滑动轴承设计
机械设计第十二章滑动轴承

流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。
。
油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况
滑动轴承设计案例

13-9设计案例设计一机床用的液体动压润滑径向滑动轴承,载荷垂直向下,工作情况稳定,采用剖分式轴承。
已知工作载荷F=100000N,轴颈直径d=200mm,转速n=400r/min,在水平剖分面单侧供油。
解:一、选择轴承结构和材料选择正剖分式径向滑动轴承,由水平剖分面单侧供油,轴承包角β=180°,轴承材料按p≤[p],v≤[v],pv≤[pv]进行选取。
1)选择轴承宽径比通常宽径比在0.3~1.5范围内,根据机床常用的宽径比范围,取宽径比B/d=12)计算轴承宽度mmd d B B 2002001=⨯=⨯=)/(3)计算轴颈圆周速度sm dn/.194100060400200100060=⨯⨯⨯=⨯=ππν4)计算轴颈平均压力MPa dB F p 522020100000...=⨯==5)计算pv值MPapv/ms4195102⨯.=5.=.⋅6)选择轴瓦材料查常用金属轴承材料性能表,在保证p≤[p],v≤[v],pv≤[pv] 的条件下,选定轴承材料为ZCuSn10Pl1)初估润滑油粘度 二、承载能力计算s Pa n ⋅===--03601060400106067316731.)/()/('////η2)计算相应的运动粘度 取润滑油密度 3900mkg /=ρs mm m kg s Pa /.)/()(''26634010900036010=⨯=⨯⋅=ρηυ3)选定润滑油牌号参照表选定全损耗用油L-AN684)初选平均油温现选平均油温t m =50℃5)按t m =50℃查出L-AN68的运动粘度为 s mm /25040=υ6)换算出L-AN68于50℃时的运动粘度sPa ⋅≈⨯⨯==-0360104090065050.ρυη7)计算相对间隙 4/94/931/931/9(/60)(400/60)0.000841010n ψ≈=≈8)计算轴承量系数 221000000.00084 1.17220.036 4.190.2P F C vB ψη⨯===⨯⨯⨯9)求出轴承偏心率根据C P 及B/d 的值,查C P -表,偏心率 χ0.579χ=10)计算最小油膜厚度min 200(1)0.00084(10.579)35.36422d h m ψχμ=-=⨯⨯-=11)确定轴颈轴承孔表面粗糙十点高度 查得轴颈R Z1=0.0032mm ,轴承孔R Z2=0.0063mm12)计算许用油膜厚度 取安全系数S=2,则 []mR R S h Z Z μ190063000320221=+⨯=+=)..()([]min h h >满足要求。
机械设计课件 滑动轴承学习课件

偏心距:e OO
偏心率:
e e Rr
表示偏心程度0 1
最小油膜厚度:
hmin e r r (1 )(χ↑→hmin↓)
保证流体动力润滑:
hmin Rz1 Rz2 [hmin ]
S hmin 2 ~ 3 Rz1 Rz2
Rz1、Rz2— 轴颈、轴瓦表面微观不平度的十点高度,m
2. 剖分式轴承 剖分式轴承由轴承座、轴承盖、剖分轴瓦、轴承盖
螺柱等组成。
轴瓦是轴承直接和轴颈相接触的零件,常在轴瓦内表面 上贴附一层轴承衬。在轴瓦内壁不承担载荷的表面上开设油 沟,润滑油通过油孔和油沟流进轴承间隙。
R(球)
3.调心式滑动轴承
特点:轴瓦外表面做成球面形状,与轴承盖及轴承座的 球状内表面相配合,轴瓦可以自动调位以适应轴颈在轴弯 曲时所产生的偏斜。
X 0:
pdydz ( p p dx )dydz dxdz ( dy )dxdz 0
x
y
p
x y
由于:
u y
p x
2u y 2
二次积分
u
1
2
p x
y
2
C1y
C2
代入边界条件:y=0,u=v;y=h,u=0
流速方程:u v (h y ) 1 p (y h)y
h
2 x
pmax
盖
杯体 接头 油芯
20°
§5 非液体摩擦滑动轴承的计算
一、混合摩擦滑动轴承失效形式 胶合、磨损等 设计准则:至少保持在边界润滑状态, 即维持边界油膜不破裂。
计算方法:简化计算(条件性计算)
磨损
点蚀及金属剥落
二、向心轴承
1、限制轴承平均压强
p F p
滑动轴承课程设计

滑动轴承课程设计一、课程目标知识目标:1. 学生能理解滑动轴承的基本概念、结构组成和工作原理;2. 学生掌握滑动轴承的类型、特点及其在机械设备中的应用;3. 学生了解滑动轴承的设计原则和步骤,能运用相关公式进行简单计算。
技能目标:1. 学生能够运用所学知识分析滑动轴承在实际工程中的应用,具备一定的实际问题解决能力;2. 学生通过课程学习,掌握滑动轴承的安装、使用和维护方法,提高实际操作能力;3. 学生能够运用所学知识,对滑动轴承进行初步的设计和优化,提高创新意识和实践能力。
情感态度价值观目标:1. 学生在学习过程中,培养对机械工程学科的兴趣和热情,增强学习动力;2. 学生通过团队合作完成课程任务,培养团队协作精神和沟通能力;3. 学生了解滑动轴承在国民经济和工程技术领域的重要作用,增强社会责任感和使命感。
课程性质:本课程为机械工程学科的基础课程,旨在让学生掌握滑动轴承的基本知识、设计方法和应用技能。
学生特点:学生为高中二年级学生,已具备一定的物理和数学基础,对机械工程有一定了解,但缺乏实际操作经验。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力,同时关注学生的情感态度和价值观培养。
在教学过程中,将目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 滑动轴承的基本概念与结构- 滑动轴承的定义、作用及分类- 滑动轴承的典型结构及组成部分- 滑动轴承的材料及性能要求2. 滑动轴承的工作原理与性能- 滑动轴承的工作原理- 滑动轴承的性能指标及影响因素- 滑动轴承的摩擦、磨损与润滑3. 滑动轴承的设计原则与方法- 滑动轴承设计的基本原则- 滑动轴承设计的主要步骤- 滑动轴承设计的相关公式及计算方法4. 滑动轴承的应用与维护- 滑动轴承在机械设备中的应用实例- 滑动轴承的安装、使用和维护方法- 滑动轴承故障分析及排除方法5. 滑动轴承的设计实例与优化- 简单滑动轴承设计实例分析- 滑动轴承结构优化方法- 滑动轴承设计中的创新思维与实践教学内容根据课程目标进行选择和组织,确保科学性和系统性。
机械设计课件 第17章滑动轴承1

MPa
3) 限制滑动速度v
v
dn
60 1000
[v ]
轴承材料的最高许用〔p〕、〔v〕、〔pv〕 值见表17.1、17.2。常用机器径向轴承的 〔p〕、〔v〕,〔pv〕见表17.4。
17.7.2
推力轴承
结构如图17.12所示。用来承受轴向载荷。
润滑方式的选择:根据系数k选定。k
pv
3
p F /(dB) k 2 -用润滑脂,油杯润滑;
k=2~16-针阀式注油油杯润滑; k=16~32-油环或飞溅润滑; k>32-压力循环润滑。
17.7 滑动轴承的条件性计算
对于工作要求不高、v较低,载荷不大,难以 维护等条件下工作的轴承,往往设计成非流体摩
17.2.3 自动调心轴承 轴瓦可自动调位 适应轴颈在轴弯曲 时所产生的倾斜。
球
17.3 滑动轴承的材料
轴承材料:轴瓦和轴承衬的材料。
选用何种材料,取决于失效形式。
主要失效形式是轴瓦磨损、疲劳损坏及轴承 衬脱落。 17.3.1 对轴承材料的要求
1)强度、塑性、顺应性和嵌藏性;2)磨合性、 耐磨性、减摩性好;3)耐腐蚀;4)润滑性能 和热化学性;5)工艺性;6)经济性。
17.6.1
油润滑
间歇供油:用油壶或油杯供油,见图17.9。 连续:供油比较可靠,连续供油方法见图 17.10。
17.6.2 脂润滑 润滑脂只能间歇供油。润滑杯(黄油杯) 是应用最广的脂润滑装置。也常用黄油枪向轴 承补充润滑脂。
17.6.2 脂润滑
润滑杯(黄油杯)是应用最广的脂润滑装置。也
常用黄油枪向轴承补充润滑脂。
(17.6)
17.7.2
机械设计-滑动轴承PPT课件精选全文

4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
机械设计教程 第3版 第十章 滑动轴承设计

第3版
第十章 滑动轴承设计
第一节 滑动轴承的主要类型和特点 第二节 滑动轴承的常用材料和结构 第三节 混合润滑滑动轴承的工作能力设计 第四节 流体动压润滑滑动轴承的工作能力设计
第十章 滑动轴承设计
滑动轴承通过润滑剂作为中间介质将旋转的轴与固定的机架(座)分隔开,以达 到减少摩擦的目的,这是一种工作在滑动摩擦状态下的轴承。滑动轴承主要用于 滚动轴承难以满足工作要求的场合,如高转速、长寿命、低摩擦阻力、承受大的 冲击载荷、低噪声和无污染等条件。另外,为降低成本,一些极简单的回转支撑也 常采用滑动轴承。 滑动轴承设计的主要内容是:轴承材料的选择,轴承的结构设计,润滑剂与润滑方 式的选择,轴承工作能力设计计算等。
第二节 滑动轴承的常用材料和结构
三、推力滑动轴承结构
推力滑动轴承的承载面与轴线垂直,用以承受轴向载荷。 图10-6所示为常用的推力滑动轴承承载面的情况。图10-6a所示为实心端面推力滑动轴 承,这种轴承结构简单,但是承载面沿直径方向速度变化大,产生不均匀的磨损以后,导致压 强分布不均匀;图10-6b所示为空心端面推力滑动轴承,靠近中心处不承载,避免了实心式 结构的缺点;图10-6c所示为单环式推力滑动轴承,可承受单向轴向载荷,承载面可利用径向 滑动轴承(图10-2)的端面;图10-6d所示为多环式推力滑动轴承,承载面积增大,承载能力提 高,可承受双向轴向载荷,但是各环之间载荷分布不均匀,承载能力受各环加工误差的影响 较大。
图10-2所示为剖分式径向滑动轴承结构,轴承座沿轴线剖开,使轴系的装配与拆卸都很 方便。在剖开的轴承座与轴承盖之间设有止口结构,保证装配时轴承座与轴承盖的准确 定位。双头螺柱和螺母用于轴承座与轴承盖的连接。为便于轴承的润滑,轴承盖顶部设 有注油孔。
机械设计滑动轴承

3)铝基合金 —— 耐腐蚀性好,疲劳强度较高摩擦性较好 4)灰铸铁及耐磨铸铁 —— 具有减磨性、耐磨性,性脆、磨合性差, 轻载、低速 5)多孔质金属材料 —— 不同金属粉末压制、烧结而成 —— 吸油 (自润滑性)——含油轴承 韧性小,平稳、无冲击 中低速 6)非金属材料 塑料、碳— 石墨、橡胶、木材等
p 6ηV = 3 (h h0 ) x h
A< 0
不能承载
4、形成流体动力润滑的必要条件 1)两运动表面间具有楔形间隙; 2)两表面应有相对速度,速度的方向是将油 由大口带向小口; 3)润滑油应有一定的粘度,且要充分
二、径向滑动轴承形成流体动力润滑的过程 F F F n n
n=0
n≈0 Ff与 n反相
4、润滑油的粘-温特性
粘 -温 曲 线
5、零件润滑方法 旋 套 式
油 环 润 滑
油 芯 油 杯 旋 盖 式 油 脂 杯
针 阀 油 杯
§2 滑动轴承类型、轴瓦结构及材料
一、 滑动轴承类型
承载形式: 径向轴承(承受径向载荷)
止推轴承(承受轴向载荷)
滑 动 轴 承
润滑状态:不完全液体润滑轴承(不许干摩擦)
2、失效形式与设计准则 失效形式: 承载油膜破裂。 设计准则: 保证液体润滑,hmin≥[h] 同时,因Δt↑→η↓→油膜破裂:限制Δt 3、承载能力计算 推导思路 1)将直角坐标系的雷诺方程转换极坐标系 2)求任意位置的油膜压力 3)pφ 在 F 方向上的分量 pφy 4)求单位宽度上的油膜承载能力 5)考虑轴承端泄,进行修正 承载能力
y
η——动力粘度 y 长、宽、高各1米的液体,上下板相对滑动速度 1 m/s ,需要的切向力为 1 N 时,即 η=1 Ns/m2 (1Pa s — 帕 秒) 动力粘度国际制单位(SI):
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动轴承1 概述1.1滑动轴承的分类滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。
按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。
按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。
1.2滑动轴承的特点及应用与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。
2 滑动轴承的主要结构形式2.1径向滑动轴承2.1.1整体式径向滑动轴承组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。
优点:结构简单。
缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。
2.1.2剖分式径向滑动轴承它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。
轴承中直接支承轴颈的零件是轴瓦。
为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。
轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。
轴承盖上制有螺纹孔,以便安装油杯或油管。
当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。
若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。
2.2推力滑动轴承轴上的轴向力应采用推力轴承来承受。
止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。
后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。
实心式空心式单环式多环式3 滑动轴承的失效形式及常用材料3.1滑动轴承的失效形式主要失效形式:1)磨粒磨损;2)刮伤;3)胶合;4)疲劳剥落;5)腐蚀3.2轴承材料3.2.1对轴承材料的要求主要就是考虑轴承的这些失效形式,对轴承材料的要求如下:(1)足够的抗拉强度、疲劳强度和冲击能力;(2)良好的减摩性、耐磨性和抗胶合性;(3)良好的顺应性,嵌入性和磨合性;(4)良好的耐腐蚀性、热化学性能(传热性和热膨胀性)和调滑性(对油的吸附能力);(5)良好的塑性。
具有适应轴弯曲变形和其他几何误差的能力;(6)良好的工艺性和经济性等。
3.2.2常用轴承材料能同时满足上述要求的材料是难找的,但应根据具体情况满足主要使用要求。
较常见的是用两层不同金属做成的轴瓦,两种金属在性能上取长补短。
在工艺上可以用浇铸或压合的方法,将薄层材料粘附在轴瓦基体上。
粘附上去的薄层材料通常称为轴承村。
滑动轴承的材料可分为金属材料、粉末冶金材料和非金属材料三类。
下面介绍几种常用的轴瓦和轴承村材料:1 金属材料1)轴承合金。
轴承合金(又称白含金、巴氏合金)有锡锑轴承合金和铅锑轴承合金两大类。
锡锑轴承合金的摩擦系数小,抗胶合性能良好,对油的吸附性强,耐蚀性好,易跑合,是优良的轴承材料,常用于高速、重载的轴承。
但它的价格较贵且机械强度较差,因此只能作为轴承村材料而饶铸在钢、铸铁或青铜轴瓦上。
用青铜作为轴瓦基体是取其导热性良好。
这种轴承合金的熔点比较低,为了安全,在设计、运行中常将温度控制得比150 °C低30~40 °C。
铅锑轴承合金的各方面性能与锡锑轴承合金相近,但这种材料较脆,不宜承受较大的冲击载荷。
它一般用于中速、中载的轴承。
2)青铜。
青铜的强度高,承载能力大,耐磨性与导热性都优于轴承合金。
它可以在较高的温度(250℃)下工作。
但它的可塑性差,不易跑合,与之相配的轴颈必须淬硬。
青铜可以单独做成轴瓦。
为了节省有色金属,也可将青铜浇铸在钢或铸铁轴瓦内壁上。
用作轴瓦材料的青铜,主要有锡青铜、铅青铜和铝青铜。
在一般情况下,它们分别用于中速重载、中速中载和低速重载的轴承上。
3)黄铜。
铸造黄铜用于滑动速度不高的轴承,综合性能不如轴承合金和青铜。
4)铝合金。
铝合金强度高,导热性好,耐腐蚀性好,价格低。
可用轧制的方法和低碳钢接合做成双金属轴承。
铝合金抗胶合能力差,耐磨性差,要求轴颈表面的粗糙之比较小。
5)铸铁。
铸铁是廉价的轴承材料,用于低速、轻载或不重要的轴承。
2 粉末冶金用粉末冶金法(经制粉、成型、烧结等工艺)做成的轴承,具有多孔性组织,孔隙内可以贮存润滑油,常称为含油轴承。
运转时,轴瓦温度升高,由于油的膨胀系数比金属大,因而自动进入摩擦表面起到润滑作用;不工作时油又回到孔隙中去。
含油轴承加一次油可以使用较长时间,常用于加油不方便的场合。
常用的粉末冶金材料有铁-石墨和青铜-石墨。
3 非金属材料非金属材料包括塑料、硬木、橡胶和碳-石墨等。
木材具有多孔质结构,可用填充剂来改善其性能。
采用木材制成的轴承,可在灰尘极多的的条件下工作。
橡胶轴承具有较大的弹性,能减轻振动使运转平稳,可以用水润滑,常用于潜水泵、砂石清洗机、钻机等有泥沙的场合。
塑料轴承具有摩擦系数低,可塑性、跑合性良好,耐磨、耐蚀,可以用水、油及化学溶液润滑等优点。
但它的导热性差,膨胀系数较大,容易变形。
为改善此缺陷,可将薄层塑料作为轴承衬材料粘附在金属轴瓦上使用。
常用轴瓦及轴承村材料的〔p〕、〔pv〕等数据。
4 轴瓦结构轴瓦是滑动轴承中的重要零件。
如图所示,径向滑动轴承的轴瓦内孔为圆柱形。
若载荷方向向下,则下轴瓦为承载区,上轴瓦为非承载区。
润滑油应由非承载区引入,所以在顶部开进油孔。
在轴瓦内表面,以进油口为中心沿纵向、斜向或横向开有油沟,以利于润滑油均匀分布在整个轴颈上。
油沟的形式很多,如图所示。
一般油沟与轴瓦端面保持一定距离,以防止漏油。
油沟(非承载轴瓦)轴瓦分为剖分式和整体式结构。
整体式轴瓦剖分式轴瓦剖分轴瓦的结构见右上图。
为改善轴瓦表面的摩擦性质,常在其内表面上浇注一层或两层减摩材料,通常称为轴承衬,所以轴瓦又有双金属轴瓦和三金属轴瓦。
轴承衬的厚度应随轴承直径的增大而增大,一般由十分之几毫米到6mm 。
油孔:用来供油;油沟:输送和分布润滑油;常见油沟的形状油沟图。
油沟位置:不能开在承载区,应开在非承载区,否则会降低油膜的承载力。
轴向油沟也可开在轴瓦剖分面上,但轴向油沟应较轴承宽度短,以免油从油沟端部大量流失。
油室:起贮油、稳定供油的作用。
5 滑动轴承润滑剂的选择轴承润滑的目的在于降低摩擦功耗,减少磨损,同时还起到冷却、吸振、防锈等作用。
轴承能否正常工作,和选用润滑剂正确与否有很大关系。
润滑剂分为:l)液体润滑剂——润滑油;2)半固体润滑剂——润滑脂;3)固体润滑剂等。
5.1润滑油5.1.1动力粘度目前使用的润滑油大部分为石油系润滑油(矿物油)。
在轴承润滑中,润滑油最重要的物理性能是粘度,它也是选择润滑油的主要依据。
粘度表征液体流动的内摩擦性能。
如下图所示,有两块平板A及B,两板之间充满着液体。
设板B静止不动,板A以速度v沿X轴运动。
由于液体与金属表面的吸附作用(称为润滑油的油性),因此板B表层的液体与板B一致而静止不动,板A表层的液体随板A以同样的速度v一起运动。
两板之间液体的速度分布如下图a所示。
也可以看为两板间的液体逐层发生了错动,如下图b所示。
因此层与层间存在着液体内部的摩擦切应力τ,根据实验结果得到以下关系式:此式称为牛顿液体流动定律,表示液体中任意点处的切应力与该处的速度梯度成正比。
式中:u——液体中任一点的速度;du/dy——液体中该点沿垂直于运动方向的速度梯度;η——液体的动力粘度,简称粘度。
动力粘度量纲:力·时间/长度2,国际单位:N · s /m2 (Pa·s)。
绝对单位制中的单位定为1dyn·s/cm2,称为1P(泊),或厘泊,1泊=100厘泊。
P和cP 与Pa·s的换算关系为:1P=0.1Pa·s ,1cP=0.001 Pa·s5.1.2运动粘度工程中常用动力粘度与同温度下该液体密度的比值表示粘度,称为运动粘度:其国际单位:m2/s,这个单位嫌大,常采用绝对单位制中的单位:斯St或厘斯cSt:1St=cm2 /s=100 cSt。
润滑油的粘度并不是不变的,它随着温度的升高而降低,这对于运行着的轴承来说,必须加以注意。
描述粘度随温度变化情况的线图称为粘温图,见下图。
润滑油的粘度还随着压力的升高而增大,但压力不太高时(如小于10 MPa),变化极微,可略而不计。
选用润滑油时,要考虑速度、载荷和工作情况。
对于载荷大、温度高的轴承宜选粘度大的油,载荷小、速度高的轴承宜选粘度较小的油。
一般原则:1)在压力大或冲击、变载等工作条件下,应选用粘度较高的油;2)滑动速度高时,容易形成油膜,为了减小摩擦功耗,应采用粘度较低的油。
3)加工粗糙或未经跑合的表面,应选用粘度较高的油。
4)循环润滑、芯捻润滑或油垫润滑时,应选用粘度较低的油;飞溅润滑应选用高品质、能防止与空气接触而氧化变质或因激烈搅拌而乳化的油。
5)低温工作的轴承应选用凝点低的油。
液体动力润滑轴承的润滑油粘度可以通过计算和参考同类轴承的使用经验初步确定。
常用润滑油的主要性质见下表。
5.2润滑脂轴颈速度<1~2m/s可采用脂润滑。
润滑脂是由润滑油和各种稠化剂(如钙、钠、铝、理等金属皂)混合稠化而成。
润滑脂密封简单,不需经常加添,不易流失,所以在垂直的磨擦表面上也可以应用。
润滑脂对载荷和速度的变化有较大的适应范围,受温度的影响不大,但摩擦损耗较大,机械效率较低,故不宜用于高速。
且润滑脂易变质,不如润滑油稳定。
总的来说,一般参数的机器,特别是低速或带有冲击的机器,都可以使用润滑脂润滑。
目前使用最多的是钙基润滑脂,它有耐水性,常用于60℃以下的各种机械设备中轴承的润滑。
钠基润滑脂可用于115~145℃以下,但不耐水。
锂基润滑脂性能优良,耐水,在-20~150℃范围内广泛适用,可以代替钙基、钠基润滑脂。
润滑脂选择原则1)当压力高和滑动速度低时,选择针入度小一些的品种;反之,选择针入度大一些的品种。
2)所用润滑脂的滴点,一般应较轴承的工作温度高约20~30℃,以免工作时润滑脂过多地流失。
3)在有水淋或潮湿的环境下,应选择防水性能强的钙基或铝基润滑脂。
4)在温度较高处应选用钠基或复合钙基润滑脂。
5.3固体润滑剂固体润滑剂有石墨、二硫化钼(MoS2)、聚氯乙烯树脂等多种品种。
一般在超出润滑油使用范围之外才考虑使用,例如在高温介质中,或在低速重载条件下。
目前其应用已逐渐广泛,例如可将固体润滑剂调合在润滑油中使用,也可以涂覆、烧结在摩擦表面形成覆盖膜,或者用固结成型的固体润滑剂嵌装在轴承中使用,或者混入金属或塑料粉末中烧结成型。