第1章练习题(大学物理1)
(完整版)大学物理题库

第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
大学物理题库-第1章-质点运动学

大学物理题库 第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r 22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动(C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x 3、某雷达刚开机时发现一敌机的位置在j i 96+处,经过3秒钟后,该敌机的位置在j i 612+处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ] (A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i +-2 4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ] 5、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ] (A)dt dr (B )dt r d (C )dt r d (D )dt r d (E )22)()(dtdy dt dx + 7、某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-= (C ) 021211v kt v += (D ) 021211v kt v +-= 8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ]9、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]10、一质点在运动过程中,0=dt rd ,而=dtdv 常数,这种运动属于[ ] (A )初速为零的匀变速直线运动;(B )速度为零而加速度不为零的运动;(C )加速度不变的圆周运动;(D )匀变速率圆周运动。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理分章练习 第一章 质点运动学

大学物理分章练习 第一章 质点运动学 一、填空题 1. 两辆车A 和B ,在笔直的公路上同向行驶,它们从同一起始线上同时出发时开始计时,行驶的距离x (m)与行驶时间t (s)的函数关系式分别为24t t x A +=,3222t t x B +=。
它们刚离开出发点时,行驶在前面的一辆车是 A 车;出发后,t = 4133- 时刻,两辆车行驶距离相同;出发后,t = 2/3 时刻,B 车相对A 车速度为零。
2.一质点沿x 轴运动,坐标与时间的变化关系为x=2t+3,式中x,t 分别以m 和s 为单位,则在2s 末的速度为 2 m/s ,在2s 末的加速度为 0 m/s 2,1s 末到2s 末的位移为 2 m 。
3、一质点沿半径为0.1m 的圆周运动, 其角位置随时间的变化规律是θ=2+4t 2(SI 制)。
在t =2s 时,它的法向加速度a n =____25.6_ m/s 2 ______;切向加速度a τ=____0.8m/s 2_______。
4. 在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=2t 2 (其中C 为常量),则其速度与时间的关系v= v 0+2t 3/3 , 运动方程为x= x 0+v 0t+t 4/6 .5.一质点在xoy 平面内运动,已知x=2t ,y=19-2t 2(SI ),则该质点在1秒末的速率为20m/s,加速度的大小为 4 m/s 2。
6、设质点作平面曲线运动,运动方程为j t i t r ˆˆ22+=,则质点在任意t 时刻的速度矢量=)(t V j t i 22+;切向加速度a t =__212t t+__;法向加速度a n =____212t +__________。
7、一质点沿x 轴运动,坐标与时间的变化关系为22++=t t x ,式中t x ,分别以m 和s 为单位,则在2s 末的速度为 5 m/s ,在2s 末的加速度为 2 m/s 2,1s 末到2s 末的位移为 4 m 。
《大学物理》练习题库

大学物理练习题第一章 质点运动学一、选择题1. 一质点在某时刻位于位矢 (,)r x y 的端点处,其速度大小为( )A.dr dtB.d r dtC.d r dt 2. 一质点作曲线运动,任意时刻的位矢为r ,速度为v ,那么( )A v v ∆=∆B r r ∆=∆C t ∆时间间隔内的平均速度为r t ∆∆D t ∆时间间隔内的平均加速度为v t ∆∆3. 以下五种运动的形式中,a保持不变的运动是( )A 单摆的运动B 匀速率圆周运动C 行星的椭圆轨道运动D 抛物运动4. 下面选项中的物理定义中属于理想模型概念的是( )A 机械能B 质点C 位移D 转动惯量5. 质点以速度v =4+t 2m/s 作直线运动,沿质点运动直线作OX 轴,并已知t =3s 时,质点位于x =9m 处,则该质点的运动方程为( )A x =2tB x =4t +t 3/2C x =4t+t 3/3+12D x =4t +t 3/3-126. 质点做匀速率圆周运动时,其速度和加速度的变化情况为( )A 加速度不变,速度在变化B 速度不变,加速度在变化C 二者都不变D 二者都在变7. 某物体的运动规律为dv /dt =-kv 2t ,式中的k 为大于零的常数,当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是( )A v =kt 2/2+v 0B v =-kt 2/2+v 0C 1/v = kt 2/2+1/v 0D 1/v = -kt 2/2+1/v 0二、填空题1.设质点的运动方程为r =R cos ωt i +R sin ωt j (式中R ,ω皆为常量),则质点的速度v= , v 的大小= ,加速度a = ,写出轨道方程 。
2.质点的运动方程为j t i t r 223+=,则质点的速度表示v = ,加速度a = ,t =1s 时,v 的大小= ,写出轨道方程 。
3.一质点沿X 轴作直线运动,它的运动方程为:x =3+6t +8t 2-12t 3 (SI),则(1)质点在t =0时刻的速度v 0= ,加速度a 0= 。
大学物理习题第一章

第一章 质点运动学一、 基本要求1.掌握位矢、位移、速度、加速度,角速度和角加速度等描述质点运动和运动变化的物理量。
2. 能借助于直角坐标计算质点在平面内运动时的速度、加速度。
3.能计算质点作圆周运动时的角速度和角加速度,切向加速度和法向加速度。
4.理解伽利略坐标,速度变换。
二、 基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段r 表示。
r 的端点表示任意时刻质点的空间位置。
r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标系的方位。
位矢是描述质点运动状态的物理量之一。
注意:(1)瞬时性:质点运动时,其位矢是随时间变化的,即()t r r=;(2)相对性:用r描述质点位置时,对同一质点在同一时刻的位置,在不同坐标系中r 可以是不相同的。
它表示了r的相对性,也反映了运动描述的相对性;(3)矢量性:r为矢量,它有大小,有方向,服从几何加法。
在直角坐标系Oxyz 中k z j y i x r++=222z y x r r ++==r z r y r x ===γβαcos ,cos ,cos质点运动时, ()t r r= (运动方程矢量式)()()()⎪⎩⎪⎨⎧===t z z t y y t x x (运动方程标量式)。
2.位移()(),j y i x t r t t r r ∆+∆=-∆+=∆ r∆的模()()22y x r ∆+∆=∆ 。
注意:(1)r∆与r ∆:前者表示质点位置变化,是矢量,同时反映位置变化的大小和方位;后者是标量,反映质点位置离开坐标原点的距离的变化。
(2)r∆与s ∆:s ∆表示t —t t ∆+时间内质点通过的路程,是标量,只有质点沿直线运动时两者大小相同或0→∆t 时,s r ∆=∆。
3. 速度dtrd v =是描述位置矢量随时间的变化。
在直角坐标系中k v j v i v k dtdz j dt dy i dt dx dt r d v z y x++=++==222222z y x v v v dt dz dt dy dt dx v v ++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==v的方向:在直线运动中,v>0表示沿坐标轴正向运动,v <0表示沿坐标轴负向运动。
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章质点的运动与牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向与力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C)物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A) ;(B) ;(C) ;(D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平均速度是 (A); (B);(C); (D)。
中7、一质量为m 的物体沿X 轴运动,其运动方程为t x x ωsin 0=,式中0x 、ω均为正的常量,t 为时间变量,则该物体所受到的合力为:( ) (A )、x f 2ω=; (B )、mx f 2ω=; (C )、mx f ω-=; (D )、mx f 2ω-=。
中:8、质点由静止开始以匀角加速度沿半径为R 的圆周运动.如果在某一时刻此质点的总加速度与切向加速度成角,则此时刻质点已转过的角度为 (A); (B); (C); (D)。
难9、一质量为本10kg 的物体在力f=(120t+40)i (SI )作用下沿一直线运动,在t=0时,其速度v 0=6i 1-⋅s m ,则t=3s 时,它的速度为:(A )10i 1-⋅s m ; (B )66i 1-⋅s m ; (C )72i 1-⋅s m ; (D )4i 1-⋅s m 。
难:10、一个在XY 平面内运动的质点的速度为,已知t = 0时,它通过(3,-7) 位置处,这质点任意时刻的位矢为 (A) ; (B) ;(C); (D)。
易11、下列说法正确的是: ( ) (A )质点作圆周运动时的加速度指向圆心; (B )匀速圆周运动的速度为恒量;(C )、只有法向加速度的运动一定是圆周运动; (D )直线运动的法向加速度一定为零。
易:12、下列说法正确的是: ( )(A )质点的速度为零,其加速度一定也为零;图16(B )质点作变加速直线运动,其加速度的方向与初速度的方向相同; (C )力是改变物体运动状态的原因;(D )质点作直线运动时,其位移的大小和路程相等。
中;13、某质点的运动方程为2569x t t =-+(SI ),则该质点作( )(A )匀加速直线运动,加速度沿X 轴正方向; (B )匀变速直线运动,加速度沿X 轴负方向; (C )变加速直线运动,加速度沿X 轴正方向; (D )变减速直线运动,加速度沿X 轴负方向。
易:14、一质点沿x 轴作直线运动,其运动方程为x=3+3t 2(米),则:在t=2秒时的速度、加速度为; ( )(A ) 12m/s , 6m/s 2; (B ) 2m/s , 12m/s 2; (C )6m/s , 2m/s 2; (D ) 无正确答案 。
易:15、质点作半径为R 的匀速圆周运动,经时间T 转动一周。
则在2T 时间内,其平均速度的大小和平均速率分别为( )(A )、2R T π、2R T π; (B )、0,2RT π;(C )、0,0 ; (D )、2RTπ,0。
中16、物体沿一闭合路径运动,经Δt 时间后回到出发点A ,如图16所示,初速度v 1,末速度v 2,则在Δt 时间内其平均速度v 与平均加速度a 分别为:(A ) v =0,;0=a (B )v =0,0≠a ; (C )v ;,00≠≠a (D )v .,00=≠a 二、填空题易:1、某直线运动的质点,其运动方程为230x x at bt ct =+++(其中x 0、a 、b 、 c 为常量)。
则质点的加速度为 ;初始速度为 。
中2 一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是t t 6122-=β(SI )则 质点的角速度=ω___________; 切向加速度a t =___________。
易:3、一质量为5kg 的物体(视为质点)在平面上运动,其运动方程为r=6i-3t 2j (SI ),式中i 、j 分别为X 、Y 正方向的单位矢量,则物体所受的合外力f 的大小为 ;其方向为 。
易:4、一质量为M 的木块在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始减速,经过距离S 停止,则木块的加速度大小为 , 木块与水平面的摩擦系数为 。
中:5、一质点沿半径为R 的圆周运动,其路程S 随时间t 变化的规律为212s bt ct =-(其中b ,c 为大于零的常数,且2b Rc >),则:质点运动的切向加速度a τ= ,法向加速度n a = ;质点运动经过t = 时,n a a τ= 。
易:6、质量为的质点的运动方程为20.100.02r ti t j =+,则其速度为υ= ,所受到的力为 F = 易:7、质量为10kg 的物体沿x 轴无摩擦地运动。
设t =0时,物体位于原点,速度为零。
物体在力的作用下,运动了3s ,则此时物体的加速度=____,速度 = _____。
难:8、某质点在XY 平面内的运动方程为:,则t = 1s 时,质点的切向加速度大小为______,法向加速度大小为______。
三、判断题易1、质点作匀速圆周运动的速度为恒量。
( )易2、在一质点作斜抛运动的过程中,若忽略空气阻力,则矢量dv/dt 是不断变化的。
( )易3、物体作曲线运动时,必有加速度,加速度的法向分量一定不等于零。
( )易4、惯性离心力是一种虚构力,它只能出现在非惯性系中。
( ) 中5、万有引力恒量G 的量纲为 -T ML 2。
( )中6、质点作曲线运动,质点的加速度为一恒量,但各点加速度与轨道切线间夹角不一样,则该质点一定不能作匀变速率运动。
( ) 中7、物体所受合外力的方向必与物体的运动方向一致。
( )中8、当n a 0,a 0τ≠≠,ρ为有限值,υ≠恒量,物体有可能作直线运动。
( ) 中9、质点在恒力作用下的运动一般都是平面运动。
在一定条件下可以是直线运动。
( )易10、质点作匀速圆周运动的角速度方向与速度方向相同。
( )四、计算 题易1、已知一质点的运动方程为23x 6t 2t =-(单位为SI 制),求:(1)第2秒内的平均速度; (2)第3秒末的速度; (3)第一秒末的加速度;中2、已知一质点由静止出发,其加速度在x 轴和y 轴上分别为x a 4t =,2y a 15t =(a 的单位为SI 制),试求t 时刻质点的速度和位置。
易.3、质点的运动方程为2311(t)(35t t )(4t t )23=+-++r i j ,求t 时刻,质点的速度υ和加速度a 以及t =1s 时速度的大小。
易:4、质点沿半径为R 的圆周运动,运动方程为223t +=θ(S1),求:t 时刻质点的法向加速度大小和角加速度大小。
易5、质量m = 2kg 的物体沿x 轴作直线运动,所受合外力,如果在处时速度,试求该物体移到时速度的大小。
易6、物体沿直线运动,其速度为32t 3t 2=++υ(单位为SI 制)。
如果t=2(s)时,x=4(m),求此时物体的加速度以及t=3(s)时物体的位置。
易7 一质点作半径为r=10(m)的圆周运动,其角坐标θ可用224t θ=+(单位为SI 制)表示,试问:(1)t=2(s)时,法向加速度和切向加速度各是多少 (2)当θ角等于多少时,其总加速度与半径成045易8、已知质点的运动方程21r (3t 5)(t 3t 4)2=+++-i j (单位为SI 制)。
求t=4s 时质点的速度、加速度、位矢。
易9、一质点作一维运动,其加速度与位置的关系为a kx =-,k 为正常数。
已知t=0时,质点瞬时静止于0x x =处。
试求质点的运动规律。
中10、一质量为40kg 的质点在力F 120t 40N =+的作用下沿x 轴作直线运动。
在t=0时,质点位于0x 2.0m =处,速度为10 4.0m s υ-=⋅,求质点在任意时刻的速度和位置。
参考答案: 一、选择题1、B2、 D3、D4、D5、A6、A7、D8、D9、C 10、B11、 D 12、C 13、B 14、A 15、B 16、B二、填空题1、26b ct +、a ;2、3243t t -、2126t t -;3、30N 、y 轴的负方向;4、22s υ、22sg υ; 5、-C 、2()b ct R -、b cR c; 6、0.010.04t +i j 、0.004(N)j ;7、1. 52/m s 、/m s ; 8、2/m s 、2/m s 。
三、判断题1、×2、×3、√4、√5、×6、√7、×8、×9、√ 10、× 四、计算 题1、解: 由23=62x t t - 知质点在任意时刻的速度与加速度分别为:2126dx t t dt υ==-; =1212d a =t dtυ- (1)第2秒内的平均速度()()2323_121(6222)61214211x x x m s t υ-⨯-⨯-⨯-⨯-∆====⋅∆- (2)第3秒末的速度 ()22131261236318t st t m s υ-==-=⨯-⨯=⋅-,与运动方向相反。
(3)第一秒末的加速度 ()21121212121t sa t m s -==-=-⨯=⋅2、解: 由4x a t =, 215y a t =可知质点在任意时刻的速度分量式和位移分量式分别为:4x x d a t dtυ==,变形后再两边积分为:004x t x d tdt υυ=⎰⎰ 22x t υ=215y y d a t dtυ==,变形后再两边积分为:2015yty d t dt υυ=⎰⎰ 35y t υ=t 时刻质点的速度为:2325t x y t t υυυ=+=+i j i j22x dx t dt υ==,变形后再两边积分为:2002x t dx t dt =⎰⎰ 323x t =35y dy t dt υ==,变形后再两边积分为:⎰⎰=y t dt t dy 0035 445t y =t 时刻,质点的位置为:342534t r x y t t =+=+i j i j 3、解:质点在任意时刻的速度为:()()254d t t dt==-++ri j υ 则 5x t υ=-,24y t υ=+当t=1(s)时,质点的速度大小为:)1m s υ-==⋅质点在任意时刻的加速度为:==+2d t dta i j υ- 4、解: (1)由于232t θ=+,则角速度d θω==4t dt ,角加速度2d ==4rad/s dtωβ 在时刻,法向加速度和切向加速度的大小分别为:2216n a =r =Rt ω4a r R τβ==5、解:由牛顿第二定律得22210653()2x F x a x m s m +===+由x x x xd d dx a dx dt dx υυυ=⋅= 得 ()200053x t x x x x d a dx x dx υυυ==+⎰⎰⎰ 质点在任意位置的速度:23102x x x υ=+该物体移到x=时速度的大小为:/s υ==6、解: 由3232t t υ=++可知物体在任意时刻的加速度和位移分别为:2d a ==3t +6t dtυ3232drt t dt υ=++=上式变形后再两边积分为:3224(32)trt t dt dr ++=⎰⎰4312124r =t +t +t -当t=2(s )时,物体的加速度为:2=2=3+6=32+62=2422t sa t t m.s -()×× 当t=3(s )时物体的位置为:4343311=++212=3+3+2312=41.344t s=r t t t m --()××7、解: (1)由于224t θ=+,则角速度8d θω==t dt,在=2t s 时,法向加速度和切向加速度的数值分别为:223264210=2.5610()-n t=2s a =r =m.s ω⨯⨯⨯22==108=80t t s d ωa rm s dt-=⨯⋅ 当总加速度与半径成045时,此时应有:=n τa a即: 28=64r t r ×× 21=8t 于是 212424 2.5()8t rad θ=+=+⨯=8、此题的解在书中P13:例题1-19、此题的解在书中P15:例题1-310、解:由牛顿第二定律得21204031()40x F t a t m s m +===+ 由xx d a dtυ=得 ()4.00031x t t x x d a dt t dt υυ==+⎰⎰⎰质点在任意时刻的速度:234.02x t t υ=++由x dx dt υ=得 22.0003 4.02x t t x dx dt t t dt υ⎛⎫==++ ⎪⎝⎭⎰⎰⎰质点在任意时刻的位置: 3211=++4.0+2.022x t t t m ()。