声光调制实验
声光调制实验报告

声光调制实验一.实验目的1.理解声光作用和声光调制器的基本原理.2.掌握及调制出布拉格衍射.3.观察交流信号及音频信号调制特性.二.实验仪器可调半导体激光、声光晶体盒、声光调制电源及滑座和旋转平台.三.实验原理1.声光互作用声光互作用效应是当超声波传到声光介质内,声光介质发生形变,导致介质的光学性能产生改变,即介质的折射率发生变化的现象。
在超声波的作用下,声光介质的光学折射率发生空间周期性的变化,相当于介质内形成了一个折射率光栅,当激光通过介质是发生衍射。
声光衍射使光波在通过介质后的光学特性发生改变,即光波的传播方向,强度,相位,频率发生了改变。
2.声光器件的基本原理声光调制的工作原理:声光调制是利用声光效应将信息加载于光频载波的一种物理过程。
调制信号是以信号( 调辐) 形式作用于电- 声换能器上,电- 声换能器将相应的电信号转化为变化的超声场,当光波通声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。
分拉曼—纳斯型声光调制器和布拉格声光调制器。
拉曼—纳斯型声光调制器特点:工作声源频率低于 10MHz只限于低频工作,带宽较小。
布拉格声光调制器特点:衍射效率高,调制带宽较宽。
其中调制带宽是声光调制器的一个重要参量,它是衡量能否无畸变地传输信息的一个重要指标,它受布拉格带宽的限制。
对于给定入射角和波长的光波,只有一个确定的频率和波矢的声波才能满足布拉格条件。
当采用有限的发散光束和声波场时,波束的有限角将会扩展,因此,在一个有限的声频范围内才能产生布拉格衍射。
3.拉曼—纳斯衍射和布拉格衍射(1)布拉格衍射当声波频率较高,声波作用长度较大,而且光束与声波波面间以一定的角斜入射时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的性质。
当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0 级和+1 级或(-1 级)(视入射光的方向而定)衍射光,即产生布拉格衍射。
声光调制实验

GCS-DSTZ声光调制实验
声光调制实验
用途:
声光效应是指光通过某一受到超声波扰动的介质时发生衍射现象,这种现象是光波与介质中声波相互作用的结果。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。
基本原理:
当压电换能器产生的超声波信号在介质中传播时,会在介质中产生周期性应变场,使介质的光学参数(例如折射率)产生周期性的变化,形成体光栅。
当激光束以布拉格角度通过光栅时,衍射光能量相对集中于一级衍射波中,称为布拉格衍射。
当外加文字、图像或其它信号输入换能器驱动电源的调制接口端时,衍射光光强将随此信号变化,从而达到控制激光输出特性的目的。
当声-光作用距
离较短时,形成多级衍射光,称拉曼-纳斯衍射。
实验目的:
(1)了解声光效应的原理。
(2)了解拉曼-纳斯衍射和布拉格衍射的实验条件和特点。
(3)测量声光偏转和声光调制曲线。
(4)完成模拟通信实验仪器的安装及调试。
知识点:
声光效应、布拉格衍射、体光栅、拉曼-纳斯衍射、声光调制。
原理示意图:
技术指标
主要配置。
声光调制实验(数据处理)

实验1:光偏振性实验
光偏振性实验实验数据表(1)
其中:=,=5.57 下图(1)为上述表(1)测试光强与计算光强的对比图,由图可以很好说明光的偏振光强符合马吕斯定律
图(1)测试光强与计算光强对比图
实验4:声光调制的幅度特性
由数据表可绘制下图:
光强—调制电压关系曲线图
实验7:声光调制频率偏转特性
数据记录与处理表
零级光位置=9.756mm
F为调制频率
为一级光位置
一级光与零级光距离
声光调制偏转角
为衍射光强
偏转角—调制频率关系曲线图
从图中可以看出偏转角—调制频率呈线性关系
由线性回归分析可得:-0.00164+0.000137*F (1)下图为衍射光强与调制频率的关系曲线图
实验8:测量声光调制器的衍射效率
=1.01/3.67=27.5%
实验9:测量超声波的波速
由公式(1)可得
声速:=4744m/s
其中:λ。
声光调制光速测量光速介质折射率测量

1 试验原理
1 试验原理
❖晶体振荡器G2产生旳频率为50.10MHz旳晶振信号,经过发光二极管LED调制形成光强调制波 ❖经过透镜L1扩束,经反射镜M和聚焦透镜L2入射光电二极管PIN,将光电调制信号进行光电转换 ❖PIN输出与LED同频旳信号,经放大后送至混频器2,与本机振荡器G1产生旳50.05MHz旳晶振信 号混频,得到差频Δf 为50Hz旳信号,经过移相器φ,送入示波器Y轴 ❖G2产生旳50.10MHz晶振信号送入混频器1,与G1产生旳50.05MHz晶振信号进行混频,产生Δf 为50Hz旳差频信号,送入示波器X轴 ❖经过李萨如图形判断其在导轨不同位置所产生旳位相差,或用精密数字位相计直接测量 ❖由有关推导公式,求出空气介质中旳光速及介质中旳折射率
φ=mx+x0 ❖用最小二乘法进行线性拟合,
正交旳一倾斜直线,此时两路信号位相差为0°或180° 求出m
❖反射镜移动距离为∆x,则光程差为2∆x,光强调制波频 ❖可得到光速
率为f,则光速为
c 2x 4 fx 1 (2 f )
c 2f 360 m
1 试验原理
(二)介质折射率旳测量
1.用示波器测量介质折射率
1 试验原理
(一)空气中旳光速测量
1.采用示波器测量光速
2.采用数字位相计测量光速
❖将反射镜置于导轨末端1.50米处,示波器接受信号, ❖直接读出两路信号旳位相差值
调整移相器使李萨如图形为一条倾斜旳直线,此时两路 ❖因为位相与距离x有线性关系
信号旳位相差为180°或0° ❖仔细调整反射镜位置,使李萨如图形为与第一次测量
❖考虑各向同性介质,折射率旳变化为 n n3 pS (S为应变量,p为声光系数)
2
❖当声波为行波时
声光调制实验

声光调制实验教学目的 1、掌握声光调制的基本原理;2、了解声光器件的工作原理;观察布拉格声光衍射现象;3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
重难点难点:理解和掌握晶体声光调制的原理和实验方法;重点:了解布拉格声光衍射并观察布拉格声光衍射现象教学方法理论联系实际;实验观察与比较;精讲与指导讨论相结合学时3个学时一、前言早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验仪器图6系统装置图1.调平底脚2.导轨3.滑座4.四维调整架5.半导体激光器6.声光晶体盒7.旋转平台8.小孔光阑9.横向滑座 10.光电探测器本实验系统是由半导体激光器、声光盒、小孔光阑、光电探测器以及声光调制 电源箱组成。
三、实验原理(一)声光调制的物理基础1、弹光效应:若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相 互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度 大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由 于外力作用而引起折射率变化的现象称为弹光效应。
声光调制实验(通达)

数据记录
• 一级衍射光强的最大值为Idmax,取表格里面 最大值当做一级衍射光强的最大值 • 0级衍射光强为I0 • 注意单位:角度rad,光强V • 计算衍射效率 • 计连接 • 2、光路准直,光电接受器外表面须和导轨 垂直 • 3、调到布拉格衍射状态,使出现最强一级 衍射光(记录0级光位置,初始0级光强应 调到5到5.7后再开始测量数据) • 4、声光调制幅度特性测试(Id ~ Um ,载波 幅度越大,一级衍射光越明显) • 5、声光调制频率偏转特性测试(θd ~F )
k F
s
Vs
• 由此可见,当声波频率F改变时,衍射光的 方向亦将随之线性地改变。 • 同时由此也可求得超声波在介质中的传播 速度为: F Vs • d
声光调制实验系统框图
信号输出 (扩展用)
激光器
声光晶体
光电接收 线阵
光电信号 解调输出
信号 解调输出
主控单元 超声载波信号源 载波频率指示 激光电源 载波幅度指示 外接调制信号 或音频信号 调制信号源 接收光强指示 解调波 调制波
数据记录
• 1、声光调制幅度特性(做Id ~ Um 曲线)
载波幅度Um(V) 0 0.5 1 1.5 2 2.5
一级衍射光光强Id
载波幅度Um(V) 3 3.5 4 4.5 5 5.5
一级衍射光光强Id • • • • F=100MHz ,调节θi,直到出现布拉格衍射状态 调制加载打开 Um 为调制信号幅度(峰峰值),示波器上读数 Id为一级衍射光光强,主机上读数,注意单位
数据记录
• 2、声光调制频率偏转特性(做θd~F曲线 ) • 零级光:位置d0= ,光强 I0 = ; • 声光调制器与接收孔间的距离L= 。
载波频率F(MHz)
声光调q实验报告

声光调q实验报告1. 实验目的本实验旨在通过声光调q实验,探究声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
2. 实验器材- 调频器- 音叉- 光物体- 麦克风- 音频分析仪3. 实验原理声音是由物质的振动产生的机械波,通过空气传播。
可以用频率(频率越高,声音越尖锐)和振幅(振幅越大,声音越响亮)来定量描述声音。
而光是由电磁波产生的,速度在真空中为光速。
实验中利用调频器生成一定频率的声音信号,并用麦克风接收声音信号。
在调频器中,通过调节不同频率,可产生不同音调的声音。
为了定量分析声音的频率,可使用音频分析仪。
同时,利用光物体产生不同频率的光波,通过研究位于光物体处的探测光电池产生的电流信号来分析光波频率的变化。
4. 实验步骤1. 将音叉固定在一个合适的支架上,使其能够自由振动。
调整调频器的频率,使麦克风接收到音叉振动产生的声音信号。
2. 使用音频分析仪,测量接收到的声音信号的频率,并记录下来。
3. 将光物体放置在光电池前方,调节光物体的频率,使光电池能够接收到光波。
记录下光电池接收到的光波的频率。
4. 分析并比较声音信号和光波信号的频率。
5. 实验结果与分析实验数据如下:信号种类频率(Hz)-声音440光波 5 ×10^14从实验数据中可以得出以下结论:1. 声音频率为440Hz,对应了一个特定的音调,这是因为音叉的振动频率为440Hz。
2. 光波频率为5 ×10^14Hz,这是因为光物体发射的光波频率为5 ×10^14Hz。
3. 声音信号和光波信号的频率相差太大,无法直接比较二者的频率。
6. 结论通过声光调q实验,我们可以观察到声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
实验中,我们调节了声音信号和光波信号的频率,并通过音频分析仪和光电池记录了实验数据。
通过分析实验数据,我们得出了声音信号和光波信号的频率不可直接比较的结论。
实验结果对于深入理解声音和光波的特性以及它们在现实生活中的应用具有重要意义。
声光调制实验报告

一、实验目的1. 理解声光调制的基本原理和过程;2. 掌握声光调制器的构造和工作原理;3. 熟悉声光调制实验的操作方法和注意事项;4. 通过实验,验证声光调制在实际应用中的效果。
二、实验原理声光调制是一种利用声波对光波进行调制的方法。
当声波在介质中传播时,会引起介质的弹性应变,导致介质的折射率发生周期性变化,从而在光波传播过程中产生衍射现象。
声光调制器正是利用这一原理,通过调节声波的频率、幅度和相位,实现对光波的调制。
三、实验仪器与设备1. 声光调制器;2. 光源;3. 光功率计;4. 信号发生器;5. 电脑及实验软件;6. 电缆线。
四、实验步骤1. 连接声光调制器、光源、光功率计、信号发生器和电脑等设备;2. 打开电脑,运行实验软件;3. 调整光源输出功率,使其达到预设值;4. 调节信号发生器的频率、幅度和相位,分别进行以下实验:(1)频率调制:观察光功率计的读数变化,分析频率调制效果;(2)幅度调制:观察光功率计的读数变化,分析幅度调制效果;(3)相位调制:观察光功率计的读数变化,分析相位调制效果;5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 频率调制实验:当信号发生器的频率与声光调制器的共振频率相匹配时,光功率计的读数发生明显变化,说明频率调制效果较好。
2. 幅度调制实验:当信号发生器的幅度变化时,光功率计的读数也随之变化,说明幅度调制效果较好。
3. 相位调制实验:当信号发生器的相位变化时,光功率计的读数也随之变化,说明相位调制效果较好。
六、实验总结1. 通过本次实验,我们了解了声光调制的基本原理和过程;2. 掌握了声光调制器的构造和工作原理;3. 熟悉了声光调制实验的操作方法和注意事项;4. 验证了声光调制在实际应用中的效果。
本次实验表明,声光调制技术具有调制效果好、频率范围宽、非线性失真小等优点,在光通信、光纤传感等领域具有广泛的应用前景。
在实验过程中,我们要注意以下几点:1. 实验前要熟悉实验原理和仪器设备;2. 实验过程中要严格按照实验步骤进行操作;3. 注意安全,防止意外事故发生;4. 实验结束后,认真整理实验器材,清理实验场地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息与通信工程学院实验报告
(操作性实验)
课程名称:物理光学
实验题目:声光调制实验指导教师:班级:学号:学生姓名:
一、实验目的和任务
1、观察声光调制的偏转现象
2、测试声光调制的幅度特性
3、显示声光调制偏转曲线
4、观察声光调制随频率偏转现象
5、测试声光调制频率偏转特性
6、测量声光调制器的衍射效率
7、测量超声波的波速
8、声光调制与光通讯实验演示
二、实验仪器及器件
声光调制实验仪
图1 声光调制实验仪装置
三、实验内容及原理
成绩
声光调制原理:
当声波在某些介质中传播时,会随时间与空间的周期性的弹性应变,造成介质密度(或光折射率)的周期变化。
介质随超声应变与折射率变化的这一特性,可使光在介质中传播时发生衍射,从而产生声光效应:存在于超声波中的此类介质可视为一种由声波形成的位相光栅(称为声光栅),其光栅的栅距(光栅常数)即为声波波长。
当一束平行光束通过声光介质时,光波就会被该声光栅所衍射而改变光的传播方向,并使光强在空间作重新分布。
声光器件由声光介质和换能器两部分组成。
前者常用的有钼酸铅(PM )、氧化碲等,后者为由射频压电换能器组成的超声波发生器。
如图1所示为声光调制原理图。
射频信号
图1 声光调制原理
图2 声光调制的原理 理论分析指出,当入射角(入射光与超声波面间的夹角)i θ满足以下条件时,衍射光最强。
⎪⎪⎭
⎫
⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=s s i N k K N N λλπλλ
π
θ2242sin (1) 式中N 为衍射光的级数,λ、k 分别为入射光的波长和波数λ
π
2=k ,s λ与K 分别为超声
波的波长和波数s
K λπ
2=
声光衍射主要分为布拉格(Bragg )衍射和喇曼-奈斯(Raman-Nath )衍射两种类型。
前者通常声频较高,声光作用程较长;后者则反之。
由于布拉格衍射效率较高,故一般声光器件主要工作在仅出现一级光(N=1)的布拉格区。
满足布拉格衍射的条件是:
s
F
Sin υλθ2=
B (2) (式中F 与s υ分别为超声波的频率与速度,λ为光波的波长)
当满足入射角i θ较小,且 B i θθ=的布拉格衍射条件下,由(1)式可知,此时k
K
B 2≈θ ,并有最强的正一级(或负一级)的衍射光呈现。
入射(掠射)角i θ与衍射角B θ之和称为偏转角d θ(参见图1),由(2)式: s
s B B i d F k K V 2λλλθθθθ===
=+= (3) 由此可见,当声波频率F 改变时,衍射光的方向亦将随之线性地改变。
同时由此也可求得超声波在介质中的传播速度为: d
s F θλ
=V (4)
四、实验步骤
1、观察声光调制的偏转现象
(1) 调节激光束的亮度,使在像屏中心有明晰的光点呈现,此即为声光调制的0
级光斑。
(2) 打开载波选择开关,拨至“80MHz ”的档级,调节“载波幅度”旋钮,此时
80MHz 的超声波即对声光介质进行调制。
(3) 微调载物平台上声光调制器的转向,以改变声光调制器的光点入射角,即可
出现因声光调制而偏转的衍射光斑。
当一级衍射光最强时,声光调制器即运转在布拉格条件下的偏转状态。
2、测试声光调制的幅度特性
(1)取去像屏,使激光束的0级光仍落在光敏接收孔的中心位置上。
(2)微调接收器滑座的测微机构,使接收孔横向移动到一级光的位置(监视“接
收光强指示”表使其达最大值)。
(3)调节“载波幅度”旋钮,分别读出载波电压与接收光强的大小,画出光强~
调制电压的关系式(I d ~U m )。
3、显示声光调制偏转曲线
将接收器滑座横向细调到线阵CCD 矩形接收孔的中间位置上,适当调整示波器使其正确呈现出0级光和次级光的声光调制偏转曲线。
4、观察声光调制随频率偏转现象
(1) 按测试“声光调制幅度特性”的步序,先将“载波选择”置于“关”的位置,记下
接收器滑座横向测微计在0级时的读数。
(2) 将“载波选择”开关置于Ⅰ或Ⅱ的位置,可以观察到1级光(或多级光)的平移变
化现象。
5、测试声光调制频率偏转特性
(1)调节“载波频率”旋钮,微调接收器横向测微计,使其始终跟踪一级光的位
置。
分别记下载波频率指示与测微计读数(即平移距离d )。
待测得1级光和0级光点间的距离d 与声光调制器到接收孔之间的距离L (由导轨面上标尺读出)后,由于L >>d ,即可求出声光调制的偏转角:
L d
d ≈θ
(2) 画出偏转 角——调制频率的关系曲线(θd ~F )。
(3) 测得各调制频率F 值所对应的衍射光强I d ,画出衍射光强~调制频率的关系曲
线(I d ~F ),该曲线中的I d 峰值I dmax 应与中心频率相对应,而其与下降3dB 所对应的频率差即为声光调制器的带宽。
6、测量声光调制器的衍射效率 衍射效率η定义为:
即最大衍射光强I dmax 与0级光强I 0之比,分别测得最强衍射光与0级光的光强值,其
比值即为衍射效率。
7、测量超声波的波速
将超声波频率F 、偏转角d θ与激光波长λ各值代入(4)式,即可计算出超声波在介质中的传播速度。
8、声光调制与光通讯实验演示
将音频信号(来自广播收音机、录音机、CD机等音源)输入到本机的“外调输入”插座,将扬声器插入主控单元后面板的“解调监听”插座,打开载波选择开关至80MHz档位,适当调节载波幅度与解调幅度即可使扬声器播放出音响节目。
五、实验测试数据表格记录
图3 布拉格衍射光斑
图4 拉曼衍射光斑
表1 声光调制数据
载波电压U/V 0.13 0.19 0.25 0.31 0.41 0.50 0.65 0.87 0.92
调制光强I/V 0.67 0.98 1.34 1.64 2.32 2.45 3.32 4.05 5.00
六、实验数据分析及处理
一级光和二级光点间的距离d=2.0mm 声光调制器到接受孔之间的距离L=46.5cm 声光调制器的偏转角L
d
d ≈θ=0.4 衍射效率
=5.0/6.02=0.83
超声波的波速d
s F θλ
=
V = 5500
图5 声光调制特性曲线
七、结论与感悟(或讨论)
声光调制是利用声光效应将信息加载于光频载波上的一种物理过程。
由于声光作用,使光波通过声光介质时,光载波受到调制而成为“携带”信息的强度调制波。
改变调制偏转角,可以看到布拉格衍射和拉曼衍射两种光斑的特点。
通过本次实验,掌握了声光调制的方法并加深了对理论知识的理解。