工程测试技术基础3.测量误差及数据处理共33页文档
第3章 测量误差分析及处理

( 1 2 n ) i
3、几何综合法
绝对误差 相对误差 21 22 2n
2 i 2
i
2 2 2
1 2 n
第三节 随机误差
或然率曲线或概率密度曲线
令真值为A,算数平均值为L,观测值为l,误差△=l-A,偏差 i =l-L,则有
i li A
i li L
l
得: 将L代入 i
i
li nA nL 代入 nii
li nL
i
li nA
i
L
A
li L 得
i i
热能与动力工程 测试技术
第三章 测量误差分析及处理
第一节 误差的来源与分类
一、误差的来源与误差的概念
被观测量客观上存在一个真实值,简称真值。对该量进行观测得到 观测值。观测值与真值之差为真误差,即
真误差=观测值-真值
lA — 真误差 l — 观测值 A — 真值
在测量工作中,对某量的观测值与该量的真值间存在着必然的差异,这 个差异称为误差。但有时由于人为的疏忽或措施不周也会造成观测值与 真值之间的较大差异,这不属于误差而是粗差。误差与粗差的根本区别 在于前者是不可避免的,而后者是有可能避免的。
由于系统误差一般有规律可循,其产生的原因一般也 是可预见的,所以系统误差一般可通过改进测量技术、 对测量结果加修正值等手段来减小。通常处理系统误差 的方法有以下几种: (1)消除系统误差产生的根源。 (2)在测量结果中加修正值。确定出较为准确的修正公 式、修正曲线或修正表格,以便修正测量结果。 (3)在测量过程中采取补偿措施。 例如:在用热电偶测温时,采用冷端温度补偿器或冷端 温度补偿元件来消除由于热电偶冷端温度变化所造成的 系统误差。 (4)采用可以消除系统误差的典型的测量技术。 如采用零值法、替代消除法,预检法等。
误差理论及实验数据处理

可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
检测技术基础知识

第1章 检测技术基础知识
2. 按测量方式分类
1)
在测量过程中,用仪表指针的位移(即偏差)决定被测量的 测量方法,称为偏差式测量法。应用这种方法进行测量时标准 量具不装在仪表内,而是事先用标准量具对仪表刻度进行校准。 在测量时,输入被测量,按照仪表指针在标尺上的示值, 决 定被测量的数值。它以直接方式实现被测量与标准量的比较, 测量过程比较简单、迅速,但是测量结果的精度较低。这种测 量方法广泛用于工程测量中。
第1章 检测技术基础知识 3)
在应用仪表进行测量时,若被测物理量必须经过求解联立 方程组才能得到最后结果,则称这样的测量为联立测量(也称 为组合测量)。在进行联立测量时,一般需要改变测试条件, 才能获得一组联立方程所需要的数据。
联立测量的操作手续很复杂,花费时间很长,是一种特殊 的精密测量方法。它多适用于科学实验或特殊场合。
第1章 检测技术基础知识 1.2.2
1.
1)
在使用仪表进行测量时,对仪表读数不需要经过任何运算, 就能直接表示测量所需要的结果,称为直接测量。例如,用磁 电式电流表测量电路的支路电流,用弹簧管式压力表测量锅炉 压力等就为直接测量。直接测量的优点是测量过程简单而迅速, 缺点是测量精度通常较低。这种测量方法是工程上大量采用的 方法。
第1章 检测技术基础知识 3. 网络化检测系统
总线和虚拟仪器的应用,使得组建集中和分布式测控系统 比较方便,可满足局部或分系统的测控要求,但仍然满足不了 远程和范围较大的检测与监控的需要。近十年来,随着网络技 术的高速发展,网络化检测技术与具有网络通信功能的现代网 络检测系统应运而生。例如,基于现场总线技术的网络化检测 系统,由于其组态灵活、综合功能强、运行可靠性高,已逐步 取代相对封闭的集中和分散相结合的集散检测系统。又如,面 向Internet的网络化检测系统,利用Internet丰富的硬件和软 件资源,实现远程数据采集与控制、高档智能仪器的远程实时 调用及远程监测系统的故障诊断等功能;
3 热工测试技术 测量误差分析及处理

测量结果
3.2 系统误差
系统误差的综合
南昌大学机电工程学院
1)代数综合法(精确) 能估算各误差分量的大小和符号时,用各分量的代数和求得总系统误差。
1 2
n i
i 1
n
2)算术综合法(保守) 只能估算各误差分量的大小,不能确定符号时,则最保守方法,用各 分量的绝对值相加。
热工测试技术
南昌大学机电工程学院
第三章、测量误差分析及处理 本章学习要求:
1.掌握误差的基本理论 2.掌握系统误差、随机误差的特点及计算
3.了解回归分析
3.1 误差的来源与分类
一、测量误差的定义:
南昌大学机电工程学院
实验结果实验数据与其理论期望值不完全相同误差 1)绝对误差:测量所得数据与其相应的真值之差
被测物 ---X;砝码--- T1、T2;
X T1 T2
② 替代消除法 已知量替换被测量 被测物 ---X;平衡物 --- T;砝码 --- P a)X与P左右交换 --- 两次测量 的平均值 --- 消除系统误差 b)T与X 平衡 P与T平衡
X L2 T L1
L2 P T L1
③ 预检法
全体随机函数的代数和
lim
n i 1
Hale Waihona Puke ni0④ 单峰性 --- 绝对值小的误差出现的机会多(概率密度大) Δ =0 处随机误差概率密度有最大值
可表征测量的精度,但不是一个具体误差
通常定义Δ= K k2 k 1 F ( ) e 2 dk 2 (k ) 2 k 定义极限误差Δlim= ±3
3.3 随机误差
4)有限测定次数中误差的计算及各种误差的表示法
南昌大学机电工程学院
《热能与动力工程测试技术(第3版)》俞小莉(电子课件)第3章 测量误差分析及数据处理(俞老师)

1
i i i
1
=4.736 103
i i i
1
n 1
1
n 1 ˆ2
故可判断测量结果不存在周期性系统误差。
第3章测量误差分析及数据处理
3.3 系统误差分析与处理 (3)算术平均值与标准差比较法
s
s1 s2
2
2
p p( x ts )
n
x)
2
ˆ
n -1
i
1
n
2 i
n-1
④判断:
第3章测量误差分析及数据处理
3.3 系统误差分析与处理
i i i
1
n 1
1
n 1 ˆ2
若上式成立,则测量结果存在周期性系统误差。 (2)偏差核算法——马力科夫准则(检查是否含有线性系统误差) 将 按 照 测 量 先 后 排 序 的 测 量 结 果 分 为 前 半 组 x1,x2,…xm 和 后 半 组 xm+1,xm+2,…xn,计算两组测量值偏差和的差值,即
max e
A 2000 ( 1%) 10% Am 200
A 2000 ( 1%) 1.33% Am 1500
当示值为1500 r/min时的最大相对误差为:
r21(1)
(11 n 13)
r22(n )
和
x n x n 2 xn x3 x1 x 3 x1 x n 2
r22 (1)
(n 14)
第3章测量误差分析及数据处理
3.4 疏失误差的消除
⑤剔除含疏失误差的测量结果后,重新②-④步骤,直至计算得到的统计 量均小于临界值。
误差理论与数据处理

误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。
一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。
(2)量值一般由一个数乘以测量单位所表示的特定量的大小。
无量纲的SI单位是“1”。
(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。
例如:用米尺测得桌子的长度为1.2米。
(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。
在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。
测量结果还具有重复性和重现性。
重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。
相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。
若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。
重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。
(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。
总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。
1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。
(1)按计量的性质分可分为:检定、检测和校准。
检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。
计量基础知识

正值。
2、校准也可确定其他计量特性,如影响量的作用。
3、校准结果可以记录在校准证书或校准报告中。
第15页,共36页,编辑于2022年,星期二
检定和校准的区别
1、校准不具法制性,是企业自愿溯源行为;检定则具有法制 性,属计量管范畴的执法行为。
2、校准主要确定测量仪器的示值误差,检定则是对其 计量特性及技术要求的全面评定。
3、校准的依据是校准规范、校准方法,通常应作统一规定,有
时也可自行制定;检定的依据则是检定规程。
4、校准通常不判断测量仪器合格与否,必要时也可确定 其某一性能是否符合预期要求;检定则必须做出合格与否 的结论。
5、校准结果通常是出具校准证书或校准报告;检定结果则是 合格的发检定证书,不合格的发不合格通知书。
第24页,共36页,编辑于2022年,星期二
2、误差的分类 绝对误差:(绝对)误差=测量结果-真值 修正值: 真值=测量结果 + 修正值 相对误差: 相对误差=绝对误差÷真值
×100 % 粗大误差:超过在规定条件下预期的误差就
是粗大误差。
第25页,共36页,编辑于2022年,星期二
3、误差的来源 被测对象自身缺陷或变化引起的误差。 测量过程中产生的误差: 测量装置的误差 环境条件变化所引起的误差 测量原理方法所引起的误差 人为因素引起的误差
第32页,共36页,编辑于2022年,星期二
注意:在评定B类不确定度时,要求有相应 的知识和经验,来合理地使用所有可用的信 息。这也是一种技巧,可在实践中学习和掌 握。
合成不确定度:将计算出的所有不确定度分 量采用方和根法合成。
第33页,共36页,编辑于2022年,星期二
(完整版)测量误差的分类以及解决方法

测量误差的分类以及解决方法1、系统误差能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。
系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。
由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。
系统误差越小,测量结果的准确度就越高。
2、偶然误差偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。
产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。
偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和偶然误差是两类性质完全不同的误差。
系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。
3、疏失误差疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。
显然,凡是含有疏失误差的测量结果都是应该摈弃的。
解决方法:仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。
必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。
所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。
一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
1、系统误差的消除方法(1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
(2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—α称为显著水平(不可靠性)
当t值不同时,概率不同 若取t=1 则 p=68.26%
t=2 p=95.45% t=3 p=99.73% 接近于100%
而测量值超过|u± 3σ|的概率很小,认为不可能出现.
26.04.2020
8
误差与测量
所以,单次测量值的极限随机误差可定义为:
26.04.2020
10
误差与测量
3.2 不等精度测量
3.2.1 等精度测量与不等精度测量
如果在测量过程中,保证测量环境、仪器、方法、人员水 平及测量次数都相同,这时的单次测量结果或重复测量的算 术平均值具有相同的可靠程度,称之为等精度测量。
若使环境、仪器、方法、人员水平及测量次数中的任一项 改变,则每改变一次后的测量结果与前一次测量结果的可靠 性不同,称之为不等精度测量。
26.04.2020
4
误差与测量
3.1.3 随机误差的特点及估计
1. 随机误差的特点
随机误差的存在导致每次测量结果有些不同,将测量值进行分组统计(直方 图法),将最大值与最小值之间进行N等分,在直角坐标系中横轴表示测量值, 纵轴表示测量值落在每一等分内的个数即频数,便可作出直方图,此图显现 中间多、两边低,两边对称的特点。具有这种分布特点的随机变量称之为服 从正态分布。
不等精度测量的目的是对不同条件下的测量结果加以比较 分析,以便获得更精确的测量结果。
26.04.2020
11
误差与测量
3.2.2 不等精度测量结果的表示—加权算术平均值 不等精度测量因各组测量值的可靠程度不同,故不能用
算术平均值来表示,而应遵从一个原则:即可靠性高或精确 度高的测量值在最终测量结果中所占的比重要大一些,而可 靠程度小或精确度低的结果在最终测量结果中所占的比重要 小一些。而普通算术平均值反映不出这种关系。因此引入了 加权算术平均值的概念。
则:
limx t(k)
S N
k—自由度=N-1 N 为测量次数 α--显著水平=1-p
③粗大误差的消除:
当测量值产生的误差 |x1x|3 时,便可认为粗大误差可以删除.
3.1.4 精密度、准确度、精确度
精密度:用标准差评定,说明测定值的分散程度(指随机误差)。 准确度:算术平均值偏离真值的程度(指系统误差)。 精确度:前二者的综合评定,有时也指精密度。
2. 研究测量误差的意义 正确认识测量误差的性质与分析测量误差产生的原因,寻求最大限度
地减小与消除测量误差的途径。寻求正确处理测量数据的理论和方法, 以便在同样条件下,能获得最精确最可靠地反映真值的测量结果。
俗话说,差之毫厘,失之千里,一个小数点的错位,一个量纲的不正 确,有可能导致巨大的浪费、失败、甚至造成人员伤亡等。
测量值与测量误差都服从正态分布,只是分布中心不同。随机误差具有如
下特点:
①单峰性:绝对值小的误差比绝对值大的误差出现的可能性大;
②对称性;绝对值相同、符号相反的误差出现的可能性相等;
N
③相消性:
lim
n
i
i 1
0
④有界性:绝对值大于某数值的随机误差不会出现。
26.04.2020
5
误差与测量
具有这样特性的事件称之为服从正态分布(高斯分布), 正态分布的概率密度:
③ 引用误差:Δ引=(Δ/Xm)×100% 称测量值为X时的引用误差。 式中Xm为引用值,通常指测量装置的量程或示值范围的最高值。
引用误差有最大值:Δ引max=(Δmax/Xm)·100%=μ% μ称为电工仪表的等级,共7级:0.1、0.2、0.5、1.0、1.5、2.5、5.0。使用μ级精 度仪表时可保证:Δ<Δmax=Xm·μ% 在相同误差Δ下,显然,越接近Xm,相对误差越小。因为相对误差(Δ/X)≥引 用误差(Δ/Xm)。
26.04.2020
3
误差与测量
3.1.2 测量误差的分类
系统误差:对某一参数在相同条件下进行多次测量时, 以确定的规律影响各次测量值的误差。
随机误差:对某一参数在相同条件下进行多次重复测量, 误差的符号及大小变化无规律,呈现随机性的误差。
粗大误差:由于某些原因造成的使测量值受到显著歪曲 的误差,可在重复测量比较分析后消除。产生原因:测 量者的粗心大意,环境的改变,如受到振动、冲击等。
26.04.2020
2
误差与测量
3. 测量误差的表示方法
① 绝对误差:Δ=X-X0 或 Δ=X-A 其中X为测量值,X0为真值,A为约定真值。 一般来说,真值无法求得,约定真值为高一级测量仪表的读数。
② 相对误差:ε=(Δ/X0)×100% 或 ε=(Δ/Α)×100%(实际相对误差) 或ε=(Δ/X)×100% (示值相对误差,当Δ较小时使用)
检测技术
第三章 测量误差与静态测量数据处理
3.1 测量误差概述 3.2 不等精度测量 3.3 函数误差与误差的传递 3.4 测量的不确定度. 3.5 静态误差数据处理
26.04.2020
1
差与测量
3.1 测量误差概述
3.1.1 测量误差的概念及其表示方法
1. 测量误差:对某一参数进行测量时,由于各种因素的影响,使测量值 与被测参数的真值之间存在一定的差值,此差值就是测量误差。 测量误差的产生原因主要有四个方面:①测量方法;②测量设备;③测 量环境;④测量人员素质。
lim 3
算术平均值的极限随机误差:
lim x 3 N3x
-- x
为算术平均值的标准值
样本平均值与样本均方差的性质:样本平均值x的数
学期望Mx等于总体指标的数学期望M ,样本平均值x的 均方差x等于总体指标的均方差 乘以因子1/(N)1/2
26.04.2020
9
误差与测量
② σ未知时,用σ的估计值S来替代,用算术平均值作为测量结果
或用σ的估计值
S N11iN1(xi x)2
——样本标准差
随机误差的分布与测量值相同,只是μ=0。
26.04.2020
7
误差与测量
2. 极限随机误差的估计 ①σ已知:单次测量(一个测量样本)的极限随机误差的估计
limt —— t 称为置信系数,其数值与误差出现的概率有关
设测量值x落在区间
[utxut]
fx
1 2 ex 2 x p u 2 2
1 2 ex 2 2 2 p
测量值分布中心可用求算术平均值的方法求得:
u
=B
x
1 N
N i1
Xi
——样本均值。
26.04.2020
6
误差与测量
测量值的可靠性(偏离真值的程度)可用标准差来评价:
n l im N 1iN 1(xix0)2n l im N 1iN 1i2