模糊控制理论基础(自动化)

合集下载

模糊控制理论及应用

模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。

本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。

一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。

在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。

模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。

最后,通过去模糊化操作将模糊集合转化为具体的输出值。

二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。

1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。

它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。

2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。

通过模糊控制,机器人可以对复杂的环境做出智能响应。

3. 交通控制:模糊控制在交通控制领域中有重要的应用。

通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。

4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。

通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。

5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。

模糊控制可以应对这些问题,提高生产过程的稳定性和质量。

三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。

未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。

通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。

2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。

例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。

3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。

模糊控制原理与应用

模糊控制原理与应用

模糊控制原理与应用一、引言在现实世界的控制系统中,我们常常面临各种各样的不确定性和模糊性。

传统的控制理论往往无法有效地处理这些问题,而模糊控制理论的提出填补了这一空白。

模糊控制原理与应用是一门涉及模糊集合、模糊逻辑和模糊推理的学科,它已经在各个领域取得了广泛的应用和重要的成果。

二、模糊控制的基本原理模糊控制的基本原理是将传统的精确控制方法中的精确数学模型替换为模糊数学模型。

模糊数学模型中使用模糊集合来描述系统的输入和输出变量,并使用模糊规则来描述系统的控制策略。

2.1 模糊集合模糊集合是对传统集合的一种推广,它允许一个元素具有一定程度的隶属度。

在模糊控制中,我们通常使用隶属函数来描述模糊集合的隶属度分布。

2.2 模糊逻辑模糊逻辑是一种符号运算方法,它可以处理模糊集合上的逻辑运算。

在模糊控制中,我们使用模糊逻辑运算来进行模糊推理,从而得出控制信号。

2.3 模糊推理模糊推理是指从模糊规则和模糊事实出发,通过模糊逻辑运算得出一个模糊结论。

在模糊控制中,模糊推理用于将模糊输入映射为模糊输出。

三、模糊控制的应用领域模糊控制在各个领域都取得了广泛的应用。

下面介绍几个典型的应用领域。

3.1 自动化控制模糊控制在自动化控制系统中具有重要的应用价值。

通过使用模糊控制,可以有效地处理控制对象的各种不确定性和模糊性,提高控制系统的稳定性和鲁棒性。

3.2 智能交通模糊控制在智能交通系统中扮演着重要的角色。

通过使用模糊控制,可以根据交通状况和驾驶行为进行实时调整,从而提高交通系统的效率和安全性。

3.3 机器人控制模糊控制在机器人控制领域得到广泛应用。

通过使用模糊控制,可以实现对机器人的路径规划、动作控制和任务调度等功能,从而提高机器人的智能性和灵活性。

3.4 电力系统模糊控制在电力系统中的应用越来越多。

通过使用模糊控制,可以实现对电力系统的负荷预测、调度优化和设备故障诊断等功能,从而提高电力系统的稳定性和可靠性。

四、模糊控制的优势与不足模糊控制具有一些明显的优势,但也存在一些不足之处。

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。

模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。

一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。

模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。

模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。

二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。

他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。

随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。

2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。

日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。

同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。

3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。

研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。

同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。

总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。

经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。

未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。

模糊控制及其应用

模糊控制及其应用
利用模糊控制算法,智能空调能够根据室内温度和人的舒适度需求,自动调节冷暖风量,实现精准的温度控制。
详细描述
模糊控制算法通过采集室内温度和人的舒适度信息,将这些信息模糊化处理后,根据模糊规则进行推理,输出相 应的温度调节指令,从而实现对空调温度的智能控制。这种控制方式能够避免传统控制方法中存在的过度制冷或 制热的问题,提高室内环境的舒适度。
易于实现
模糊控制器结构简单,易于实 现,能够方便地应用于各种控 制系统。
灵活性高
模糊控制器具有较强的灵活性 ,能够根据不同的需求和场景 进行定制和优化。
02
模糊控制的基本原理
模糊化
模糊化是将输入的精确值转换 为模糊集合中的隶属度函数的 过程。
模糊集合论是模糊控制的理论 基础,它通过引入模糊集合的 概念,将精确的输入值映射到 模糊集合中,从而实现了对精 确值的模糊化处理。
交通控制
智能交通系统
通过模糊控制技术,可以实现智 能交通系统的自适应调节,提高 道路通行效率和交通安全性能。
车辆自动驾驶
在车辆自动驾驶中,模糊控制技 术可以用于实现车辆的自主导航 、避障和路径规划等功能,提高 车辆的行驶安全性和舒适性。
04
模糊控制在现实问题中的应用案例
智能空调的温度控制
总结词
模糊控制器
模糊控制器是实现模糊控制的核心部件,通过将输入的精确量转 换为模糊量,进行模糊推理和模糊决策,最终输出模糊控制量。
模糊控制的发展历程
80%
起源
模糊控制理论起源于20世纪60年 代,由L.A.Zadeh教授提出模糊 集合的概念,为模糊控制奠定了 理论基础。
100%
发展
随着计算机技术的进步,模糊控 制技术逐渐得到应用和发展,特 别是在工业控制领域。

模糊控制系统简介

模糊控制系统简介

模糊理论在模糊控制中的应用——模糊控制系统摘要:模糊控制技术对工业自动化的进程有着极大地推动作用。

本文简要的讲述了模糊控制理论的起源及基本原理,详细分析了模糊控制器的设计方法,最后就典型的模糊控制系统原理和新型模糊控制系统应用进行了分析正文:一:模糊理论1.1模糊理论概念:模糊理论(Fuzzy Theory)是指用到了模糊集合的基本概念或连续隶属度函数的理论。

它可分类为模糊数学,模糊系统,不确定性和信息,模糊决策这五个分支,它并不是完全独立的,它们之间有紧密的联系。

1.2模糊理论产生:1965年,模糊理论创始人,美国加州福尼亚大学伯克利分校的自动控制理论专家L.A.Zadeh教授发表了题为“Fuzzy Set”的论文,这标志着模糊理论的诞生。

这一理论为描述和处理事务的模糊性和系统中的不确定性,以及模拟人所特有的模糊逻辑思维功能,从定性到定量,提供了真正强有力的工具。

1966年,马里诺斯发表了模糊逻辑的研究报告,而Zadeh进一步提出了著名的模糊语言值逻辑,并于1974年进行了模糊逻辑推理的研究。

由于这一研究和观点反映了客观世界中普遍存在的事务,它一出现便显示出强大的生命力和广阔的发展前途,在自然科学,其他科学领域及工业中得到了迅速的广泛的应用。

二:模糊控制理论2.1模糊控制理论的产生:在控制技术的应用过程中,对于多变量、非线性、多因素影响的生产过程,即使不知道该过程的数学模型,有经验的操作人员也能够根据长期的实践观察和操作经验进行有效地控制,而采用传统的自动控制方法效果并不理想。

从这一点引申开来,是否可将人的操作经验总结为若干条控制规则以避开复杂的模型建造过程?模糊控制理论与技术由此应运而生。

20世纪70年代模糊理论应用于控制领域的研究开始盛行,并取得成效。

其代表是英国伦敦大学玛丽皇后分校的E.H.Mamdani教授将IF-THEN型模糊规则用于模糊推理,并把这种规则型模糊推理用于蒸汽机的自动运转中。

自动化系统的模糊控制与神经网络控制

自动化系统的模糊控制与神经网络控制

自动化系统的模糊控制与神经网络控制自动化系统的控制方法多种多样,其中模糊控制和神经网络控制是两种常见而有效的控制方法。

本文将就自动化系统的模糊控制与神经网络控制进行详细的介绍和对比。

一、模糊控制模糊控制是指在系统的控制过程中,根据模糊集合和模糊规则进行推理,以实现对系统的控制。

模糊控制通过模糊集合来描述控制对象的特征,通过模糊规则来描述控制的策略。

模糊控制的主要优点是对系统模型要求不高,适用于复杂的非线性系统。

模糊控制的缺点是控制效果不稳定,对系统的响应较慢。

二、神经网络控制神经网络控制是指利用人工神经网络对系统进行建模,并通过神经网络进行系统控制。

神经网络控制通过训练神经网络来获得系统的映射关系,并通过不断的优化训练来提高控制效果。

神经网络控制的主要优点是适应性强,可以对复杂的非线性系统进行较好的控制。

神经网络控制的缺点是需要大量的训练数据和计算资源。

三、模糊控制与神经网络控制的对比1. 建模方法模糊控制使用模糊集合和模糊规则进行建模,而神经网络控制使用人工神经网络进行建模。

模糊控制的建模过程相对简单,只需通过专家知识确定模糊集合和规则即可。

而神经网络控制的建模过程相对复杂,需要通过大量的训练数据进行神经网络的训练和优化。

2. 控制效果模糊控制对系统的控制效果常常较差,对于复杂的非线性系统,模糊控制的精度和稳定性均较低。

而神经网络控制对系统的控制效果较好,可以对复杂的非线性系统进行较精确的控制。

神经网络控制可以通过不断的训练和优化提高控制效果,并适应系统动态变化。

3. 训练需求模糊控制的训练过程相对简单,只需确定模糊集合和规则即可。

而神经网络控制的训练过程相对复杂,通常需要大量的训练数据和计算资源。

神经网络控制的训练需要通过反向传播算法等方法来不断优化网络参数,提高控制效果。

4. 适用范围模糊控制适用于复杂的非线性系统,特别是对于模糊规则较为明确的系统。

神经网络控制适用于复杂的非线性系统,并且对于系统的模糊规则不敏感,对于模糊性较强的系统具有更好的控制效果。

模糊控制

模糊控制
如扎德给出的计算老年人模糊集合的隶属函数为:
0 1 A (x) 1 ( 5 )2 x 50
0 x 50
50 x 200
其论域为[0,200]的连续区间,论域上任一元素的隶属度, 可通过隶属函数求得。
2)隶属度及隶属函数的确定
用模糊统计法确定隶属度的基本思想
康托(Cantor,G.F.P. 1845年—1918年), 德国数学家
属于 不属于
2.1 普通集合及其运算规则
1) 普通集合的基本概念 被讨论的对象的全体称作论域。论域常用大写 论域 字母U、X、Y、Z等来表示。 元素 论域中的每个对象称为元素。元素常用小写字 母a、b、x、y等来表示。 集合 给定一个论域,论域中具有某种相同属性的元素 的全体称为集合。 集合常用大写字母A、B、C等来表示。 集合的元素可用列举法(枚举法)和描述法表示。 列举法:将集合的元素一一列出, 如:A={a1,a2,a3,…an}。 描述法:通过对元素的定义来描述集合。 如:A={x│x≥0 and x/2=自然数}
模糊逻辑控制方法
把模糊数学理论应用于自动控制领域,从而产生的 控制方法称为模糊控制方法。 传统控制依赖于被控系统的
数学模型;
模糊逻辑控制依赖于被控系统的 物理特性。
优点
A. 无需预先知道被控对象的精确数学模型;
B. 容易学习和掌握模糊逻辑控制方法(规则由人的
经验总结出来、以条件语句表示);
C. 有利于人机对话和系统知识处理(以人的语言形
18~25
15~30 16~30 15~30
16~35
20~30 15~30 15~25
17~29
20~30 18~35 15~30
18~25

模糊控制原理完整ppt课件

模糊控制原理完整ppt课件
模糊控制原理
北京理工大学自动化学院 sunjian@ 孙健
第三章 模糊控制原理
模糊控制的基本原理 模糊控制系统的分类 模糊控制器设计 模糊控制的应用
Page 2
第三章 模糊控制原理
Page 3
3.1 模糊控制的基本原理
3.1.1 模糊基本思想
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础 的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过 程的一种智能控制方法。
确定隶属函数(原则)
模糊化处理方法
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
Page 5
3.1 模糊控制的基本原理
模糊值
规则库R
模糊值
模糊化
输入e
输出u
模糊推理
精确值
精确值
期望值 +
e A/D

温度 传感器
?
为了提高实时性,模糊控制器常常以控制查询表的形式出现。 该表反映了通过模糊控制算法求出的模糊控制器输入量和输 出量在给定离散点上的对应关系。为了能方便地产生控制查 询表,在模糊控制器的设计中,通常就把输入输出的论域定 义为有限整数的离散论域。
Page 11
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
有关论域的选择问题,一般误差论域m≥6,误差变化 论域n≥6,控制量的论域l≥7。
这是因为语言变量的词集多半选为七个(或八个)这 样能满足模糊集论域中所含元素个数为模糊语言词集 总数的二倍以上,确保模糊集能较好地覆盖论域,避 免出现失控现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对任意 x∈X, 都有确定的一个数
μA(x),且 0≤μA(X)≤ 1。 μA(x)表示 x对A的隶属度。 μA(X)称为 A的隶属函数。
20
1、模糊集合的特征函数-----隶属函数
* 经典集隶合中属:函数
特征函数只取 0 和 1 两个值。
* 模糊集合中: 特 征 函 数 取 值 范 围 扩 大 至 [0 , 1]

示 法
A1=0.1 ∕a +0.3 ∕b +0.4 ∕c +0.7 ∕d +1.0 ∕e A2=1.0 ∕a +0.8 ∕b +0.55 ∕c +0.3 ∕d
+0.1 ∕e
15
b) 序偶表示法: A1={ (a ,0.1),(b ,0.3),(c ,0.4), (d ,0.7),(e ,1.0)} A2={(a ,1.0),(b ,0.8),(c , 0.55), (d ,0.3),(e ,0.1)} 也可进一步化简为矢量表示: A1={μA1(a) μA1(b) μA1(c) μA1 (d)
11
论域的二种形式: 1)离散形式(有序或无序):
例1: X={上海 北京 天津 西安}为城市的集合。 模糊集合 C = “对城市的爱好”可以表示为: C = {(上海,0.8),(北京,0.9), (天津,0.7),(西 安,0.6)}
例2:X = {0 1 2 3 4 5 6}为一个家庭可拥有 自行车数目的集合。
为了描述这种“中介状态”,就将经典集合扩展成为模糊集合。
如果 X 是对象x的集合,则X的模糊集合 A:
A {( x, A(x)) | x X}
A( x) 称为模糊集合A的隶属函数(简写为MF )
X称为论域或域
精确集合
X 6
X 6
1 模糊集合
A 0
A 1
13
X 6
A(x) 1
A(x) [0 1]
5
特点: • 无须对象特数点学模型 • 反映人类智慧 • 易于人们接受 • 构造容易 • 鲁棒性、适应性好
6
① 模糊集合
集合——具有某种特定属性的对象的全体。
常 精确集合(非此即彼):

A={X|X>6}

语 精确集合的特征函数:
A
1 0
如果 X A 如果 X A
7
模糊集合:现实世界中并非完全如此,存在“中介状态”。
模糊控制理论基础
1 2020/6/20
教学内容
一、概述 二、模糊集合 三、隶属函数 四、模糊关系及运算 五、模糊推理
2
0. 模糊概念
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
定义:3.1概述
以模糊集合理论、 模糊语言变量和模糊 推理为基础的控制方 法
4
或为: 采用模糊集合理论和模
糊逻辑,并同传统的控 制理论结合,模拟人的 思维方式,对难以建立 数学模型的对象实施的 一种控制方法
x a ba
cx
cb
a xb b xc
MATLAB:trimf(x,[a,b,c])
0
cx


0
xa
函 数
梯形隶属函数
xa
f
( x,
a, b,
c,
d
)
ba
1
a xb b xc

dx d c
cxd

MATLAB:trapmf(x,[a,b,c,d])
0
dx

高斯形隶属函数
1( xc )2
f (x;c, ) e 2
c代表MF的中心; 通常为正决定MF的宽度。
MATLAB:gaussmf(x,[σ,c])
23
广义钟形隶属函数
f (x; a,b, c) 1
1
xc a
2b
MATLAB:gbellmf(x,[a,b,c])
S型隶属函数
f (x;a,c) 1
1 ea(
区间,可连续取值。模糊集合中的特征
函数称为隶属函数。 模糊集合中的隶属函数,是经
典集合中的特征函数的扩展和一 般化。
21
2.典型的隶属函数图形:
(1)高斯函数 (2)广义钟型 (3)S函数 (4)T型隶属函数 (5)三角形隶属函数 (6)Z型隶属函数
三角形隶属函数
0
xa
f
( x;
a, b, c)
它们是模糊集合的一种表示方式 表示构成或属于
上述三个例子分别可写为
C = 0.8 /上海+0.9 /北京 +0.7 /天津 +0.6 /西安
C = 0.1/0+0.3/1+0.7/2+1.0/4+0.3/5+0.1/6
1
B
/x
R1 ( x 50)4
10
定义:给定论定域 X上义的一个模糊集合A,
Y
(x)
1
1
x25 5
2
1
1.0
,0 x 25 ,25 x 100
(x) 0
(x) Y
x 50
100
x
25
50
模糊集合的公式表示
xiX A ( xi ) / xi X为离散对象集合
A
A(xi ) / x
X为连续空间(通常为实轴)
X
注意: / 不是除法运算
和 也并非求和与积分符号.
1
13
6
② 隶属函数
模糊集合中的元素属于该集合的程度,
常 可从0—1之间连续的变化。并以“隶
用 术
属度”来表示。 模糊集合中的特征函 数,被称为:“隶属函数”。
语 隶属函数的性质:
a) 定义为有序对;
b) 隶属函数在0和1之间;
c) 其值的确定具有主观性和个人
的偏好。
10
③论域或域

用 ——所研究事物的范围,所 术 研究的全部对象的总和,分 语 析讨论的集合范围。式中:B ( 源自)1(1 x
50)4
10
各元素与隶属度结合在一起。

a)Zadeh表示法: A= μA(x1)∕x1 + μA (x2)∕x2 +… +

μA (xn)∕xn
集 合
论域E={x1,x2,…xn}, A为E上的一个模糊集,xi的隶属度
为μA(Xi)

“+”不是相加,“∕”也不是相除—分子: 隶属度;分母元素。
μA1(e)}
={0.1 0.3 0.4 0.7 1.0}
A2={1.0 0.8 0.55 0.3 0.1}
c) 函数描述法: 论域E上的模糊子集A完全可由隶属 函数μA(x) 表征。 例:年龄的论域,E=[0,100],“年老O”,“年轻Y”
0
(x)
1
0
, x50 21
5
,0 x 50 50 x 100
模糊集合 C = “合适的可拥有的自行车数目” C= {(0,0.1),(1,0.3),(2,0.7),(3,1.0),(4,0.7),(5,0.3),(6,0.1)}
2) 连续形式:
例3:令X = R+ 为人类年龄的集合,
模糊集合 B = “年龄在50岁左右”则表示 为:
B {x, B (x) | x X }
相关文档
最新文档