滑动轴承设计

滑动轴承设计
滑动轴承设计

滑动轴承

1 概述

1.1滑动轴承的分类

滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。

按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。

按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。

1.2滑动轴承的特点及应用

与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。

2 滑动轴承的主要结构形式

2.1径向滑动轴承

2.1.1整体式径向滑动轴承

组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。

优点:结构简单。

缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。

2.1.2剖分式径向滑动轴承

它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。轴承中直接支承轴颈的零件是轴瓦。为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。

当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。

2.2推力滑动轴承

轴上的轴向力应采用推力轴承来承受。止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。

实心式空心式

单环式多环式

3 滑动轴承的失效形式及常用材料

3.1滑动轴承的失效形式

主要失效形式:1)磨粒磨损;2)刮伤;3)胶合;4)疲劳剥落;5)腐蚀

3.2轴承材料

3.2.1对轴承材料的要求

主要就是考虑轴承的这些失效形式,对轴承材料的要求如下:

(1)足够的抗拉强度、疲劳强度和冲击能力;

(2)良好的减摩性、耐磨性和抗胶合性;

(3)良好的顺应性,嵌入性和磨合性;

(4)良好的耐腐蚀性、热化学性能(传热性和热膨胀性)和调滑性(对油的吸附能力);

(5)良好的塑性。具有适应轴弯曲变形和其他几何误差的能力;

(6)良好的工艺性和经济性等。

3.2.2常用轴承材料

能同时满足上述要求的材料是难找的,但应根据具体情况满足主要使用要求。较常见的是用两层不同金属做成的轴瓦,两种金属在性能上取长补短。在工艺上可以用浇铸或压合的方法,将薄层材料粘附在轴瓦基体上。粘附上去的薄层材料通常称为轴承村。

滑动轴承的材料可分为金属材料、粉末冶金材料和非金属材料三类。下面介绍几种常用的轴瓦和轴承村材料:

1 金属材料

1)轴承合金。轴承合金(又称白含金、巴氏合金)有锡锑轴承合金和铅锑轴承合金两大类。

锡锑轴承合金的摩擦系数小,抗胶合性能良好,对油的吸附性强,耐蚀性好,易跑合,是优良的轴承材料,常用于高速、重载的轴承。但它的价格较贵且机械强度较差,因此只能作为轴承村材料而饶铸在钢、铸铁或青铜轴瓦上。用青铜作为轴瓦基体是取其导热性良好。这种轴承合金的熔点比较低,为了安全,在设计、运行中常将温度控制得比150 °C低30~40 °C。

铅锑轴承合金的各方面性能与锡锑轴承合金相近,但这种材料较脆,不宜承受较大的冲击载荷。它一般用于中速、中载的轴承。

2)青铜。

青铜的强度高,承载能力大,耐磨性与导热性都优于轴承合金。它可以在较高的温度(250℃)下工作。但它的可塑性差,不易跑合,与之相配的轴颈必须淬硬。

青铜可以单独做成轴瓦。为了节省有色金属,也可将青铜浇铸在钢或铸铁轴瓦内壁上。用作轴瓦材料的青铜,主要有锡青铜、铅青铜和铝青铜。在一般情况下,它们分别用于中速重载、中速中载和低速重载的轴承上。

3)黄铜。铸造黄铜用于滑动速度不高的轴承,综合性能不如轴承合金和青铜。

4)铝合金。铝合金强度高,导热性好,耐腐蚀性好,价格低。可用轧制的方法和低碳钢接合做成双金属轴承。铝合金抗胶合能力差,耐磨性差,要求轴颈表面的粗糙之比较小。

5)铸铁。铸铁是廉价的轴承材料,用于低速、轻载或不重要的轴承。

2 粉末冶金

用粉末冶金法(经制粉、成型、烧结等工艺)做成的轴承,具有多孔性组织,孔隙内可以贮存润滑油,常称为含油轴承。运转时,轴瓦温度升高,由于油的膨胀系数比金属大,因而自动进入摩擦表面起到润滑作用;不工作时油又回到孔隙中去。含油轴承加一次油可以使用较长时间,常用于加油不方便的场合。常用的粉末冶金材料有铁-石墨和青铜-石墨。

3 非金属材料

非金属材料包括塑料、硬木、橡胶和碳-石墨等。

木材具有多孔质结构,可用填充剂来改善其性能。采用木材制成的轴承,可在灰尘极多的的条件下工作。

橡胶轴承具有较大的弹性,能减轻振动使运转平稳,可以用水润滑,常用于潜水泵、砂石清洗机、钻机等有泥沙的场合。

塑料轴承具有摩擦系数低,可塑性、跑合性良好,耐磨、耐蚀,可以用水、油及化学溶液润滑等优点。但它的导热性差,膨胀系数较大,容易变形。为改善此缺陷,可将薄层塑料作为轴承衬材料粘附在金属轴瓦上使用。

常用轴瓦及轴承村材料的〔p〕、〔pv〕等数据。

4 轴瓦结构

轴瓦是滑动轴承中的重要零件。如图所示,径向滑动轴承的轴瓦内孔为圆柱形。若载荷方向向下,则下轴瓦为承载区,上轴瓦为非承载区。润滑油应由非承载区引入,所以在顶部开进油孔。在轴瓦内表面,以进油口为中心沿纵向、斜向或横向开有油沟,以利于润滑油均匀分布在整个轴颈上。油沟的形式很多,如图所示。一般油沟与轴瓦端面保持一定距离,以防止漏油。

油沟(非承载轴瓦)

轴瓦分为剖分式和整体式结构。

整体式轴瓦剖分式轴瓦

剖分轴瓦的结构见右上图。为改善轴瓦表面的摩擦性质,常在其内表面上浇注一层或两层减摩材料,通常称为轴承衬,所以轴瓦又有双金属

轴瓦和三金属轴瓦。

轴承衬的厚度应随轴承直径的增大而增大,一般

由十分之几毫米到6mm 。

油孔:用来供油;

油沟:输送和分布润滑油;常见油沟的形状油沟图。

油沟位置:不能开在承载区,应开在非承载区,否则会降低油膜的承载力。轴向油沟也可开在轴瓦剖分面上,但轴向油沟应较轴承宽度短,以免油从油沟端部大量流失。

油室:起贮油、稳定供油的作用。

5 滑动轴承润滑剂的选择

轴承润滑的目的在于降低摩擦功耗,减少磨损,同时还起到冷却、吸振、防锈等作用。轴承能否正常工作,和选用润滑剂正确与否有很大关系。

润滑剂分为:l)液体润滑剂——润滑油;2)半固体润滑剂——润滑脂;3)固体润滑剂等。

5.1润滑油

5.1.1动力粘度

目前使用的润滑油大部分为石油系润滑油(矿物油)。在轴承润滑中,润滑油最重要的物理性能是粘度,它也是选择润滑油的主要依据。粘度表征液体流动的内摩擦性能。如下图所示,有两块平板A及B,两板之间充满着液体。设板B静止不动,板A以速度v沿X轴运动。由于液体与金属表面的吸附作用(称为润滑油的油性),因此板B表层的液体与板B一致而静止不动,板A表层的液体随板A以同样的速度v一起运动。两板之间液体的速度分布如下图a所示。也可以看为两板间的液体逐层发生了错动,如下图b所示。因此层与层间

存在着液体内部的摩擦切应力τ,根据实验结果得到以下关系式:

此式称为牛顿液体流动定律,表示液体中任意点处的切应力与该处的速度梯度成正比。

式中:u——液体中任一点的速度;

du/dy——液体中该点沿垂直于运动方向的速度梯度;

η——液体的动力粘度,简称粘度。

动力粘度量纲:力·时间/长度2,国际单位:N · s /m2 (Pa·s)。绝对单位制中的单位定

为1dyn·s/cm2,称为1P(泊),或厘泊,1泊=100厘泊。P和cP 与Pa·s的换算关系为:1P=0.1Pa·s ,1cP=0.001 Pa·s

5.1.2运动粘度

工程中常用动力粘度与同温度下该液体密度的比值表示粘度,称为运动粘度:

其国际单位:m2/s,这个单位嫌大,常采用绝对单位制中的单位:斯St或厘斯cSt:1St=cm2 /s=100 cSt。

润滑油的粘度并不是不变的,它随着温度的升高而降低,这对于运行着的轴承来说,必须加以注意。描述粘度随温度变化情况的线图称为粘温图,见下图。

润滑油的粘度还随着压力的升高而增大,但压力不太高时(如小于10 MPa),变化极微,可略而不计。

选用润滑油时,要考虑速度、载荷和工作情况。对于载荷大、温度高的轴承宜选粘度大的油,载荷小、速度高的轴承宜选粘度较小的油。

一般原则:

1)在压力大或冲击、变载等工作条件下,应选用粘度较高的油;

2)滑动速度高时,容易形成油膜,为了减小摩擦功耗,应采用粘度较低的油。

3)加工粗糙或未经跑合的表面,应选用粘度较高的油。

4)循环润滑、芯捻润滑或油垫润滑时,应选用粘度较低的油;飞溅润滑应选用高品质、能防止与空气接触而氧化变质或因激烈搅拌而乳化的油。

5)低温工作的轴承应选用凝点低的油。

液体动力润滑轴承的润滑油粘度可以通过计算和参考同类轴承的使用经验初步确定。

常用润滑油的主要性质见下表。

5.2润滑脂

轴颈速度<1~2m/s可采用脂润滑。润滑脂是由润滑油和各种稠化剂(如钙、钠、铝、理等金属皂)混合稠化而成。润滑脂密封简单,不需经常加添,不易流失,所以在垂直的磨擦表面上也可以应用。润滑脂对载荷和速度的变化有较大的适应范围,受温度的影响不大,但摩擦损耗较大,机械效率较低,故不宜用于高速。且润滑脂易变质,不如润滑油稳定。总的来说,一般参数的机器,特别是低速或带有冲击的机器,都可以使用润滑脂润滑。

目前使用最多的是钙基润滑脂,它有耐水性,常用于60℃以下的各种机械设备中轴承的润滑。钠基润滑脂可用于115~145℃以下,但不耐水。锂基润滑脂性能优良,耐水,在-20~150℃范围内广泛适用,可以代替钙基、钠基润滑脂。

润滑脂选择原则

1)当压力高和滑动速度低时,选择针入度小一些的品种;反之,选择针入度大一些的品种。

2)所用润滑脂的滴点,一般应较轴承的工作温度高约20~30℃,以免工作时润滑脂过多地流失。

3)在有水淋或潮湿的环境下,应选择防水性能强的钙基或铝基润滑脂。

4)在温度较高处应选用钠基或复合钙基润滑脂。

5.3固体润滑剂

固体润滑剂有石墨、二硫化钼(MoS2)、聚氯乙烯树脂等多种品种。一般在超出润滑油使用范围之外才考虑使用,例如在高温介质中,或在低速重载条件下。目前其应用已逐渐广泛,例如可将固体润滑剂调合在润滑油中使用,也可以涂覆、烧结在摩擦表面形成覆盖膜,或者用固结成型的固体润滑剂嵌装在轴承中使用,或者混入金属或塑料粉末中烧结成型。

石墨性能稳定,在350 °C以上才开始氧化,并可在水中工作。聚氯乙烯树脂摩擦系数低,只有石墨的一半。二硫化钼与金属表面吸附性强,摩擦系数低,使用温度范围也广(-60~300 °C),但遇水则性能下降。

6 非液体摩擦滑动轴承的计算

6.1非液体摩擦滑动轴承的失效形式和计算准则

非液体摩擦滑动轴承可用润滑油润滑,也可用润滑脂润滑。在润滑油、润滑脂中加入少量鳞片状石墨或二硫化钼粉末,有助于形成更坚韧的边界油膜,且可填平粗糙表面而减少磨损。但这类轴承不能完全排除磨损。

非液体摩擦滑动轴承工作在混合摩擦状态下,实践证明其主要的失效形式是磨损,严重时也发生胶合。研究表明,其失效主要取决于边界膜的抗破坏能力。维持边界油膜不遭破裂,是非液体摩擦滑动轴承的设计依据。由于边界油膜的强度和破裂温度受多种因素影响而十分复杂,其规律尚未完全被人们掌握。因此目前采用的计算方法是间接的、条件性的。实践证明,若能限制压强p ≤[p ]和压强与轴颈线速度的乘积pv ≤〔pv 〕,那么轴承是能够很好地工作的。

6.2径向滑动轴承的计算

1.轴承的压强p

限制轴承压强p ,以保证润滑油不被过大的压力挤出,从而避免轴瓦产生过度的磨损。即

式中:F (N)——轴承径向载荷;B (mm )——轴瓦宽度;d (mm)——轴颈直径 ;[p](MPa )——轴承材料的许用压强。

2.轴承的pv 值

pv 值与摩擦功率损耗成正比,它简略地表征轴承的发热因素。pv 值越高,轴承温升起高,容易引起边界油膜的破裂。pv 值的验其式为:

式中:v ——轴颈圆周速度,m/s ;n ——轴颈转速 (r/mm);[pv ]—轴承材料的许用值。

3. 滑动速度v

对于跨距较大的轴,由于装配误差还活着挠曲变形,会造成轴及轴瓦在边缘接触,局部压强很大,若速度很大则局部摩擦功也很大。这是只验算p 和pv 并不能保证安全可靠,因为p 和pv 都是平均值。因此要验算v 值。

][100060v dn

v ≤?=π

6.3推力滑动轴承的计算

][)(4202p z d d F

p ≤-=π

][)(300000pv z d d Fn pv ≤-=

多环轴颈,各环受力不均匀,〔p 〕、〔pv 〕应降低50%。

液体动力润滑轴承在起动、停车时处于混合摩擦状态,所以设计时也需进行上述计算。 7 液体动压润滑形成原理及基本方程

7.1液体动压润滑形成原理

假设:1)忽略压力对油粘度的影响;2)油沿z 向无流动;3)油为层流流动;4)油与工作表面吸附牢固;5)不计油惯性力、重力;6)油不可压缩等。

先分析两平行板的情况。如下图a 所示,板B 静止不动,板A 以速度v 向左运动,板

间充满润滑油。如前所述,当板上无载荷时两平行板之间液体各流层的速度呈三角形分布,板A、B之间带进的油量等于带出的油量,因此两板间油量保持不变,亦即板A不会下沉。但若板A上承受载荷F时,油向两侧挤出(图b),于是板A逐渐下沉,直到与板B接触。这就说明两平行板之间是不可能形成压力油膜的。

如果板A与板B不平行,板间的间隙沿运动方向由大到小呈收敛的楔形,并且板A上承受载荷F,如上图c所示。当板A运动时,两端的速度若按照虚线所f示的三角形分布,则必然进油多而出油少。由于液体实际上是不可压缩的,必将在间隙内“拥挤”而形成压力,迫使进口端的速度曲线向内凹,出口端的速度曲线向外凸,不会再是三角形分布。进口端间隙h1大而速度曲线内凹,出口端h1小而速度曲线外凸,于是有可能使带进油量等于带出油量。同时,间隙内形成的液体压力将与外载荷F平衡。这就说明在间隙内形成了压力油膜。这种借助相对运动而在轴承间隙中形成的压力油膜称为动压油膜。图c还表明从截面a-a 到c-c之间,各截面的速度图是各不相同的,但必有一截面b-b,油的速度呈三角形分布。

根据以上分析可知,形成动压油膜的必要条件是:

1)两工作表面间必须有楔形间隙;

2)两工作表面间必须连续充满润滑油或其他粘性流体;

3)两工作表面间必须有相对滑动速度,其运动方向必须保证润滑油从大截面流进,从小截面流出。此外,对于一定的载荷F,必须使速度,粘度及间隙等匹配恰当。

7.2液体动压润滑基本方程

两刚体被油分开,一刚体静止,另一以v运动。

根据x方向的平很条件得:

)

(

)

(=

?

?

+

-

+

?

?

+

-dzdx

dy

y

dzdx

dydz

dx

x

p

p

pdydz

τ

τ

τ

整理后得

y x

p

?

?

-

=

?

将y A F ??-==

τητ代入上式:

22y u x p ??=??η 或 x p y u ??=??η122

上式对y 积分,得:21221C y C y x p u ++??=

η

边界条件:y =0,u=v ;y =h ,u =0,求得:

h v h x p C -??-=η211;v C =2

将C1、C2代入上式,得到:)()(21y h h v y h y x p u -+-??=

η

分析任一截面沿x 方向单位宽度流量

301212h x p vh udy q h x ??-==?η (a ) 设油压最大处间隙)即0,(00=??=x p h h h ,在此截面上,

2

0vh q x =; (b ) 连续流动时,流量不变(a )=(b ),得到:

3

06h h h v x p -=??η ( 一维雷诺动力润滑方程式) 上式对x 取偏导数,可得:

x h v x p h x ??=????6)(3η

若再考虑油液沿z 向流动,则:

x h v x p h z x p h x ??=????+????6)()(33ηη ( 二维雷诺动力润滑方程式。)

8 液体动压径向滑动轴承设计计算

8.1径向滑动轴承形成液体动压润滑的过程

向心滑动轴承形成动压油膜的过程。下图a 表示停车状态,轴颈沉在下部。轴颈表面与

轴承孔表面构成了楔形间隙,这就满足了形成动压油膜的首要条件。开始起动时轴颈沿轴承孔内壁向上爬,如图b 所示。当转速继续增加时,楔形间隙内形成的油膜压力将轴颈抬起而与轴承脱离接触,如图c 所示。但此情况不能持久,因油膜内各点压力的合力有向左推动轴颈的分力存在,因而轴颈继续向左移动。最后,当达到机器的工作转速时,轴颈则处于图d 所示的位置。此时油膜内各点的压力,其垂直方向的合力与载荷F 平衡,其水平方向的压力,左右自行抵消。于是轴顿就稳定在此平衡位置上旋转。从图中可以明显看出,轴颈中心O1与轴承孔中心 O 不重合, OO1=e ,称为偏心距。其他条件相同时,工作转速越高,e 值越小,即轴颈中心越接近轴承孔中心。

8.2径向滑动轴承的主要几何关系

设R 为轴承孔半径,r 为轴颈半径,B 为轴承宽度,则

径向滑动轴承的主要几何参数为: 图

(1)轴承宽径比 B /d

(2)轴承半径间隙 δ=R -r =(D -d )/2

(3)轴承相对间隙 ψ=δ/r

(4)轴承偏心距 e =OO 1

(5)轴承偏心率 χ=e /δ

(6)最小油膜厚度 h min =δ-e =δ(1-χ)=ψr (1-

χ)

(7)任意位置油膜厚度 h =ψr (1+χcos φ)

(8)在φ=φ0处,油膜压力最大,最大油膜压力处的

油膜厚度为 h 0=ψr (1+χcos φ0)

8.3径向滑动轴承工作能力计算

8.3.1轴承的承载能力计算

为轴承包角β,为承载油膜角21αα+。

设B =无穷大,则认为油沿轴向无流动。利用17.7计算,由于轴承为圆柱形,用极坐标更方便。

φrd dx =,)cos 1(φεδ+=h ,)cos 1(00φεδ+=h ,v=rω,代入17.7,整理得到:φφεφφεψηωd dp 302)cos 1()

cos (cos 6+-=

积分得任意角度的油膜压力

φφεφφεψηωφφφφφd dp p 302)cos 1()cos (cos 6121+-==??

21~φφ在,沿F 方向单位宽度的油膜力为

?+-=21)](180cos[1φφφφθφrd p F ο

φθφφφεφφεψηω

φφφφrd d )](180cos[])cos 1()cos (cos [6302121+-+-=??ο

将上式乘以B ,代入r =d/2,得有限宽轴承不计端泄时油膜承载力F ,整理得:

φθφφφεφφεηωψφφφφd d Bd F )](180cos[])cos 1()cos (cos [3302

121+-+-=??ο

上式右端值称为索氏数S0

2

p F C Bd ψηω=

2

/p F C Bd ηωψ=

不计端泄时,有限宽轴承成反比),与,,,正比于(2ψωηd B F ,相对间隙越小,F

越大。

由于端泄不可避免,实际承载力比上式低,实际计算采用二维雷诺方程式的数值解提供的线图进行计算

8.3.2最小油膜厚度的确定

h min ↓(即χ↑),轴承的承载能力↑,但h min 不能无限缩小。为确保轴承在液体润滑条件下安全运转,应使最小油膜厚度大于轴颈、轴瓦工作表面粗糙度十点高度Rz1、R z2之和,即

h min =rψ(1-χ)≥ [h ],[h ]=S (Rz1+R z2)

式中 S ——安全系数,常取 S ≥2。

8.3.3轴承的热平衡计算

对于非压力供油的径向轴承

00(t t )K A(t t )r i s i fF v c q ρ=-+-

f s s

q f

p C p t K K q c c C vdL v v ψππρρψψψ?=

=++

式中:

f C 称为摩擦特性系数;

q C 称为流量系数; f C 、q C 都为无量纲数,是轴承宽径比l/d 和偏心率χ的函数

上式只是求出了润滑油的平均温差。实际上润滑油从入口至出口,温度是逐渐升高的,因而油的粘度各处不同。计算轴承承载能力时,应采用润滑油平均温度下的粘度。平均温度为: 2m i t

t t ?=+

一般平均温度不应超过75℃。进油温度i t 一般控制在35~45℃(i t 太低,外部冷却困难)。

润滑油温升t ?一般不得超过30℃。

8.4参数选择

8.4.1 宽径比B/d

一般轴承的宽径比B /d =0.3~1.5。高转速滑动轴承,应选较小的B /d 值,这样可使端泄流量增大,以减少温升,但是B /d 小,轴承的承载能力也低。宽径比B /d 大,轴承承载能力大,但温升高,且长轴颈易变形,制造、装配误差的影响也的较大。因此,只在低速、重载,轴及轴承刚性好,制造及安装精度高时,宽径比B /d 才取较大值。宽径比对承载能力的影响见图。

宽径比B /d 的选择还与压强p 的选择密切相关,p 选得大些可以减小轴承的尺寸,并提高轴承运转的稳定性;但p 取得过大,会使油膜变薄,容易因油质或加工、装配质量问题而被破坏。

8.4.2 相对间隙ψ

一般,ψ主要据载荷、速度选取:速度高,ψ应取大些,可减少发热;载荷大,ψ应取小些,可提高承载力。

轴承中的一些特性参数是相对间隙ψ或半径间隙δ的函数,承载量系数C p 是ψ2的函数,

所以间隙值对轴承性能影响很大。相对间隙主要根据载荷和速度选取。速度高时,ψ值应大些;载荷越大,ψ值应越小。直径大、宽径比小,调心性能好,加工精度高时,ψ值取小些。一般机器常用的ψ值可查阅有关的技术资料,也可以由经验公式求得。

4310)0.1~6.0(v -?=ψ

8.4.3粘度η

粘度大小取决于轴承的平均温度t m ,t m ↑,η↓,承载能力偏高;t m ↓,η↑,承载能力偏低。设计时:先假定t m ——初选η——初步设计。校核入口温度,若t 1=35~40℃则合适;否则重新计算。

低速、重载滑动轴承要选高粘度的润滑油,便于形成油膜;高速滑动轴承应选用低粘度的润滑油。因为润滑油内摩擦力几乎与转速平方成正比,转速高,摩擦产生的热量大,使润滑油温度升高,粘度下降,同时还会使轴受热膨胀,间隙缩小,易造成油膜破裂、轴承烧伤。

轴承间隙大,不易形成油膜,且端泄大,应选较高粘度的润滑油。

轴承宽径比大,端泄小,应选粘度低的润滑油。轴承宽径比与润滑油的粘度值约成反比关系。

9 其他形式滑动轴承简介

9.1多油楔滑动轴承

单油楔滑动轴承的特点:承载能力大,但稳定性差(轴颈在外部干扰力作用下易偏离平衡位置),因此采用多楔滑动轴承的特点:稳定性好,承载能力稍低,承载能力等于各油楔承载力矢量。

多油楔滑动轴承按瓦面是否可调分为:固定瓦多油楔轴承;可倾瓦多油楔轴承。 固定瓦多油楔轴承如下图所示

椭圆轴承 错位轴承

可倾瓦轴承:可调节轴瓦与轴颈间间隙,稳定性好,但承载能力低于固定瓦轴承

可倾瓦多油契径向轴承示意图

9.2液体静压轴承

油泵把高压油送到轴承间隙,强制形成油膜,靠液体的静压平衡外载荷。

优点:1)f很小,f=0.0001~0.004,起动力矩小,效率高

2)磨损小(起动,停车时,轴颈与轴瓦也不直接接触),精度保持性好,寿命长

3)油膜不受速度限制,因此能在极低或极高转速下工作。

4)对轴承材料要求低,对间隙和表面粗糙度要求也不高。

5)油膜刚度大,具有良好的吸振性,运转平稳,精度高。

缺点:供油装置较复杂,且维护管理要求较高。

9.3气体轴承

气体粘度是液体的四五千分之一,可在极高速下运转:几十万~百万转(n/min),但承载能力较低。

气体轴承:气体动压轴承;气体静压静承。

应用:精密测量仪、超精密机床主轴与导轨、超高速离心机、核反应堆内支承等。

9.4磁力轴承

利用磁场力使轴悬浮,故又称磁悬浮轴承,无需任何润滑剂,可在真空中工作,最高转速达38.4万转/S。

应用:超高速离心机、真空泵、精密陀螺仪及加速计、超高速列车、空间飞行器姿态飞轮、超高速精密机床等。

《滑动轴承的设计》word文档

滑动轴承的设计 § 1 滑动轴承概述 用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。 按其承载方向的不同,轴承可分为: 径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承; 推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。 按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。 滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication) 流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。本章主要讨论动压轴承。 和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。 在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。通常将其分为如下三种状态: 1、完全液体摩擦 完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦 当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。一般而言,边界油膜可覆盖摩擦表面的大部分。虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。这种状态的摩擦系数f =0.008~0.01。 3、干摩擦 两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。因为任何金属表面上总存在各种氧化膜,很难出现纯粹的金属接触(除非在洁净的实验室,才有可能发生)。由于干摩擦状态,将产生大量的摩擦损耗和严重的磨损,故滑动轴承中不允许出现干摩擦状态,否则,将导致强烈的升温,把轴瓦烧毁。 完全液体摩擦是滑动轴承工作的最理想状况。对那些重要且高速旋转的机器,应确保轴承在完全液体摩擦状态下工作,这类轴承常称为液体摩擦滑动轴承。边界摩擦常与半液体摩擦状态、半干摩擦状态并存,通称为非液体摩擦状态。对那些在低速且有冲击条件下工作的不太重要的机器,可按非液体摩擦状态设计轴承,称为非液体摩擦滑动轴承。 § 2 滑动轴承的结构形式 一、向心滑动轴承的结构形式 1、剖分式 普通剖分式轴承结构(图8-2)由轴承盖、轴承座、剖分轴瓦和螺栓组成。轴瓦是直接和轴颈相接触的重要零件。为了安装时易对中,轴承盖和轴承座的剖分面常作出阶梯形的榫口。润滑油通过轴承盖上的油孔和轴瓦上的油沟流入轴承间隙润滑摩擦面。轴承剖分面最好与载荷方向近于垂直,以防剖分面位于承载区出现泄漏,降低承载能力。通常,多数轴承剖面为水平剖分,也称正剖分(图8-2a、8-2b),也有斜剖分的(图8-2c、8-2d)。

分析滚动轴承的设计计算

分析滚动轴承的设计计算 本文通过对深沟球轴承安全接触角和轴向承载能力的设计计算,确认其在轨道车辆门系统驱动机构上的应用可行性。 标签:深沟球轴承;轴向承载;接触角;应力集中 1.概述 深沟球轴承主要用以承受径向载荷,同时也能承载一定的轴向载荷。深沟球轴承在承受轴向载荷时,钢球与内、外圈沟道之间会形成一定的接触角。如载荷过大,则接触椭圆将被挡边截去一部分,因而在钢球与挡边附近产生应力集中,导致轴承早期疲劳失效。本文旨在通过对北京地铁9号线侧门系统的驱动机构力学模型进行分析计算丝杆端支撑座内轴承的受力情况,从而确定将原先方案的一对角接触球轴承更改为一对深沟球轴承后,系统能否满足使用要求、避免门系统驱动机构的丝杆轴承在改用深沟球轴承后出现上述提前失效的现象,进行以下校核计算。[1~6] 2.计算极限轴向载荷 2.1丝杆支撑受力分析: 驱动机构的双头丝杆有三个支撑,分别为靠近电机侧的左支撑、中间支撑和右支撑。其中,丝杆在中间支撑和右支撑位置只受周向固定,轴向没有限位,为自由状态,可适应丝杆热胀冷缩时产生的长度变化。 我们假设丝杆承受的最大开/关门力300N全部作用在左支撑上,通过左支撑内的两只深沟球轴承传递给机构安装底板。丝杆轴向、径向受力分析如示意图(a)所示。由图(a)可知,丝杆的升角为45.52762°,丝杆承受轴向力为300N时,其径向分力约为295N。丝杆及其上零件承受的重力作用在左支撑轴承上的垂向分力约为80N。据此,作用在左支撑深沟球上的轴向载荷为Fa=300N,径向载荷Fr=375N。 2.2轴承的轴向承载能力计算 深沟球轴承6202-2Z 的结构尺寸及相关参数如下:(GB/T 276-1994) 轴承外径D=35mm,轴承内径d=15 mm,轴承宽度B=11 mm;内圈挡边直径d2=21.6 mm,外圈挡边直径D2=29.4 mm,内圈沟道直径di=19.3mm,外圈沟道直径D3=31.3mm,外圈沟道曲率系数fe = 0.525;内圈沟道曲率系数fi = 0.515;径向游隙ur = 0.018;球径Dw=5.953mm,钢球数Z=8;Cr=7.65kN,C0r=3.72kN。相关尺寸关系图,如示意图(b)。其中,α是接触椭圆到达挡圈挡边处的安全接触角(压力角)

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(m in χψ-=d h B. )1(m in χψ+=d h C. 2/)1(m in χψ-=d h D. 2/)1(m in χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

滑动轴承的故障诊断分析 (DEMO)

滑动轴承的故障诊断分析 一、滑动轴承的分类及其特点 1、静压轴承 静压轴承的间隙只影响润滑油的流量,对承载能力影响不大,因此、静压轴承可以不必调整间隙,静压轴承在任何转速下都能保证液体润滑,所以理论上对轴颈与轴瓦的材料无要求。实际上为防止偶然事故造成供油中断,磨坏轴承轴承,轴颈仍用45#,轴瓦用青铜等。 2、动压轴承 动压滑动轴承必须在一定的转速下才能产生压力油膜。因此、不适用于低速或转速变化范围较大而下限转速过低的主轴。 轴承中只产生一个压力油膜的单油楔动压轴承,当载荷、转速等条件变化时,单油楔动压轴承的油膜厚度和位置也随着变化,使轴心线浮动,而降低了旋转精度和运动平稳性。 多油楔动压轴承一定的转速下,在轴颈周围能形成几个压力油楔,把轴颈推向中央,因而向心性好。 异常磨损:由于安装时轴线偏斜、负载偏载、轴承背钢与轴承座孔之间有硬质点和污物,轴或轴承座的刚性不良等原因,造成轴承表面严重损伤。其特征为:轴承承载不均、局部磨损大,表面温度升高,影响了油膜的形成,从而使轴承过早失效。 二、常见的滑动轴承故障 ●轴承巴氏合金碎裂及其原因 1.固体作用:油膜与轴颈碰摩引起的碰撞及摩擦,以及润滑油中所含杂质(磨粒)引起 的磨损。 2.液体作用:油膜压力的交变引起的疲劳破坏。 3.气体作用:润滑膜中含有气泡所引起的汽蚀破坏。 ●轴承巴氏合金烧蚀 轴承巴氏合金烧蚀是指由于某种原因造成轴颈与轴瓦发生摩擦,使轴瓦局部温度偏高,巴氏合金氧化变质,发生严重的转子热弯曲、热变形,甚至抱轴。 当发生轴承与轴颈碰摩时,其油膜就会被破坏。摩擦使轴瓦巴氏合金局部温度偏高,而导致巴氏合金烧蚀,由此引起的轴瓦和轴颈的热胀差,进一步加重轴瓦和轴颈的摩擦,形成恶性循环。

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算 流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。 (一)流体动力润滑的基本方程 流体动力润滑理论的基本方程是流体膜压力分布的微分方程。它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。 假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。 图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。现从层流运动的油膜中取一微单元体进行分析。 作用在此微单元体右面和左面的压力分别为p 及p p dx x ??? +???? ?, 作用在单元体上、下两面的切应力分别为τ及dy y τ τ???+????? 。根据x 方向的平衡条件,得: 整理后得 根据牛顿流体摩擦定律,得 ,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。 下面进一步介绍流体动力润滑理论的基本方程。 1.油层的速度分布 将上式改写成 (a)

对y 积分后得 (c) 根据边界条件决定积分常数C1及C2: 当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得: 代入(c)式后,即得 (d) 由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。 2、润滑油流量 当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为: 将式(d)代入式(e)并积分后,得 (f) 设在 p=p max处的油膜厚度为h0(即时 当润滑油连续流动时,各截面的流量相等,由此得 : 整理后得 该式为一维雷诺方程。它是计算流体动力润滑滑动轴承(简称流体动压轴承)的基本方程。可以看出,油膜压力的变化与润滑油的粘度、表面滑动速度和油膜厚度及其变化有关。经积分后可求出油膜的承载能力。由雷诺方程及图示的压力分布也可以看出,在h>h0段,速 度分布曲线呈凹形,,即压力沿x方向逐渐增大;而在h

滚动轴承的工作情况分析及计算

第一讲 一、教学目标 (一)能力目标 能判断常用滚动轴承的类型;理解其代号的含义;会选用滚动轴承 (二)知识目标 1.了解滚动轴承的类型、特点,掌握滚动轴承的代号 2.掌握滚动轴承的选择 二、教学内容 滚动轴承的类型、代号及选用 三、教学的重点与难点 重点:滚动轴承的类型、特点及代号。 难点:滚动轴承类型的选择。 四、教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。 14.1 轴承的功用和类型 轴承的功用:支承轴及轴上的旋转零件,使其回转并保证一定的旋转精度,减少相对摩擦和磨损。 轴承的分类:按摩擦的性质分,轴承可分为滑动轴承和滚动轴承。 滑动轴承滚动轴承 14.2 滚动轴承的组成、类型及特点 滚动轴承是标准件,由专业工厂生产。设计时只需根据轴承工作条件选用合适的类型和

尺寸的滚动轴承,进行寿命计算,并对轴承的安装、润滑、密封给予合理设计和安排。 滚动轴承的特点 优点: 1)f小起动力矩小,η高; 2)运转精度高(可用预紧方法消除游隙); 3)轴向尺寸小; 4)某些轴能同时承受Fr和Fa,使机器结构紧凑; 5)润滑方便、简单、易于密封和维护; 6)互换性好(标准零件) 缺点: 1)承受冲击载荷能力差; 2)高速时噪音、振动较大; 3)高速重载寿命较低; 4)径向尺寸较大(相对于滑动轴承) 应用:广泛应用于中速、中载和一般工作条件下运转的机械设备。 14.2.1 滚动轴承的组成 滚动轴承一般由外圈、内圈、滚动体和保持架所组成。 滚动体的形状短圆柱形 柱形长圆柱形 螺旋滚子滚柱轴承 圆锥滚子

鼓形滚子 滚针 保持架是使滚动体等距分布,并减少滚动体间的摩擦和磨损。 滚动轴承的材料:内、外圈、滚动体—GCr15、GCr15-SiMn等轴承钢,热处理后硬度HRC60~65;保持架:低碳钢、铜合金或塑料、聚四氟乙烯。 14.2.2 滚动轴承的基本类型及特点 接触角α:滚动体与外圈内滚道接触点的法线方向与轴承径向平面所夹的角。 滚动轴承按能承受的负荷方向或公称接触角 不同,可分为向心轴承和推力轴承。向心轴承又可以分为径向接触轴承(α=0)和角接触向心轴承(0<α<45)推力轴承又可以分为轴向接触轴承(α=90)和角接触推力轴承(45<α<90) 径向接触轴承:只能承受径向载荷,不能承受轴向载荷; 角接触向心轴承:既能承受径向载荷,也能承受一定的轴向载荷; 轴向接触轴承:只能承受轴向载荷,不能承受径向载荷; 角接触推力轴承:既能承受轴向载荷,也能承受一定的径向载荷 14.3 滚动轴承的代号 滚动轴承是标准件,GB272/T-93规定了轴承代号的表示方法。轴承代号由基本代号、前置代号和后置代号三部分构成。 14.3.1 基本代号 由类型代号、尺寸系列代号和内径代号组成。 类型代号由一位(或两位)数字或英文字母表示,其相应的轴承类型参阅设计手册。 尺寸系列代号由两位数字组成。前一个数字表示向心轴承的宽度或推力轴承的高度;后一个数字表示轴承的外径。直径系列代号为7表示超特轻;8、9表示超轻;0、1表示特轻;2表示轻;3表示中;4表示重;5表示特重;宽度系列代号为0表示窄型;1表示正常;2

机械设计滚动轴承计算题

如图所示的轴系,已知轴承型号为30312,其基本额定动载荷C r=170000N,e=0.35;F r1=11900N,F r2=1020N,F ae=1000N,方向如图所示;轴的转速n=980r/min;轴承径向载荷系数和轴向载荷系数为:当F a/ F r≤e时,X=1,Y=0;当F a/ F r>e 时,X=0.4,Y=1.7;派生轴向力F d=F r/(2Y),Y为F a/F r>e时的Y值。载荷系数f p=1.2,温度系数f t=1。试求轴承的寿命。 F r1F r2 F ae 12

解:(1)画派生轴向力方向 F r1 F r2 1 2 F ae F d1 F d2 (2)计算派生轴向力F d F d1=F r1/(2Y )=11900/(2×1.7)=3500N F d2=F r2/(2Y )=1020/(2×1.7)=300N (3)计算轴向力F a F ae + F d1=1000+3500=4500N>300N=F d2 轴承2被“压紧”,轴承1被“放松” F a1=3500N ,F a2=F ae + F d1=4500N (4)计算载荷系数 F a1/ F r1=3500/11900=0.294<0.35= e ,所以取X 1=1,Y 1=0 F a2/ F r2=4500/1020=4.412>0.35=e ,所以取X 2=0.4,Y 2=1.7 (5)计算当量动载荷P P 1=f p (X 1F r1+Y 1F a1)=1.2×(1×11900+0×4444.4)=14280N P 2=f p (X 2F r2+Y 2F a2)=1.2×(0.4×1020+1.7×4500)=9669.6N P =max{P 1,P 2}=14280N (6)计算轴承寿命L h 65518h 142801700001980601060106 6 h ≈?? ? ?????=??? ??= ε ε P C f n L t 2、某轴两端各用一个30208轴承支承,受力情况如图。F r1=1200N ,F r2=400N ,F A =400N ,载荷系数f P =1.2,已知轴承基本额定动负荷C r =34KN ,内部轴向力F S =F r /2Y 。试分别求出两个轴承的当量动载荷。(14分)

最新第七部分滑动轴承设计

第七部分滑动轴承设计 1.考研重点和难点 【重点】非液体摩擦滑动轴承的设计计算; 【难点】形成液体摩擦的条件; §7.1滑动轴承的特点、类型及应用 滑动轴承的运动形式是以轴颈与轴瓦相对滑动为主要特征,也即摩擦性质为滑动摩擦。实践表明,由于滑动轴承的润滑条件不同,会出现不同的摩擦状态。轴承工作面的摩擦状态分为干摩擦状态、边界摩擦状态、混合摩擦状态和流体摩擦状态四类,如图所示。 两摩擦表面直接接触,相对滑动,又不加入任何润滑剂,称为干摩擦;两摩擦表面被流体(液体或气体)层完全隔开,摩擦性质仅取决于流体内部分子之间粘性阻力称为流体摩擦;两摩 图13-1 擦表面被吸附在表面的边界膜隔开,摩擦性质取决于边界膜和表面吸附性质的称为边界摩擦状态;实际上,干摩擦状态和边界摩擦状态很难精确区分,所以这两种摩擦状态也常常归并为边界摩擦状态。在实际应用中,轴承工作表面有时是边界摩擦和流体摩擦并存的混合状态,称为混合摩擦。边界摩擦和混合摩擦又长称为非液体摩擦。 所以,滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类。 1)液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为0.001~0.008。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 2)非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为0.1~0.3,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 干摩擦的摩擦系数大,磨损严重,轴承工作寿命短。所以在滑动轴承中应力求避免。 所以,高速长期运行的轴承要求工作在液体摩擦状态下,一般工作条件下轴承则维持在边界摩擦或混合摩擦状态下工作。因此本章主要讨论非液体滑动摩擦轴承。

典型的配合实例

典型的配合实例 为了便于在实际的设计中合理的确定其配合,下面举例说明某些配合在实际中的应用,以供参考。1. 间隙配合的选用 基准孔H与相应公差等级的轴a ~ h形成间隙配合,其中H/a组成的配合间隙最大,H/h的配合间隙最小,其最小间隙为零。 (1)H/a ,H/b , H/c 配合 这三种配合的间隙很大,不常使用,一般使用在工作条件较差,要求灵活动作的机械上,或用于受力变形大,轴在高温下工作需保证有较大间隙的场合,如起重机吊钩的铰链,带槽的法兰盘,内燃机的排气阀和导管。 (2) H/d , H/e 配合 这两种的配合间隙建达,用于要求不高,易于转动的支承。其中H/d适用于较松的转动配合,如密封盖,滑轮和空转带轮等与轴的配合,也适用于大直径滑动轴承的配合,如球磨机、轧钢机等重型机械的滑动轴承,适用于IT7 ~ 11级,例如滑轮和轴的配合。H/e适用于要求有明显间隙,易于转动的支承配合,如大跨度支承、多支点支承等配合。高等级的也适用于大的高速、重载的支承,如蜗轮发电机、大电动机的支承以及凸轮轴支承等。 (3)H/f 配合 这个配合的间隙多用于IT7~9级的一般转动配合,如齿轮箱、小电动机、泵等的转轴及滑动支承的配合。 (4)H/g配合 此种配合间隙很小,除了轻负荷的精密机构外,一般不用作转动配合,多用于IT5 ~ 7级,适合于作往复摆动和滑动的精密配合。有时也用于插销等定位配合,如精密连杆轴承、活塞及滑阀,以及精密机床的主轴于轴承分度头轴颈与轴的配合等。 (5)H/ h配合 这个配合的最小间隙为零,用于IT4~11级,适用于无相对转动而有定心和导向要求的定位配合,若无温度、变形影响,也适用于滑动配合。推荐配合H6/ h5,H8/ h7,H9/ h9,H11/ h11 ,如车床尾座顶尖套筒与尾座的配合。 2. 过渡配合的选用 基准孔H与相应的公差等级轴的基本偏差代号j~n,形成过渡配合,(n与高精度的H孔形成过盈配合)。(1)H/jH/ js 配合 这两种过渡配合获得间隙配合的机会较多,多用于IT4~7级,适用于要求间隙比h小,并允许略有过盈的定位配合,如联轴节,齿圈与钢制轮毂以及滚动轴承与箱体的配合等. (2)H/ k 配合 此种配合获得的平均间隙接近于零,定心较好,装备后,零件受到的接触应力较小,能够拆卸,适用于IT4~7级,如刚性联轴器配合。 (3)H/m,H/ n配合 这两种配合获得过盈的机会多,定心好,装配较紧,适用于IT4~7级,如蜗轮青铜轮缘与铸铁轮辐的配合。 3、过盈配合的选用 基准孔H与相应公差等级的轴p~zc过盈配合(p,r与较低精度的H孔形成过渡配合)。 (1)H/ p,H/ r配合 这两种配合在高公差等级时为过盈配合,可用捶打或压力机装配,只宜在大修时拆卸。它主要用于定心精度很高,零件有足够的刚性,受冲击负载的定位配合,多用于IT6~8级,如齿轮与衬套的配合,连杆小头孔与衬套的配合。 (2)H/ s,H/ t配合 这两种配合属于中等过盈配合,多采用IT6,IT7级,它用于钢铁件的永久或半永久结合,不用辅助件,

滑动轴承项目规划设计方案

滑动轴承项目规划设计方案 规划设计/投资方案/产业运营

摘要说明— 轴承是用于确定旋转轴与其他零件相对运动位置,起支承或导向作用 的零部件。轴承的主要功能是支承旋转轴或其它运动体,引导转动或移动 运动并承受由轴或轴上零件传递而来的载荷。根据轴承工作时的摩擦性质,可分为滑动轴承和滚动轴承两大类。滑动轴承与滚动轴承相比较,各有优 缺点,各有不同的适用场合。滚动轴承已实现标准化、系列化、通用化, 且适用范围广泛,但某些特殊的工况,如高速、重载、高精度等场合下, 通常只能配套使用滑动轴承,并且需要根据不同的工况进行定制化生产。 该滑动轴承项目计划总投资17091.80万元,其中:固定资产投资13645.03万元,占项目总投资的79.83%;流动资金3446.77万元,占项目 总投资的20.17%。 达产年营业收入27044.00万元,总成本费用20322.90万元,税金及 附加315.00万元,利润总额6721.10万元,利税总额7963.15万元,税后 净利润5040.83万元,达产年纳税总额2922.33万元;达产年投资利润率39.32%,投资利税率46.59%,投资回报率29.49%,全部投资回收期4.89年,提供就业职位424个。 报告内容:概述、背景和必要性研究、市场分析、建设规划、选址可 行性分析、土建工程研究、项目工艺原则、环境保护、清洁生产、项目安

全保护、风险应对说明、项目节能概况、实施方案、项目投资估算、项目盈利能力分析、项目综合评价结论等。 规划设计/投资分析/产业运营

滑动轴承项目规划设计方案目录 第一章概述 第二章背景和必要性研究 第三章建设规划 第四章选址可行性分析 第五章土建工程研究 第六章项目工艺原则 第七章环境保护、清洁生产第八章项目安全保护 第九章风险应对说明 第十章项目节能概况 第十一章实施方案 第十二章项目投资估算 第十三章项目盈利能力分析 第十四章招标方案 第十五章项目综合评价结论

第九章滑动轴承设计

第二篇 第九章滑动轴承设计

第三章摩擦、磨损与润滑 §3-0 引言 §3-1 摩 擦 §3-2 磨 损 §3-3润滑 §3-4 流体动力润滑的基本原理

概述 用于支撑和约束旋转零件(转轴,心轴等)的装置通称为轴承。 一、按轴承工作时的摩擦性质不同,轴承可分为: 1.滑动轴承 2.滚动轴承。 二、按其承载方向的不同,轴承可分为: 1.径向轴承:承受径向载荷 2.推力轴承:承受轴向载荷 三、按相对运动的两表面间油膜形成原理的不同分类 1、流体动力润滑轴承(简称动压轴承) 2、流体静力润滑轴承(简称静压轴承)

?滑动轴承是一种工作在滑动摩擦状态下的轴承,其基本结构包括轴承座、轴套(瓦)和轴颈。滑动轴承具有一些独特的优点,主要应用于以下几种情况: ?工作转速特高的轴承 ?要求对轴的支承位置特别精确的轴承 ?特重型的轴承 ?承受巨大的冲击和振动载荷的轴承 ?装配要求做成剖分式的轴承(如曲轴的轴承) ?特殊条件下(如水或腐蚀性介质中)工作的轴承 ?在径向空间尺寸受到限制时,也常采用滑动轴承

?对轴承的基本要求: ①方向精度(置中,定向); ②运转灵便性; ③对温度变化的不敏感性; ④耐磨性; ⑤承载能力; ⑥成本; ⑦装配调整、维修是否方便。?按结构形式可分为: ①圆柱形滑动轴承; ②圆锥形滑动轴承; ③球形滑动轴承。

第一节圆柱形滑动轴承 圆柱性滑动轴承——轴颈与轴承的配合部分为圆柱形表面。它是轴承中应用最广的一种,圆柱形滑动轴承主要用来支承水平轴。 特点: ①接触面大,承载能力强,能承受冲击和振动; ②置中精度差,特别是磨损后,精度要更低; ③摩擦力矩大; ④对温度变化比较敏感。

滑动轴承的应用

滑动轴承的应用 1工作转速特高的情况 原因:因转速高,用滚动轴承,寿命将大大降低。 应用实例:汽轮机轴承 简介:汽轮机采用的轴承有推力轴承和支持轴承。支持轴承的重量和不平衡重量产生的离心力,并确定转子的径向位置,保证转子中心和汽缸中心一致,以保持转子与静止部分位置的径向间隙。推力轴承承受蒸汽作用在转子上的轴向推力,并确定转子的轴向位置,并保证通流部分动静间正确的轴向间隙。下为推力轴承: 1—球面座;2—挡油环;3—调节套筒;4—推力轴承瓦块安装环;5—反向推力瓦;6—正向推力瓦;7—出油挡油环;8—进油挡油环;9—拉弹簧 2特重型轴承; 原因:若采用滚动轴承,造价太高(需单件生产) 应用实例:支重轮轴承 简介:支重轮是履带式工程机械底盘四轮一带中的一种,它的主要作用是支撑着挖掘机与推土机的重量,让履带沿着轮子前进。支重轮的主要轮体、支重轮轴、轴套、密封圈、端盖等相关部件构成。

3对轴的支承位置特别精确的轴承; 原因:滑动轴承比滚动轴承影响精度的零件数要少,故可制造得更精确。 应用实例:精密机床的精密轴承 4承受巨大冲击和振动载荷的轴承; 原因:滑动轴承的轴瓦和轴颈间的支承面一般都较大,且有油层的缓冲和阻尼作用,所以显示出较滚动轴承更优越。 应用实例:颚式破碎机轴承 简介:鄂式破碎机的主轴承大多采用对开式滑动轴承,轴承内衬大多是由巴氏合金制成,这种轴承刮研技术要求较高,刮研不好或间隙调整不当,会导致研瓦或烧瓦事故。组装时,首先要把轴瓦、轴颈、集油器及润滑油管路清理干净。然后将主轴瓦、连杆瓦等组装完毕。安装三角带时,应使其比正常运转时略松一点。试车时,先开动油泵,并使供油量比正常运转时略大一些。

滑动轴承设计

滑动轴承 1 概述 1.1滑动轴承的分类 滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。 按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。 按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。 1.2滑动轴承的特点及应用 与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。 2 滑动轴承的主要结构形式 2.1径向滑动轴承 2.1.1整体式径向滑动轴承 组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。 优点:结构简单。 缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。 2.1.2剖分式径向滑动轴承 它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。轴承中直接支承轴颈的零件是轴瓦。为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。

当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。 2.2推力滑动轴承 轴上的轴向力应采用推力轴承来承受。止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。 实心式空心式 单环式多环式

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为 15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为 25°的 7244AC,其外形尺寸为 220 ×400×65。 下表中给出了 7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷 P 为: 式中 X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为,点接触时为 2/3。

滑动轴承设计1

§13—5 液体动力润滑径向滑动轴承的设计计算一、动压油膜和液体摩擦状态的建立过程 流体动力润滑的工作过程:起动、不稳定运转、稳定运转三个阶段 起始时n=0,轴颈与轴承孔在最下方位置接触 1、起动时,由于速度低,轴颈与孔壁金属直接接触,在摩擦力作用下,轴颈沿孔内壁向右上方爬开。 2、不稳定运转阶段,随转速上升,进入油楔腔内油逐渐增多,形成压力油膜,把轴颈浮起推向左下方。(由图b→图c) 3、稳定运转阶段(图d):油压与外载F平衡时,轴颈部稳定在某一位置上运转。转速越高,轴颈中心稳定位置愈靠近轴孔中心。(但当两心重合时,油楔消失,失去承载能力)

图13-12向心轴承动压油膜形成过程 从上述分析可以得出动压轴承形成动压油膜的必要条件是 (1)相对运动两表面必须形成一个收敛楔形 (2)被油膜分开的两表面必须有一定的相对滑动速度v s,其运动方向必须使润滑从大口流进,小口流出。 (3)润滑油必须有一定的粘度,供油要充分。 v 越大,η 越大,油膜承载能力越高。 实际轴承的附加约束条件: 压力 pv值 速度 最小油膜厚度 温升 二、最小油膜厚度h min 1、几何关系

图13-13 径向滑动轴承的几何参数和油压分布 O—轴颈中心,O1—轴承中心,起始位置F与OO1重合,轴颈直径-d,轴承孔直径D ∴直径间隙:(13-6-1) 半径间隙:(13-6) 相对间隙:(13-7) 偏心距:(13-8) 偏心率:(13-9) 以OO1为极轴,任意截面处相对于极轴位置为φ处对应油膜厚度为h, (13-10)

h的推导:在中,根据余弦定律可得 (13-11)略去高阶微量,再引入半径间隙,并两端开方得 (13-12) 三.流体动力润滑基本方程(雷诺方程) 流体动力润滑基本方程(雷诺方程)是根据粘性流体动力学基本方程出发,作了一些假设条件后简化而得的。 假设条件是: 1)忽略压力对润滑油粘度的影响;2)流体为粘性流体;3)流体不可压缩,并作层流;4)流体膜中压力沿膜厚方向是不变的; 2)略去惯性力和重力的影响。 可以得出: ∴(13-13)一维雷诺流体动力润滑方程 上式对x取偏导数可得 (13-14) 若再考虑润滑油沿Z方向的流动,则

【机械设计】滑动轴承和滚动轴承

第十三章滚动轴承 1滚动轴承相对于滑动轴承的特点有:1)起动阻力小;2)承受冲击载荷能力差;3)寿命较短;4)噪声较大;5)润滑方便;6)维护简便;7)节省有色金属;8)径向尺寸大;上述有多少条是滚动轴承的优点? (A)1条;(B)2条;(C)3条;(D)4条。 2滚动轴承的基本元件是:1)内圈;2)外圈;3)滚动体;4)保持架。不可缺少的元件是哪个? (A)1);(B)2);(C)3);(D)4)。 3图示滚动轴承中,有多少种只能承受径向载荷? (A)1种; (B)2种; (C)3种; (D)4种。 4题3图中,有多少中轴承只能承受轴向载荷?()(A)1种;(B)2种;(C)3种;(D)4种。 5下列轴承中,哪一类不宜用来同时承受径向载荷和轴向载荷?()(A)深沟球轴承;(B)角接触球轴承; (C)调心球轴承;(D)圆锥滚子轴承。 6在尺寸相同的情况下,下列哪一类轴承能承受的轴向载荷最大?()(A)深沟球轴承;(B)调心球轴承; (C)角接触球轴承;(D)圆锥滚子轴承。 7下列轴承中,当尺寸相同时,哪一类轴承的极限转速最高?()(A)深沟球轴承;(B)滚针轴承; (C)圆锥滚子轴承;(D)推力球轴承。 8角接触球轴承承受轴向载荷的能力,主要取决于哪一个因素?()(A)轴承宽度;(B)滚动体数目; (C)轴承精度;(D)接触角大小。 9具有调心作用的轴承代号为哪两个?()(A)1000型;(B)3000型; (C)6000型;(D)7000型。 10下列轴承中,精度最高的是哪一个?()(A)6205/P2;(B)6310/P4;(C)6208/P5;(D)6418。 11 6312轴承内圈的内径是多少?() (A)12mm;(B)60mm;(C)120mm;(D)312mm。

滑动轴承的设计..

毕业论文继续教育学院级专业 题目:滑动轴承的设计 学生姓名: 指导老师 2013 年 3 月

南京工程学院成人教育毕业设计(论文)开题报告 班级:专业: 学生姓名 设计(论)题目滑动轴承的设计 开题报告: 滑轴承动的一体化结构设计,是将传统上分别属于两个不同装置的润滑与密封有机地结合在一起作为一个部件使用,并使用水润滑。这给轴承的使用、安装和维护带来了一个全新的概念。合理的密封形式对水润滑复合橡胶轴承动密封体的性能有重要的影响。不同介质、不同转速、不同载荷以及不同的温升对泄漏量有着不同的影响。为确保被试部件在不同载荷情况下的密封能力,满足使用要求,必须对密封部件进行动态检测,获取详细的性能指标,以便对产品进行全面评估。 指导教师意见: 指导教师签名: 填表时间:2013年3月

南京工程学院成人教育毕业设计(论文)任务书班级:07机电技师班专业:机电一体化学生姓名指导教师 设计(论文) 题目 滑动轴承的设计 设计(论文)的工作内容1.查阅资料第1-2周 2.结构设计,绘制装配草图第3-5周 3.完成全套图纸第6-8周 4 撰写论文第9-12周 设计(论文)的主要技术指标一是不断研制新的轴承材料及结构,以适应轴承的工作特点及其负荷指标不断提高的要求; 二是深入地研究发生在轴承内部的各种工作状态,从而在设计中采取相应的措施,保证轴承在最理想的条件下运转。 设计(论文)的基本要求 1. 字数:6000-8000字。 2. 字体:正文标题用黑体、小二号打印,标题下面不再标明作者姓名。正文一般用仿宋体四号字打印。文章中的各段标题用黑体、四号字打印,并且前后要一致。全文的文字格式要统一。独立成行的标题后面不再加标点符号。

机械设计禁忌500个例子

机械设计当中禁忌,500例 第1章提高强度和刚度的结构设计 1.1避免受力点与支持点距离太远 1.2避免悬臂结构或减小悬臂长度 1.3勿忽略工作载荷可以产生的有利作用 1.4受振动载荷的零件避免用摩擦传力 1.5避免机构中的不平衡力 1.6避免只考虑单一的传力途径 1.7不应忽略在工作时零件变形对于受力分布的影响1.8避免铸铁件受大的拉伸应力 1.9避免细杆受弯曲应力 1.10受冲击载荷零件避免刚度过大 1.11受变应力零件避免表面过于粗糙或有划痕 1.12受变应力零件表面应避免有残余拉应力 1.13受变载荷零件应避免或减小应力集中 1.14避免影响强度的局部结构相距太近 1.15避免预变形与工作负载产生的变形方向相同 1.16钢丝绳的滑轮与卷筒直径不能太小 1.17避免钢丝绳弯曲次数太多,特别注意避免反复弯曲1.18起重时钢丝绳与卷筒联接处要留有余量 1.19可以不传力的中间零件应尽量避免受力

1.20尽量避免安装时轴线不对中产生的附加力 1.21尽量减小作用在地基上的力 第2章提高耐磨性的结构设计 2.1避免相同材料配成滑动摩擦副 2.2避免白合金耐磨层厚度太大 2.3避免为提高零件表面耐磨性能而提高对整个零件的要求 2.4避免大零件局部磨损而导致整个零件报废 2.5用白合金作轴承衬时,应注意轴瓦材料的选择和轴瓦结构设计2.6润滑剂供应充分,布满工作面 2.7润滑油箱不能太小 2.8勿使过滤器滤掉润滑剂中的添加剂 2.9滑动轴承的油沟尺寸、位置、形状应合理 2.10滚动轴承中加入润滑脂量不宜过多 2.11对于零件的易磨损表面增加一定的磨损裕量 2.12注意零件磨损后的调整 2.13同一接触面上各点之间的速度、压力差应该小 2.14采用防尘装置防止磨粒磨损 2.15避免形成阶梯磨损 2.16滑动轴承不能用接触式油封 2.17对易磨损部分应予以保护 2.18对易磨损件可以采用自动补偿磨损的结构 第3章提高精度的结构设计

相关文档
最新文档