隧道掘进机(TBM)施工

永久支护
根据隧道设计要求,采用模筑混凝土、 钢筋混凝土等材料,对隧道进行永久 性支护,确保隧道结构安全。
通风与通风管道,为隧道施工提供足够的新鲜空 气,降低粉尘和有害气体浓度。
排水技术
设置合理的排水系统,将隧道内的地下水排出洞外,防止积 水对施工造成影响。
弃渣与运输技术
程量。
长隧道
TBM适用于长度较长 的隧道施工。TBM的 连续掘进能力有助于缩 短工期,降低施工难度
,提高经济效益。
复杂地质条件
TBM适用于地质条件 复杂、存在较大涌水量 的隧道施工。TBM的 密封性能较好,可以有 效地控制涌水,减少对
环境的影响。
TBM施工的历史与发展
TBM施工起源于20世纪中叶,最早应用于欧洲国家的铁路隧道施工。随着技术的不断发展 和完善,TBM逐渐应用于水利、市政、公路等领域的隧道施工。
弃渣处理
合理规划弃渣场地,确保弃渣不占用 耕地和破坏环境。
运输组织
根据施工进度和运输距离,合理安排 运输车辆和路线,确保弃渣和施工材 料的及时运输。
05
TBM施工案例分析
某地铁隧道TBM施工案例
总结词:高效快速
详细描述:某地铁隧道采用TBM施工,实现了高效快速的施工效果,缩短了工期,减少了施工对周边 环境的影响。
单护盾TBM和双护盾TBM
单护盾TBM适用于地质条件比较 简单、地下水不发育的隧道施工。
双护盾TBM适用于地质条件比较 复杂、地下水发育的隧道施工。
单护盾TBM具有结构简单、造价 低、施工速度快等优点,但同时 也存在对地质条件要求较高、施
工安全风险较大的缺点。
选择合适的TBM类型
在选择TBM类型时,应综合考虑隧道的地质条件、施工环境、工期要求、工程造 价等多方面因素。
tbm法隧道支护结构形式

tbm法隧道支护结构形式TBM法隧道施工呢,可是很有讲究的哦。
那它的支护结构形式就像给隧道穿上不同款式的“保护衣”,超级有趣呢。
一、初期支护形式。
1. 锚杆支护。
锚杆就像是隧道的小爪子,紧紧抓住周围的岩石。
它能增强岩石的整体性,让那些本来松松垮垮的岩石团结起来。
你想啊,岩石们要是自己单干,很容易就会塌下来的。
锚杆插进去后,就像给它们来了个团队建设,让它们紧紧相依,这样隧道就安全多啦。
而且锚杆的长度啊、间距啊,都是根据隧道的具体情况来定的呢。
就像给不同身材的人定制衣服,必须得合适才行呀。
2. 喷射混凝土支护。
喷射混凝土可是个很厉害的角色哦。
它就像给隧道表面糊上了一层厚厚的“面糊”。
混凝土喷射出去的时候,“噗噗噗”的,瞬间就能粘在隧道壁上。
这层混凝土能防止岩石风化,还能抵抗一定的压力呢。
它可以把那些不平整的岩石表面变得平整光滑,就像给隧道壁做了个美容。
而且喷射混凝土的厚度也有要求哦,太薄了起不到作用,太厚了又浪费材料,就像我们涂面霜,涂得太多也不好呀。
3. 钢拱架支护。
钢拱架就像是隧道的脊梁骨。
它是由一根根钢材拼接而成的拱形结构。
当隧道的岩石比较软弱或者压力比较大的时候,钢拱架就发挥大作用了。
它能承受很大的压力,把那些要往隧道里面挤的力量给顶住。
想象一下,要是没有钢拱架,隧道可能就被压成扁扁的了,就像被踩扁的易拉罐一样可怜。
钢拱架安装的时候也要特别小心呢,得保证它的位置准确,就像给它找个合适的家一样。
二、二次支护形式。
1. 模筑混凝土支护。
模筑混凝土就像是给隧道打造一个更结实的外壳。
它是在初期支护的基础上进行的。
工人叔叔们会先搭好模板,然后把混凝土灌进去。
这个混凝土的强度要求很高呢,因为它要承担起长久的保护任务。
就像盖房子打地基一样,这个二次支护的模筑混凝土就是隧道的“地基”,要足够坚固,才能让隧道在未来的日子里安安稳稳的。
它的厚度啊、配筋啊,都是经过精心设计的,就像给隧道量身定制了一套高级铠甲。
2. 复合式衬砌。
隧道工程tbm技术方案

隧道工程tbm技术方案一、项目概况隧道是一种地下道路工程,是连接两个地点,穿越山脉、水域等地下地形的通道。
在现代城市建设和交通运输中,隧道工程起着重要的作用。
而盾构机(TBM)技术是当今最先进的隧道施工技术之一,其应用范围越来越广泛。
本文将结合实际情况,对某隧道工程中应用TBM技术的技术方案进行详细分析和介绍。
二、隧道工程TBM技术方案1. 项目背景该隧道工程位于某大城市的市区,是连接两个交通要道的重要通道。
由于地表交通拥堵,为了缓解交通压力,项目部决定采用TBM技术进行隧道施工,以便快速、高效地完成工程。
2. 项目技术特点该项目的技术特点主要包括以下几个方面:(1)地质条件复杂:隧道穿越的地质条件较为复杂,包括岩石、砂土、泥岩等多种地层。
(2)隧道长度较长:隧道全长约5公里,需要穿越多个地形。
(3)环保要求高:作为城市重要交通通道,对环境保护要求较高。
3. 技术方案(1)盾构机选型考虑到地质条件复杂、隧道长度较长等因素,决定选择直径6米的大型盾构机进行施工,以保证施工质量和效率。
(2)隧道路线设计根据地质勘察和设计要求,确定了隧道的最佳路线,并进行了全面的设计和布局方案。
(3)施工工艺流程采用封闭式盾构机施工工艺,具体分为切削系统、传输系统、混凝土浇筑系统等多个子系统,确保隧道施工质量。
(4)环保措施在隧道施工中,将采取降尘、降噪、污水处理等多项环保措施,保护周边环境。
(5)安全管理隧道施工过程中,将加强安全管理,严格落实安全生产措施,确保工程施工过程的安全。
三、方案实施1. 前期准备在正式进行隧道施工前,项目部将组织开展各项准备工作,包括设备调试、材料准备、人员培训等。
2. 施工实施根据技术方案,实施TBM盾构机施工工程,确保施工质量和进度。
3. 环境保护在施工过程中,严格执行环保措施,防止施工对环境造成不良影响。
4. 安全管理加强安全管理,定期进行安全检查和隐患排查,确保施工现场的安全。
四、技术方案优势1. 高效快速:TBM技术施工速度快,可以大大节省工期。
隧道掘进机TBM施工技术

隧道掘进机(TBM)施工技术开挖机制开挖岩层所使用的刀具,不是用于开挖软弱土层的锯齿形刀具,而是所谓的滚刀(回转式刀具)。
滚刀以一定的间距安设在刀盘上,掘进时,滚刀向岩层挤压,把岩层压碎,进行开挖。
滚刀滚刀是由回转的刀体和装备有刀具的刀头环构成。
刀头环具有能够更换的结构。
最新的刀头环采用了算盘状的刀圈,材质也改为银铭铝合金钢系。
掘进性能与刀具的性能密切相关。
在高速施工的条件下,开发长寿命,大型化的刀具是极为必要的。
滚刀的构造刀盘构造TBM与在软土中掘进的盾构不同,是以围岩的自稳为前提的。
有各种各样的构造。
但其最主要的是刀盘和支撑靴。
刀头轮廓反力支承靴部TBM推进时所需的反力(推进力、刀盘转矩)。
为提供充分的反力和不损伤隧道壁面,应该加大其接触面积,以减小接地压力。
通常,接地压力取为3.0~5.0MPa o如把上述支承靴称为主支承靴,则还有所谓的以控制震动,控制方向等为目的的各种辅助支承靴。
盾构形TBM支承靴在盾构型TBM中z设有提供推进反力的主支承靴(尾部)和掌子面支承靴(前部)。
主支承靴一般是水平的在左右设置一对,但对大口径的TBM,有时在周边上要设置4〜5个支撑靴。
敞开式TBM支承靴有单支承靴方式和双支承靴方式两种。
单支承靴:是在主梁上左右设一对支承靴。
该支撑靴对应推进时主梁的方位变化。
双支承靴:是前后各有一对支承靴。
前面的支承靴有4个(X形)、2个(I形)、3个(T形)的布置形式。
方向修正:不管支撑靴是何种方式,都应在设置支承靴前进行,但对于单支承靴方式,开挖过程中也能改变方向。
而双支承靴方式,在开挖进程中不能改变方向,受地质变化的影响小,直进性能好。
敞开式TBM支撑靴构造推进部主要使用推进千斤顶,推进按下述动作反复进行。
(1)扩张支撑靴,固定机体在隧道壁上;(2)回转刀盘,开动千斤顶前进;(3)推进一个行程后,缩回支撑靴,把支撑靴移置到前方,返回(1)的状态。
排土方式皮带运输机使用较多、运量大,可实现高速化,有涌水时,排土困难。
隧道TBM施工关键技术应用

隧道TBM施工关键技术应用摘要:TBM具有快速、安全、高效的显著特点。
掘进机在我国隧洞工程中相继应用,虽然技术先进,但是,只有完全掌握这项技术,对隧洞施工全过程中的每一个环节进行严格把关,才能真正保证掘进机隧洞施工质量。
本文对隧道TBM施工的几点关键技术进行了分析。
关键词:TBM;施工关键技术;涌水;超前预报TBM隧道掘进机,是利用回转刀具开挖,同时破碎洞内围岩及掘进,形成整个隧道断面的一种新型、先进的隧道施工机械。
相对于传统的隧道开挖方法,尤其是在长达隧道方面,TBM隧道施工有无可比拟的优势,它集钻入、掘进、支护于一体,通过采用先进的电子信息、遥测遥控等先进技术对整个施工作业全过程进行制导和监控,使隧道施工过程始终处于可控状态,在国际上现已广泛应用于水利水电、铁路公路、市政交通等隧道工程中。
施工企业,特别是国有大中型施工企业要在隧道施工市场立于不败之地,获取市场竞争中的技术优势、品牌优势和成本优势,那么科学运用TBM隧道掘进机加强质量控制势在必行。
一、超前地质探测技术由于长隧道在施工前的地质勘查不可能做得十分详尽,因此常常在施工中出现一些不可预见的地质灾害,例如涌水、岩溶、瓦斯、断层、膨胀岩、高地应力、围岩大变形等。
因此,TBM在掘进过程中,必须有超前地质探测的保证。
超前地质预报为TBM掘进施工中隧洞地质监测的重要组成部分,它包括隧洞围岩描述、水文地质监测、施工地质测绘、围岩变形监测、围岩类别判别、仪器现场量测、不良地质体预报及相应的地质、测试资料分析和成果整理等工作,并及时提供超前地质预报成果资料。
超前地质预报工作主要是对围岩及水文地质条件进行监测、对不良地质体进行预报,及时获取现场第一手地质资料和仪器测试数据,是地质预报工作成败的关键,同时现场地质工作和仪器测试与隧洞TBM掘进施工相互干扰、又相辅相成。
因此,进行超前地质预报的地质工程师要在充分了解前期地质工作的基础上,对隧洞的工程及水文地质条件进行认真的调查,时时跟进TBM施工,在TBM 检修维护的空隙时间里及时的进行仪器测试,保证采集的资料、数据准确无误,并尽快提供分析成果,为围岩支护和不良地质体的超前处理提供依据。
隧道掘进机(TBM)VMT激光导向系统控制

隧道掘进机(TBM)VMT激光导向系统控制【摘要】云南省那邦水电站引水隧洞TBM工程使用VMT激光导向测量方法,取得了高精度贯通经验,文章对此进行了介绍,并提出了消除误差的应对措施。
【关键词】TBM;激光导向;测量;控制1、工程概况那邦水电站引水隧洞全长为9748.562m,引0+020.000m至引1+420.511m和引9+213.637m至引9+738.062m为钻爆法施工;引1+420.511m至引9+213.637m 为TBM施工。
过水断面为圆形,最小过水断面直径3.5m,开挖直径为4.5m,隧洞最小埋深约为60m,最大埋深约为600m。
引水隧洞底坡为3.59‰。
引水隧洞岩石中Ⅱ类围岩约占44%,Ⅲ类围岩约占34%,Ⅳ类围岩约占19%,Ⅴ类围岩估计在3%左右。
2、隧道掘进机(TBM)VMT激光导向系统工作原理云南省那邦水电站引水隧洞工程隧道采用TBM法施工,单段掘进长为9.8km,为保证隧道掘进方位的准确性,在TBM掘进过程中,采用激光导向系统控制掘进方向。
由于TBM掘进速度比较快,为保证隧洞掘进按设计洞轴线方向掘进,在掘进过程中,利用基本导线控制点及时对掘进机上的激光导向系统进行检查、纠正。
控制激光导向系统测量采用TC1800型全站仪,仪器精度测角为±1”,测距为±(1mm +2ppm×D)mm。
在TBM上配备了VMT激光导向系统,用于测量和控制TBM的掘进方向;利用基本导线采用常规测量方法为TBM激光导向系统提供坐标;激光导向系统可快速、连续、准确地为TBM提供其轴线与隧洞设计轴线的相对偏差,并以刀盘位置偏差的型式数字化地显示于操作室,使TBM操作人员能及时了解TBM 的位置;TBM操作人员根据显示的偏差,通过支撑系统油缸和刀盘护盾油缸的调整来进行TBM调向。
该技术方案采用的激光导向系统能连续给出数据,因此,TBM施工隧洞具有精度高、速度快和成本较低的优点,可确保TBM开挖洞线精确控制在设计洞轴线的偏差范围之内。
隧道工程第九章-隧道掘进机(TBM)施工

TBM的调试和试运行
TBM调试前的准备工作 TBM调试的主要内容 TBM试运行的过程和注意事项 TBM调试和试运行的经验总结
05
TBM的掘进施工
掘进参数的选择和调整
掘进速度: 根据地质条 件、设备性 能等因素进
行选择
推进力:根 据岩土性质、 设备功率等
因素确定
刀盘转速: 根据岩土性 质、设备性 能等因素进
测量工具:全站 仪、水准仪、激 光导向仪等
TBM的故障排除和
06
维修保养
TBM常见故障及排除方法
刀盘卡滞
添加标题
添加标题
密封系统故障
TBM的维修保养流程和注意事项
• TBM的维修保养流程: a. 定期检查:按照规定的时间间隔对TBM进行全面检查,包括机械部件、液压系统、电气系 统等。 b. 故障诊断:通过观察、听诊、触摸等方式,对TBM的故障进行诊断,确定故障部位和原因。 c. 维修保养: 根据故障诊断结果,对TBM进行相应的维修和保养,包括更换零部件、清洗、润滑等。 d. 验收测试:维修保养完成 后,对TBM进行验收测试,确保其恢复正常运行状态。 • a. 定期检查:按照规定的时间间隔对TBM进行全面检查,包括机械部件、液压系统、电气系统等。 • b. 故障诊断:通过观察、听诊、触摸等方式,对TBM的故障进行诊断,确定故障部位和原因。 • c. 维修保养:根据故障诊断结果,对TBM进行相应的维修和保养,包括更换零部件、清洗、润滑等。 • d. 验收测试:维修保养完成后,对TBM进行验收测试,确保其恢复正常运行状态。
运输方式:选择 合适的运输方式, 如公路、铁路或 水路,并考虑运 输过程中的安全 措施
存放要求:确保 TBM在存放期 间不受损坏,保 持其完整性和功 能性
第11章 TBM技术讲解

①掘进与安装管片
②撑靴收回换步
③再支撑
④再掘进与安装管片
双护盾掘进模式
15
11
TBM 法隧道结构
11.2 TBM的分类
• 双护盾TBM具有两种掘进模式:即双护盾掘进模 式和单护盾掘进模式。双护盾掘进模式适用于稳 定性好的地层及围岩有小规模剥落而具有较稳定 性的地层,单护盾掘进模式则适应于不稳定及不 良地质地段。
24
11
TBM 法隧道结构
• 3)断面适应性较差 断面直径过小时,后配套系统不易布置, 施工较困难;而断面过大时,又会带来电能不足、运输困难、造 价昂贵等种种问题。一般地,较适宜采用TBM施工的隧道断面直 径在3m~l 2m;对直径在1 2m~1 5m的隧道应根据围岩情况和 掘进长度、外界条件等因素综台比较;对于直径大于15m的隧道, 则不宜采用TBM施工。另一方面,变断面隧道也不能采用TBM。
22
11
TBM 法隧道结构
11.3 TBM施工的优点、缺点
• TBM的地质针对性较强,不同的地质条件、不同的隧道断面,需
要设计成满足不同施工要求TBM,需要配置适应不同要求的辅助
设备。
• 1)地质适应性较差 TBM对隧道的地层最为敏感,不同类型的 TBM适用的地层也不同,一般的软岩、硬岩、断层破碎带,可采 用不同类型的TBM辅以必要的预加固和支护设备进行掘进,但对 于大型的岩溶暗河发育的隧道、高地应力隧道、软岩大变形隧道、 可能发生较大规模突水涌泥的隧道等特殊不良地质隧道,则不适合 采用TBM施工。在这些情况下,采用钻爆法更能发挥其机动灵活 的优越性。 一般情况下,以II、Ⅲ级围岩为主的隧道较适合采用敞开式TBM施 工,以Ⅲ、Ⅳ级围岩为主隧道较适合采用双护盾TBM施工,对于V 级围岩为主和地下水位较高的城市浅埋隧道或越江隧道则较适合采 用盾构法施工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点击[适用] 键。 在视图工具条上点击正视图 。 选择内部生成的各单元后点击 [确认] 键。 (在选择工具条上选择方法若选 择多边形( ),则可以轻松的选择内部区域。
▶删除不必要的网格 (侧面) ▶▶ 删除不必要的网 格(正面)
*
:网格 >网格组>重命名(Mesh > Mesh Set > Rename ) 是修改网格组名称的操作。
8 | Chapter 4. 盾构掘进施工分析分析
Basic Tutorials
▶创建面
*
: 几何 >转换>移动复制 (Geometry > Transform > Translate) 是把创建的开挖面,按开挖方向移动/复制的操作。
目标形状选择前一阶段上生成的面。 方向选择 Y 方向。 方法指定为复制(均匀),距离、次数上分别输入‘1’,‘19’。 点击[确认] 键。 利用[delete]键,删除源面。
[单位 : kN, m]
4 | Chapter 4. 盾构掘进施工分析分析
Basic Tutorials
▶表. 结构材料 名称 材料 模型类型 弹性模量(E) 泊松比(v) 容重(r) ▶定义结构材料(钢 材) ▶▶定义结构材料(注 浆) 盾壳 各向同性 弹性 2.5E+08 0.2 78 注浆 各向同性 弹性 1.0E+07 0.3 22.5
▶盾构掘进施工模式 图
通过本例题可以学习如下主要功能及分析方法。 盾构掘进隧道建模 输入荷载 设置施工阶段 分析结果–逐施工阶段的位移变化趋势。
Chapter 4. 盾构掘进施工分析 |1
Basic Tutorials
1.2 模型及分析概要
本模型是在岩土内建立盾构掘进模型的简单例题。 用板单元模拟盾壳和注浆,管片和岩土用实体单元建模。盾构掘进开挖 时,假设 HP(掘进压力)、J(千斤顶推力)将在盾构掘进面上产生作用, 假设在围绕盾构的面上有 S(盾壳外压)及 E(管片外压)作用。 在本例学习中,使用的资料是简化过的,切以学习分析步骤为目,与实 际工程中的情况有可能不同。
[单位 : kN, m]
▶表. 岩土特性 类型 类型 材料 切面大小 土 3D 土 管片 3D 管片 盾壳 2D-板 钢材 TH=0.06 注浆 2D-板 注浆 TH=0.06
6 | Chapter 4. 盾构掘进施工分析分析
Basic Tutorials
4 建模
本例题以管片,注浆单元的建模方法及施工阶段的设置为重点,从基本 的岩土/结构材料特性输入的启动文件上开始学习。
[单位 :kN, m]
Chapter 4. 盾构掘进施工分析 |5
Basic Tutorials
3.2 定义属性
创建网格时,需要指定各网格组上分配的属性。在定义岩土和结构的属 性时,首先需要选择材料。另外,在定义结构的属性时,需要定义结构构件 类型、截面形状等参数。 各岩土和结构材料的属性如下表。
*
:几何 > 曲面与实体 > 自动连接 (Geometry > Surface & Solid > Auto 是形成各实体之间的共享面的操生成的 3 个的实体)。 点击[确认] 键。 利用 F2 键,把工作目录树>几何形状上生成的实体的名称分别修改为‘外 径’、‘内径’、‘岩土’几何形状。
▶析取子单元
*
:网格 >单元>删除 ( Mesh > Element > Delete ) 是利用删除单元功能清除不使用的单元的操作。
在视图工具条上点击右视图 。 选择下图的前面部分和后面部分的各单元。
12 | Chapter 4. 盾构掘进施工分析分析
Basic Tutorials
Chapter 4. 盾构掘进施工分析 |11
Basic Tutorials
▶外径网格 ▶▶内径网格 ▶▶▶岩土网格
*
:网格 >单元>析取(Mesh > Element > Extract) 删除勾选工作目录树>网格,设置屏幕上不显示网格。 在工作目录树>几何形状上,只勾选 20 个的‘外径’实体显示在屏幕上。 在视图工具条上点击正面视图 。 在网格>单元>析取上,种类选择面。 目标选择有关 ‘外径’实体的面(200 个)。 特性指定为‘3:Steel” 。 网格组名称上输入‘盾壳’。 勾选‘忽略重复面’选项和 ‘基于所属形状独立注册’ 选项。 点击[确认]键。
▶设置分析条件
Chapter 4. 盾构掘进施工分析 |3
Basic Tutorials
3 定义材料及特性
3.1 定义岩土及结构材料
土层材料的模型类型选择莫尔- 库伦( Mohr-Coulomb ),结构材料选择 不考虑材料非线性的弹性(Elastic)模型。 各地层和结构使用的材料如下表。
▶岩土材料参数表. 土 各向同性 Mohr模型类型 Coulomb 一般 弹性模量(E) 1.3E+06 泊松比(v) 0.30 容重(r) 19 K 0.5 多孔性材质 单位重量(饱和) 19 初始孔隙比(e0) 0.5 排水参数 排水 非线性 粘聚力(C) 15 摩擦角 30 ▶ 定义 岩土材 料 - 一 般 ▶▶定义岩土材料-多 孔材料 ▶▶▶ 定义 岩土材料 非线性 名称 材料 管片 各向同性 弹性 2.1E+07 0.30 24 1 24 0.5 排水 -
在 GTSNX 中,使用施工阶段助手可以便捷地定义施工阶段。但是在这 个过程中需要注意网格名称的规则性,因此在这个操作对网格的名称规则化。 首先修改有关隧道的网格组名称。 在左侧工作目录树上,选择所有网格>网格组>‘外径’。 排列顺序指定为整体正交坐标系,1st 指定为 ‘Y’。 输出标准选择递增排序,名称输入‘外径#’,后缀起始号输入 1。 点击[适用]键。 在左侧工作目录树上,选择所有网格>网格组> ‘内径’。 排列顺序指定为整体正交坐标系,1st 指定为 ‘Y’。 输出标准选择递增排序,名称输入‘内径#’,后缀起始号输入 1。 点击[适用] 键。 在左侧工作目录树上选择所有网格>网格组> ‘盾壳’。 排列顺序指定为整体正交坐标系, 1st 指定为 ‘Y’。 输出标准选择递增排序,名称输入 ‘盾壳#’,后缀起始号输入 1。
▶创建掘进面
*
: 几何 >分割>实体 (Geometry > Divide > Solid)
是利用移动/复制的开挖面分割隧道的操作。因为相邻岩土的实体要共享 节点,所以在分割相邻面上选择地层实体。
Chapter 4. 盾构掘进施工分析 |9
Basic Tutorials
目标实体选择 ‘外径’、‘内径’ 实体。 选择滤波器变换成‘面’后,按分割工具选择在前面生成的 19 个的面。 勾选分割相邻面后,相邻面选择 ‘岩土’ 实体。 点击[确认] 键。 在视图工具条上点击右侧视图 。 在模型工作目录树 >几何形状 >形状组-1 上注册的内径实体后,利用 F2 键,修改形状名称使其具有从左向右的顺序名称。 用同样的方法,对 20 外径实体,也利用 F2 键来修改形状名称。
▶建模几何形状
自动连接是自动生成相邻实体之间共享面的功能。彼此相连的面或实体间需要布 尔运算操作时,可以通过点击自动连接键,轻松的创建共享面,这样可以把网格生成 前建模误差消除。
*
:几何 >顶点与曲线 > 矩形 (Geometry > Point & Curve > Rectangle)
定义盾构开挖进尺长度。按面分割实体时,必须生成大于分割实体的面, 才能正常执行形状的布尔运算操作。 视图工具条>视图模式(几何形状) 在视图工具条上点击法向视图 勾选‘生成面’选项。 创建略大于隧道形状的矩形(开挖进尺长度)。 。 选择线。
*
:几何 > 顶点与曲线 > 圆 ( Geometry > Point & Curve > Circle ) 画圆形成隧道截面的形状。
勾选‘生成面’选项。 中心位置输入‘25,25’,按下“Enter”键。 半径大小输入‘3.4’后点击[适用]键。 中心位置输入‘25,25’,按下“Enter”键。 半径的大小输入‘3.7’后点击[确认]键。
*
: 几何 >延伸>扩展(Geometry > Protrude > Extrude ) 采用生成的几何形状来创建实体。
选择生成的 3 个的面。 方向指定为 Y 方向(绿色)。 长度上输入‘20’后勾选‘生成实体’选项。 点击[确认] 键。
Chapter 4. 盾构掘进施工分析 |7
Basic Tutorials
Chapter 4. 盾构掘进施工分析 |13
Basic Tutorials
5 设置分析
5.1 设置荷载条件
*
:静力 /边坡分析 >荷载 >自重( Static/Slope Analysis > Load > Self Weight)
定义自重。岩土、结构构件上输入的容重乘以自动设置的重力加速度后 自动计算。可以输入基于方向的比例因子。对重力方向设置了默认值。 名称输入自重-1,荷载组上输入自重。 荷载成分在重力加速度方向 Gz 上输入-1。 点击[适用]键。
▶切面图
2 | Chapter 4. 盾构掘进施工分析分析
Basic Tutorials
2 设置分析条件
[启动附带的开始文件(04_tbm_start)。]
*
: 分析 >分析工况 >设置(Analysis > Analysis Case > Setting)