桥梁风荷载计算 公规院

桥梁计算荷载(精编文档).doc

【最新整理,下载后即可编辑】 桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 ●直接作用(荷载):施加在结构上的一组集中力或分布 力 ●间接作用:引起结构外加变形或约束变形的原因 2.分类:

二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值 1.永久作用:采用标准值作为代表值

2.可变作用:根据不同的极限状态分别采用标准值、频 遇值、准永久值作为代表值 ●标准值:承载能力极限状态设计、按弹性阶段计算 结构强度 ●频遇值:正常使用极限状态按短期效应组合设计 ●准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: ●结构自重(包括结构附加重力):按结构构件的设计 尺寸与材料的重力密度计算确定 2.可变作用的标准值: (1)汽车荷载: ●汽车荷载分为公路—I级和公路—II级 ●车道荷载:桥梁结构整体计算 ●车辆荷载:桥梁结构的局部加载、涵洞、桥台、 挡土墙土压力等的计算 ●车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式:

(3)公路—I级车道荷载: ●均布荷载标准值:q k=10.5kN/m ●集中荷载标准值: 桥梁计算跨径≤5m,P =180 kN k 5m<桥梁计算跨径<50m,采用直线内插求 得 =360 kN 桥梁计算跨径≥50m,P k ●计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: ●均布荷载标准值q k和集中荷载标准值P k按公路 —I级车道荷载的0.75倍采用 (5)车道荷载的分布: ●均布荷载标准值应满布于使结构产生最不利效 应的同好影响线上 ●集中荷载标准值只作用于相应影响中一个最大 影响线峰值处 (6)人群荷载标准值的采用规定: ●桥梁计算跨径≤50m,人群荷载标准值3kN/㎡ ●50m<桥梁计算跨径<150m,由线性内插得人群 荷载标准值 ●桥梁计算跨径≥150m,人群荷载标准值2.5kN/ ㎡ ●对跨径不等的连续结构,以最大计算跨径为准 ●城郊行人密集区的公路桥梁:人群荷载标准值取 上述规定值的1.15倍 ●专用人行桥梁:人群荷载标准值为3.5 kN/㎡

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

桥梁计算荷载

桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 ●直接作用(荷载):施加在结构上的一组集中力或分布力 ●间接作用:引起结构外加变形或约束变形的原因 2.分类:

二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值

1.永久作用:采用标准值作为代表值 2.可变作用:根据不同的极限状态分别采用标准值、频遇值、 准永久值作为代表值 ●标准值:承载能力极限状态设计、按弹性阶段计算结构 强度 ●频遇值:正常使用极限状态按短期效应组合设计 ●准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: ●结构自重(包括结构附加重力):按结构构件的设计尺 寸与材料的重力密度计算确定 2.可变作用的标准值: (1)汽车荷载: ●汽车荷载分为公路—I级和公路—II级 ●车道荷载:桥梁结构整体计算

●车辆荷载:桥梁结构的局部加载、涵洞、桥台、挡 土墙土压力等的计算 ●车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式: (3)公路—I级车道荷载: ●均布荷载标准值:q k=10.5kN/m ●集中荷载标准值: 桥梁计算跨径≤5m,P k=180 kN 5m<桥梁计算跨径<50m,采用直线内插求得 桥梁计算跨径≥50m,P k=360 kN ●计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: ●均布荷载标准值q k和集中荷载标准值P k按公路— I级车道荷载的0.75倍采用 (5)车道荷载的分布: ●均布荷载标准值应满布于使结构产生最不利效应的 同好影响线上 ●集中荷载标准值只作用于相应影响中一个最大影响

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

桥梁计算书规定

桥梁计算书规定 一.混凝土连续梁结构(含预应力、钢筋砼结构) ●(一)静力计算采用荷载 ●1.活载:按规范取用 ●汽车冲击力: ●汽车荷载的冲击力为汽车荷载乘以冲击系数。 ●总体静力计算的冲击系数按照《公路桥涵设计通用规范》( JTG D60-2004 )的规定计 算,悬臂板上冲击系数采用1.3。 ●2.支座沉降:桥梁不均匀沉降采用1/3000跨径。 ●3.温度:体系温度按(如150C合拢)升温,降温计算;日照梁上温度梯度仅计沥青 层作为桥面铺装,沥青层下砼调平层不考虑温度梯度作用、折减; ●4.砼弹性模量折减: ●1)计算结构强度及应力时不折减; ●2)计算结构变形时折减,按新规范取用; ●5.梁体计算时砼容重按预应力结构26KN/m3,普通钢筋混凝土结构25KN/m3;沥青 混凝土容重:24kN/m3、混凝土调平层容重:25 kN/m3 ●6.桥梁下部结构考虑纵横向外力组合; ●7.曲线段桥梁按规范考虑离心力; ●8.梁体偏载、剪滞影响按弯矩增大1.2~1.25。 ●9.支座摩阻力按作用于支座上的竖向力乘以支座的摩擦系数计算;盆式活动支座的摩擦 系数为0.05,板式活动支座(聚四氟乙烯板与不锈钢板)摩擦系数为0.06。 ●(二)动力荷载 ●设计风速按基本风压换算; ●施工风速根据施工周期确定。 ●(三)计算控制及注意问题 ●预应力梁体 ?小于100米跨径预应力结构按部分预应力A类构件设计; ●2)施工阶段 ●(1)注意挠度计算及预拱度设置; ●(2)注意计算局部应力; ●(3)按规范控制砼拉、压应力(建议拉应力不大于-0.5 Mpa),钢束应力。

●对于悬臂浇注连续梁施工阶段荷载: ●(1)施工时桥面一侧均布荷载2KN/m; ●(2)挂篮重;冲击系数u=0.2; ●(3)砼容重不均匀性,主跨侧26 KN/ m3,边跨侧25KN/ m3; ●(4)节段差; ●(5)施工风力; ●(6)悬臂施工时一侧挂篮脱落。 ?使用阶段 ●(1)长期效应控制砼无拉应力,短期效应控制砼拉应力不大于0.5Mpa;钢束应力不 超规范;弹性阶段C50混凝土压应力不大于15MPa(规范规定不大于16.2 MPa)。 短期效应主拉应力不大于-1.3 MPa。弹性阶段混凝土主压应力标准值不大于17.5 MPa (规范规定不大于19.4MPa),弹性阶段混凝土主拉应力标准值≤-1.3 MPa按构造配置箍筋,大于-1.3 MPa按规范7.1.6配置箍筋。 ●(2)注意挠度计算; ●4)注意支座偏移量的设置; ●5)注意梁体预应力径向力引起的整体、局部应力计算及处理; ●6)原则上预应力控制张拉应力腹板束采用1395 MPa,顶、底板束采用1339 MPa, 采用塑料波纹管,计算参数u=0.155,k=0.0015;预应力钢束松弛率:0.035;一端锚具变形、钢束回缩及垫板压密值:6mm; ●7)钢束定位网采用“井”字形,钢筋直径10mm,定位网在钢束直线段每80cm一道, 曲线段每50cm一道;计算钢束曲线段保护层厚度; ●2.普通钢筋混凝土结构 ●1)桥面板及框架整体计算,变高梁注意加入预应力径向力,注意控制底板裂缝宽度, 汽车布载工况考虑周全; ●2)横梁计算注意由于腹板刚度不同而引起的腹板传力不同。 ●3)普通钢筋混凝土梁体裂缝控制不大于0.18mm; ●4)梁体腹板近支座处1倍梁高箍筋加强; ●5)普通钢筋混凝土梁体主筋按受力需要,并要考虑受扭、剪滞等影响; ●下部结构 ●1)墩身:按规范钢筋砼计算。 ●2)承台:计算考虑抗弯、撑杆-系杆强度、冲剪、剪切、主拉应力等; ●3)桩:计算考虑偏压强度、裂缝宽度、地基承载力; ●4)计算考虑墩顶水平位移,基础总沉降量、相临墩台沉降差;

道路桥梁荷载计算与设计方法

道路桥梁荷载计算与设计方法 摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。 关键词:设计荷载;公路桥梁;荷载效应;分项系数 前言 桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。动力系数则为μ1与μ2之和。在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。 1 公路桥梁荷载标准 2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值 2 荷载效应计算 2.1 影响线计算 桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。因此,需要确定的是荷载最不利位置和最大值。首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。只要经过清楚地分析内力变化规律,其他类型的荷载就可以根据单位移动荷载作用下的结构内力变化规律叠加原理求出。影响线是内力(或支座反力)在移动单位荷载的作用下的引起的变化规律的图形。所以,影响线是研究车辆荷载等移动荷载作用下桥梁结构内力最大值的基本工具。初步选定对周围环境的影响的工程规模及结构类型、使用要求、材料

风荷载计算

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振 系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 风荷载计算 (3)计算各楼层标高处的风荷载z q 。攀枝花基本风压取00.40/w KN mm =,取②轴横 向框架梁,其负荷宽度为,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可

得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 2. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 1. 2() 2.88 2.880.00 1.300.740.50.000/z s z q z KN m βμμ==????= (4)将分布风荷载转化为节点荷载 第六层:即屋面处的集中荷载6F 要考虑女儿墙的影响 6 2.306 2.216 3.3 2.370 2.306 1.441 1.385 3.3 1.441 1.480 0.5[( ) 2.306]10.5[() 1.441]19.92222222 F KN ++++=+?+?++?+?= 第五层的集中荷载5F 的计算过程 5 2.21 6 2.216 2.306 2.216 1.441 1.385 1.385 1.385 0.5[ ] 3.30.5[(] 3.312.002222F KN ++++=+?+++?= 4 2.216 2.216 2.16 2.216 1.38 5 1.385 1.385 1.385 0.5[] 3.30.5[(] 3.311.882222F KN ++++=+?+++?= 3 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.385 0.5[] 3.30.5[(] 3.311.882222 F KN ++++=+?+++?= 第二层,要考虑层高的不同: 2 3.3 4.252.216 1.385( )13.5922 F KN =+?+=

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策 摘要:随着我国桥梁工程的不断发展,迫切需要编制适合我国国情的《公路桥梁抗风设计规范》。本文介绍了该规范编制中的几个主要问题,其中包括基本风速图和风压图、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等,此外,还讨论了大跨桥梁成桥和施工阶段的各种抗风对策。 关键词:桥梁抗风、设计规范 0. 前言 1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大路桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表1所示。本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等 二、全国基本风速图和风压图 基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min 平均年最大风速。 本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求,致使风速记录明显受人为因素的影响而偏小。本次研究,对其部分计算结果参照周围台站的情况予以适当的修正。与此同时,参照国内其他的规范确定基本风压的下限值100年一遇为0.35kN/m2,50年一遇为0.30kN/m2,10年一遇为0.20kN/m2,相应的基本风速下限分别为24m/s,22m/s和18m/s。全国基本风压图和风速图有如下特点: 1.东南沿海为我国大陆上的最大风压区。风压等值线大致与海岸平行,风压从沿海向内陆递减很快,到达离海岸50km处的风速约为海边风速的75%,到100km处则仅为50%左右,这和造成这一地区大风的主要天气系统--台风有关。在这一区域内,大致有三个特大风压带,即湛江以南至海南沿海地区、广东沿海地区以及浙江到福建省中部沿海地带,百年一遇风压在0.90kN/m2(38m/s)以上。由于台湾岛对台风屏障作用,福建南部的风压有所减弱。 2.西北至华北北部和东北中部为我国大陆上风压的次大区。这一地区的大风主要与西伯利亚寒流引起强冷空气活动有关,等风压线梯度由北向南递减。 3.青藏高原为风压较大区。这一地区大风主要是因海拔高度较高所造成的。但该区空气密度较小,因此,虽然风速很大,但所形成的风压相对较小。从风压图和风速图的对比中可以反映出这一特点。 4.云贵高原、长江中游以及南丘陵山区风压较小,特别是在四川中部、贵州、湘西和鄂西为我国风压最小的区域。大部分地区风压在0.4kN/m2(25m/s)以下。 5.台湾、海南岛和南海诸岛的风压各自独立成区,台湾是我国风压最大的地区。据分析,其东部沿海风压可

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

关于桥梁荷载与限载的说明

关于桥梁荷载与限载的说明 我国公路、城市桥梁设计用标准车辆荷载的基本演变 目前运行的桥梁大多数采用三套设计规范设计建造:《公路桥涵设计通用规范》(JTJ 021-89)、《城市桥梁设计荷载标准》(CJJ77-98)(2008年建设部废除)、《公路桥涵设计通用规范》(JTGD60-2004)。对于89年以前的,其荷载规定类似公路89规范。 1、对于按照《公路桥涵设计通用规范》(JTJ 021-89)及以前规范设计的桥梁,均为车队荷载,所以可按照车队中最重的车辆进行限载,如汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。 2、对于按照《城市桥梁设计荷载标准》(CJJ77-98)设计的桥梁,由于其分车道荷载和车辆荷载,车道荷载为均载加集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,城A为70T,城B为30T。由此,可以进行限载,城A限载70T,城B限载30T。 3、对于按照《公路桥涵设计通用规范》(JTGD60-2004)设计的桥梁,荷载总分公路一级和公路二级,并再分车道荷载和车辆荷载,车道荷载为均布荷载+集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,公路一级和公路二级标准车均为55T。由此,不论公路一级还是公路二级,均可限载55T。 综上所述,汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。车辆荷载标准汽-20、城B级与公路二级产生的荷载效应相当,应限载30T;汽-超20、城A与公路一级产生的荷载效应相当,应限载55T。

桥梁计算荷载

桥梁计算荷载 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 直接作用(荷载):施加在结构上的一组集中力或分布力 间接作用:引起结构外加变形或约束变形的原因 2.分类: 二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值 1.永久作用:采用标准值作为代表值 2.可变作用:根据不同的极限状态分别采用标准值、频遇值、准永久值 作为代表值 标准值:承载能力极限状态设计、按弹性阶段计算结构强度 频遇值:正常使用极限状态按短期效应组合设计 准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: 结构自重(包括结构附加重力):按结构构件的设计尺寸与材料 的重力密度计算确定 2.可变作用的标准值:

(1)汽车荷载: 汽车荷载分为公路—I级和公路—II级 车道荷载:桥梁结构整体计算 车辆荷载:桥梁结构的局部加载、涵洞、桥台、挡土墙土压力 等的计算 车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式: (3)公路—I级车道荷载: 均布荷载标准值:q k=10.5kN/m 集中荷载标准值: =180 kN 桥梁计算跨径≤5m,P k 5m<桥梁计算跨径<50m,采用直线内插求得 =360 kN 桥梁计算跨径≥50m,P k 计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: 均布荷载标准值q k和集中荷载标准值P k按公路—I级车道荷 载的0.75倍采用 (5)车道荷载的分布: 均布荷载标准值应满布于使结构产生最不利效应的同好影响线 上 集中荷载标准值只作用于相应影响中一个最大影响线峰值处(6)人群荷载标准值的采用规定:

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区;

风荷载高度变化系数μz 计算公式 A类地区=1.379(z/10)0.24 B类地区= (z/10)0.32 C类地区=0.616(z/10)0.44 D类地区=0.318(z/10)0.6 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响 121210104 罗余双 摘要:风荷载是桥梁结构设计需要考虑的重要内容之一。本文先分析了风荷载的静力作用和动力作用对桥梁结构的影响,然后考虑桥梁结构进行抗风设计的主要影响因素,并给出了桥梁结构抗风设计的主要流程。 关键词:桥梁、风荷载、抗风设计 The Impact of Wind Load on the Bridge Structure 121210104 Luo Yushuang Abstract:Wind load is one of the important contents of the bridge structure design needs to consider.At first,this paper analyzes the static effect and dynamic wind load effect on the influence of the bridge structure, and then it considers main influencing factors of wind resistance design of bridge structure, giving the bridge structure wind resistance design of the main process. Key words:Bridge、Wind load、Wind-resistance design 一、风荷载对桥梁结构影响研究的必要性 桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉,造成75人死亡的惨剧。但直到1940年,美国华盛顿新建成的Tacoma Narrows悬索桥,在不到20 m/s 的风速作用下发生了强烈的振动并导致破坏(见图1),才使工程界注意到桥梁风致振动的重要性。现代桥梁抗风研究自此开始。 众所周知,桥梁是一种在风荷载作用下容易产生变形和振动的柔性结构,而且桥梁一般修建在江河、海峡等风速较大的区域。故此,抗风设计是桥梁结构设计的重要内容之一。 为避免此类惨剧就必须要把风荷载对桥梁结构的影响降到最低,而有效抵抗和预防风荷载对桥梁结构的影响的一大前提,就是清楚的把握风荷载对桥梁结构的影响。

相关文档
最新文档