大学物理习题答案1
大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理(上册)课后习题及答案

因此有: ,∴
⑵由 得: ,两边积分得:
∴
⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,
,
5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,
∴
⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理习题答案第一章

大学物理习题答案第一章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。
求汽车行驶的总路程和总位移。
解汽车行驶的总路程为;汽车的总位移的大小为∆r =位移的方向沿东北方向,与方向一致。
1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么解与在一般情况下是不相等的。
因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。
如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。
1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。
求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度;(3)第三秒末和第四秒末的加速度。
解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。
(1)第二秒内的平均速度m⋅s-1;(2)第三秒末的速度因为,将t = 3 s 代入,就求得第三秒末的速度,为v3 = - 18 m⋅s-1;用同样的方法可以求得第四秒末的速度,为v4 = - 48 m⋅s-1;(3)第三秒末的加速度因为,将t = 3 s 代入,就求得第三秒末的加速度,为a3 = - 24 m⋅s-2;用同样的方法可以求得第四秒末的加速度,为v4 = - 36 m⋅s-2 .1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:(1) v d v = a d s;(2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。
解(1);(2)对上式积分,等号左边为,等号右边为,于是得,即.1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t-1)2 (t-2),s和t的单位分别是m和s。
大学物理课后习题答案(杨晓峰版)(一)

大学物理课后习题答案(杨晓峰版)(一)引言概述:大学物理课后习题是提高学生对物理知识理解和运用的重要方式,然而,许多学生在学习过程中往往遇到困惑和难题,缺乏习题答案的指导。
本文将为大学物理课后习题提供杨晓峰版的答案,以帮助学生更好地学习和掌握物理知识。
正文:一、力学1. 牛顿第一定律(惯性定律)- 物体的速度保持不变,除非受到外力的作用- 在惯性参照系中,物体保持静止或匀速直线运动的状态不变- 摩擦力、空气阻力等是物体运动状态改变的常见原因2. 牛顿第二定律(运动定律)- 物体的加速度与作用力成正比,与物体的质量成反比- F = m * a,其中F为物体所受合外力,m为物体质量,a为物体加速度- 物体所受合外力的方向与加速度的方向相同3. 牛顿第三定律(作用与反作用定律)- 作用在两个物体上的力大小相等,方向相反- 作用力和反作用力同时存在,但作用于不同的物体上- 两个物体之间的作用力和反作用力不论物体的质量大小都相等4. 动量守恒定律- 系统内外力合为零时,系统的动量守恒- 碰撞过程中,系统总动量在碰撞前后保持不变- 弹性碰撞和非弹性碰撞是常见的碰撞形式5. 动能定律- 物体的动能是其质量和速度的函数- 动能的转化和守恒是物体运动中能量转化的重要现象- 动能可以通过速度的增加和物体质量的改变来调节二、热学1. 理想气体状态方程- 理想气体的状态可以用压强、体积和温度来描述- 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度2. 热力学第一定律(能量守恒定律)- 系统内外能量之和为零时,系统的能量守恒- 系统对外做功或从外界得到热量时,系统内部能量发生变化- 系统对外做负功或向外界释放热量时,系统内部能量减小3. 热力学第二定律(熵增定律)- 系统在自发过程中,熵总是增加的- 熵是衡量系统无序程度的物理量- 热量只能从高温物体流向低温物体,不会自发地从低温物体流向高温物体4. 热力学循环- 热力学循环是指在一定条件下,系统经过一系列状态变化后回到原始状态- 卡诺循环是一种理论上的完全可逆循环- 卡诺循环的效率与工作物质的特性和温度有关5. 热传导- 热传导是指物体内部或不同物体之间热量的传递现象- 热传导遵循热量从高温区到低温区的传递规律- 热传导的速率取决于物体的热导率和温度差异总结:本文提供了大学物理课后习题的答案,重点涵盖了力学和热学的知识点。
《大学物理》习题答案1,匡乐满主编,北京邮电大学出版社

解: vx a, vy 2ct 当运动方向与x成450角时,则
即 a 2ct, t a 2c
vx vy
v
v
2 x
v
2 y
a 2 4c2t 2
2a
大学物理 盛忠志主讲
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
0
30 10 20
60
n1
2 02 2
302 102 2 60
20 3
60
2
10 20
30
60
n2
10 2 2 30
5 3
大学物理 盛忠志主讲
8、某人骑自行车以速率v向正西方行驶,遇到由北向 南刮的风(设风速大小也为v),则他感到风是从 (A)东北方向吹来 (B)东南方向吹来 (C)西北方向吹来 (D)西南方向吹来。
dv y dy
dy dt
vy
dv y dy
则
a vy
dv y dy
kvy2
分离变量得 : dvy kdy vy
两边积分得 :
v dv y
y
kdy
v v0 y
0
盛忠志主讲
v v0eky
大学物理 盛忠志主讲
3、一质点沿半径为1 m 的圆周运动,运动方程
为 2 3t,3 式中 以弧度计,t以秒计,求:(1) t=2 s
vx A sin t vy B cost
由速度的定义,有: vx
大 学 物 理 试 卷及答案1

大 学 物 理 试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、选择题:(每题3分,共33分)1、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 (A) Z 与T 无关. (B) Z 与T 成正比.(C) Z 与T 成反比. (D) Z 与T 成正比. [ ]2、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3). (B) (1)、(2)、(4).(C) (2)、(4).(D) (1)、(4). [ ]3、 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是:(A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功. (D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.[ ]4、如图所示,设某热力学系统经历一个由c →d →e 的过程,其中,ab 是一条绝热曲线,a 、c 在该曲线上.由热力学定律可知,该系统在过程中(A) 不断向外界放出热量. (B) 不断从外界吸收热量.(C) 有的阶段吸热,有的阶段放热,整个过程中吸的热量等于放出的热量. (D) 有的阶段吸热,有的阶段放热,整个过程中吸的热量大于放出的热量.(E) 有的阶段吸热,有的阶段放热,整个过程中吸的热量小于放出的热量. [ ]5、气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原pO V b 12ac a b cde Vp O来的2倍,问气体分子的平均速率变为原来的几倍? (A) 22/5. (B) 22/7.(C) 21/5. (D) 21/7. [ ]6、一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π. [ ]7、一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A) T /4. (B) 2/T . (C) T . (D) 2 T . (E) 4T . [ ]8、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]9、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]10、两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是: (A) 0. (B)π21. (C) π. (D) π23. [ ]11、若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:(A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI).(B) ]50.0)10(2cos[10.01π--π=x t y]75.0)10(2cos[10.02π++π=x t y (SI).S 1S 2Pλ/4A/ -(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D) ]75.0)10(2cos[10.01π+-π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). [ ]二、填空题:(共25分)12、两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为 30 K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = ___________,2O T =__________.(N 2气的摩尔质量M mol =28×10-3 kg ·mol -1)13、在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用__________分布律来描述.14、 图示的两条f (v )~v 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氢气分子的最概然速率为________________;氧气分子的最概然速率为________________. 15、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.16、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(2cos[φλ+-π=xT t A y , 则x = -λ 处质点的振动方程是____________________________________;若以x = λ处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_______________________________________________.) x (cm)t (s)O 1217、如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.18、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )三、计算题:(共42分)19、有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J . (1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度. (玻尔兹曼常量k =1.38×10-23 J ·K -1)20、汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?21、如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q .22、如图,劲度系数为k 的弹簧一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑水平面上运动.当弹簧未变形时容器位于O 处,今使容器自O 点左侧l 0处从静止开始运动,每经过O 点一次时,从上方滴管中滴入一质量为m 的油滴,求:(1) 容器中滴入n 滴以后,容器运动到距O 点的最远距离;(2) 容器滴入第(n +1)滴与第n 滴的时间间隔.大 学 物 理 试 卷 解 答二、填空题:(共25分)pp 1112、 210 K 2分240 K 2分13、 麦克斯韦 2分玻尔兹曼 2分14、 2000 m ·s -1 1分 500 m ·s -1 2分15、 0.5(2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 0.5(4n +1) n = 0,1,2,3,… 1分16、 ]/2cos[1φ+π=T t A y 2分 ])//(2cos[2φλ++π=x T t A y 3分17、 答案见图子波源、波阵面、波线各3分占1分18、 ])/(cos[754π+--=c z t E y ω (SI) 3分三、计算题:(共42分)19(10分)、解:(1) 设分子数为N .据 E = N (i / 2)kT 及 p = (N / V )kT得 p = 2E / (iV ) = 1.35×105 Pa 4分(2) 由 kT N kT Ew 2523=得 ()21105.75/3-⨯==N E w J 3分又 kT N E 25=得 T = 2 E / (5Nk )=362k 3分20(10分)、解:据 iRT M M E mol 21)/(=, RT M M pV m ol )/(= 2分 得 ipV E 21=变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p =即1221/)/(p p V V =γ3分题设 1221p p =, 则 21)/(21=γV V即 γ/121)21(/=V V∴)21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分21(10分)、解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4 故 V 2 = 4 V 1 2分 循环过程 ΔE = 0 , Q =W . 而在a →b 等体过程中功 W 1= 0. 在b →c 等压过程中功W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分在c →a 等温过程中功W 3 =p 1 V 1 ln (V 2/V 1) = -p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分 Q =W=[(3/4)-ln4] p 1V 1 3分22(12分)、解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。
大学物理1考试题及答案

大学物理1考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^3 km/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的位移与时间的关系是什么?A. s = gtB. s = 1/2 gt^2C. s = 1/2 g(t^2 - 1)D. s = gt^2答案:B4. 以下哪个选项是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 可见光答案:A5. 根据热力学第一定律,一个封闭系统的能量守恒,其表达式是什么?A. ΔU = Q + WB. ΔU = Q - WC. ΔU = Q + PD. ΔU = W - Q答案:A6. 一个质量为m的物体在水平面上以速度v做匀速直线运动,若摩擦力为f,那么物体的动能是多少?A. mvB. mv^2/2C. fvtD. 0答案:B7. 根据麦克斯韦方程组,电场是由什么产生的?A. 电荷B. 变化的磁场C. 电荷和变化的磁场D. 电流答案:C8. 一个理想气体经历一个等温过程,其压强P和体积V之间的关系是什么?A. P ∝ VB. P ∝ 1/VC. P = constantD. P ∝ V^2答案:B9. 在量子力学中,海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的能量和时间可以同时准确测量D. 粒子的能量和时间不能同时准确测量答案:B10. 根据狭义相对论,一个物体的质量会随着速度的增加而增加,这一效应可以用以下哪个公式描述?A. E = mc^2B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * v/cD. m = m0 * sqrt(1 - v^2/c^2)答案:B二、填空题(每题2分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度是_________ m/s^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 (第一章 质点运动学)一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s2.(0008)8 m 10 m3.(0255)()[]t t A t ωβωωωββsin 2cos e 22 +--,()ωπ/1221+n , (n = 0, 1, 2,…)4.(0588) 30/3Ct +v 400112x t Ct ++v 5.(0590) 5m/s 17m/s三、1.(0004)解:设质点在x 处的速度为v ,2d d d 26 d d d xa x t x t==⋅=+v v ()20d 26d x x x =+⎰⎰vv v() 2 213 x x +=v2.(0265)解:(1) /0.5 m/s x t ∆∆==-v(2) 2 =/96dx dt t t =- v (3) 2=6 m /s -v|(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-=3.(0266)解:(1) j t r i t r j y i x r s i n c o s ωω+=+=(2) d s i n c o s d rr t i r t j t ωωωω==-+ v 22d cos sin d a r t i r t j tωωωω==-- v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心.4. 解:根据题意t=0,v=0--------==⋅+⋅∴=⋅+⋅=====⋅+⋅=+⋅+⋅⎰⎰⎰⎰⎰⎰由于及初始件vt trt tr dv adt m s i m s j dtv m s ti m s tj drv t r m idtdr vdt m s ti m s tj dtr m m s t m s t j 02202202202222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)]质点运动方程的分量式:--=+⋅=⋅x m m s t y m s t222210(3)(2)消去参数t ,得到运动轨迹方程 =-y x 3220练习二(第一章 质点运动学)一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A )二、1.(0009) 0bt +v2.(0262) -c (b -ct )2/R3.(0509) 331ct 2ct c 2t 4/R 4.(0596) 4.8 m/s 2 3.15rad5.(0599) 2200cos /g θv三、 1. (0021)解: 记水、风、船和地球分别为w ,f ,s 和e ,则水地、风船、风地o o和船地间的相对速度分别为we V 、fs V 、fe V 和se V.由已知条件we V =10 km/h ,正东方向.fe V =10 km/h ,正西方向.sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V =sw V +we V由图可得: se V =310 km/h ,方向正北.同理 fs V =fe V -se V , 由于fe V =-we V∴ fs V =sw V , fs V的方向为南偏西30°在船上观察烟缕的飘向即fs V的方向,它为南偏西30° 2.(0272)解:设抛出时刻车的速度为0v ,球的相对于车的速度为/0 v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移 21012x t at ∆=+v ①球的位移 ()/200sin x t θ∆=+v v ②()/2201cos 2y t gt θ∆=-v ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()201sin 2/at t θ=v ,()2/01c o s 2g t t θ=v两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ3. (0517)解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有 WE v = W tv + v tE , v tE =10 m/sv WE 竖直向下,v W t 偏离竖直方向30°,由图求得 雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/sWtvWEv tEv 30° fe we 北东雨滴相对于列车的速率 20sin 30tEW t ==v v m/s 4.(0692)解:选地为静系,火车为动系.已知:雨滴对地速度v a 的方向偏前30°,火车行驶时,雨滴对火车的相对速度 v r 偏后45°,火车速度v t =35 m/s ,方向水平, 由图可知:o o sin30sin45a r t +=v v vo o cos30cos45a r =v v 由此二式解出: 25.6c o s 30s i n 30s i n 45c o s 45ta ==+v v m/s5. 解: 由题意 2t ω∝,则322222k rad s t Rtt ωω-===⋅=v当t=0.5s 时,角速度、角加速度和切向加速度分别为21222220.54 2.01.0 1.01t t n t nt rad s d t rad s dta R m s a a a R e R e a m s ωωαααω----==⋅===⋅==⋅=+=+==⋅在2.0s 内该点所转过的角度222002 5.33dt t dt rad θθω-===⎰⎰练习三 (第二章 牛顿定律)一、1.(0038)B2.(0338)A3.(0341)B4.(0610)B5.(5388)tB 6.(0024)B 二、1.(0352) 80 N 与车行方向相同98 N 与车行方向相反2.(0355) 2%3.(0526) s g μ/ 三、1.(0037) 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律d d K mt-=vv 00v d d d ,d t K K t t m m -=-=⎰⎰v vvvv /0e Kt m -=v v(2) 求最大深度解法一: d d xt=v /0d e d Kt m x t -=v/0d ed xtKt m x t -=⎰⎰v/0(/)(1e )Kt m x m K -=-v max 0/x m K =v解法二:d d d d ()()d d d d x K mm m t x t x-===v v vv v mdx d K=-vma xd d x mx K=-⎰⎰v v K m x /0max v =2.(0530)解:人受力如图(1)a m g m N T 112=-+ 底板受力如图(2) a m g m N T T 2221=-'-+ 212T T = N N =' 由以上四式可解得 a m m g m g m T )(421212+=--5.2474/))((212=++=a g m m T N5.412)(21=-+=='T a g m N N N3.(0628)解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为 r m ma N T 2cos sin ωθθ==-0sin cos =-+mg N T θθ 其中 θsin l r = 联立求解得: (1) θθωθcos sin sin 2l m mg N -= θωθ22sin cos l m mg T += (2) 0,==N c ωωθωcos /l g c = θcos /mg T =练习四 (第三章 动量守恒定律和能量守恒定律)一、1. (0063) (C) 2. (0067)(B)图(1)a图(2)T g m 13. (0384)(B)二、1. (0061) 1 m /s 0.5 m /s 2. (0066) b t – P 0 + b t三、 1. (0375) 解:(1) 设A ,B 间绳中张力为T ,分别对A 、B 列动力学方程M A g –T =M A a 1分T =M B a1分解得 a =Mg / (M A +M B )由 M A = M B = M a =21g 1分设B 、C 之间绳长为l ,在时间t 内B 物体作匀加速运动,有l =21at 2=gt 2/4 , t=g l /4=0.4 s 2分(2) B 和C 之间绳子刚拉紧时,A 和B 所达到的速度为 v =at =21gt =21×10×0.4=2.0 m/s令B 、C 间拉紧后,C 开始运动时A 、B 、C 三者的速度大小均变为V ,由动量定理(设三者速度变化过程中T AB 为AB 间绳中平均张力,T BC 为BC 间绳中平均张力,τ为过程时间)M A V - M A v = –T AB ·τ (∵M A g<<T AB )2分M B V – M B v =T AB ·τ–T BC ·τ1分M C V – 0 = T BC ·τ1分得 (M A + M B + M C )V = ( M A + M B ) vV =33132)(.M M M M C B A B A ==+++v M v m/s1分2.(0395)解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分练习五 (第三章 动量守恒定律和能量守恒定律)一、1. (0078) (C) 2. (0095)(C) 3. (0101) (C)二、1. (0079)2 mg x 0 sin α 2. (0733)12 J 3. (0737) 4000 J 三、1. (0438) 解:设弹簧伸长x 1时,木块A 、B 所受合外力为零,即有:F -kx 1 = 0 x 1 = F /k 1分设绳的拉力T 对m 2所作的功为W T 2,恒力F对m 2所作的功为为W F ,木块A 、B 系统所受合外力为零时的速度为v ,弹簧在此过程中所作的功为W K .对m 1、m 2系统,由动能定理有W F +W K =221)(21v m m + ①2分对m 2有 W F +W T 2=2221v m ② 2分而 W K =k F kx 221221-=-, W F =Fx 1=kF 2 2分代入①式可求得 )(21m m k F +=v1分由②式可得 +-=F T W W 22221v m ])(21[2122m m m k F +--=)(2)2(21212m m k m m F ++-= 由于绳拉A 和B 的力方向相反大小相等,而A 和B 的位移又相同,所以绳的拉力对m 1作的功为 )(2)2(2121221m m k m m F W W T T ++=-= 2分练习六 (第三章 动量守恒定律和能量守恒定律)一、1. (0796)(D) 2. (0076) (C) 二、1. (0801) x ≥ x 1 U 02. (0802) (2 m ,6 m) (-4 m ,2 m)和(6 m ,8 m) 2 m 和6 m三、1.(0713) 解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分 物体开始运动后,所受冲量为⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.30202t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v 速度的大小为8.28==mIv m/s 2分2.(5261) 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v ' 2分v ' = m (v 0 - v )/M =3.13 m/s2分T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分练习七 (第四章 刚体的转动)一、 1.(0981) (B ) 2. (5028) (C) 3.(0153) (A)4.(0291) (C)5. (0610) (C)6.(5030) (B)二、 1.(0983) 20参考解: r 1ω1=r 2ω2 , α1 = ω1 / t 1 , θ1=21112t α21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev 2.(0551) 4.0 rad3.(5642) 2mgl μ参考解: M =⎰M d =()mgl r r l gm lμμ21d /0=⎰ 4. (5031) (1)Jk 920ω- (2) 02ωk J三、1.(0159) 解:根据转动定律 M =J d ω / d t即 d ω=(M / J ) d t其中 M =Fr ,r =0.1 m ,F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得d ω=50t d t则1 s 末的角速度 ω1=⎰1050t d t =25 rad / s2.(0563) 解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.根据牛顿第二定律可得:对人: Mg -T 2=Ma ①对重物: T 1-21Mg =21 ②根据转动定律,对滑轮有(T 2-T 1)R =J α=MR 2α / 4 ③因绳与滑轮无相对滑动, a =αR ④①、②、③、④四式联立解得 a =2g / 7 3.(0782) 解:各物体受力情况如图.T A -mg =ma(2m)g -T B =(2m )a(T -T A )r =212mr α(T B -T )(2r )=21(2m )(2r )2α'a =r α=(2r )α'由上述方程组解得:α=2g / (9r )=43.6 rad ·s -2 ; α'=12α=21.8 rad ·s -2 ; T2'=(4/3)mg =78.4 N练习八 (第四章 刚体的转动)一、 1.(0133) (B) 2.(0230)(C) 3.(0247) (C) 4.(0772)(D) 5.(5640)(D)6.(0228) (A)7.(0499)(B)二、 1.(0235) ()0643/M m l+v2.(0773) 对O 轴的角动量 ;对该轴的合外力矩为零 ;机械能3.(0556)20m RJ m R J +-vω 4.(0546)(1)W ; (2)kl cos θ ; (3)W =2kl sin θ . 三、1.(5045)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即22122113m l m l m l ω=-+v v ① 碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 由角动量定理 ω210310l m dt M tf -=⎰③由①、②和③解得 12212t m m gμ+=v v2. (0785) 解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒.各转动惯量分别为 221mR J =,221mR J A =,()22/21R m J B = 以地面为参照系,A 处的人走动的角速度为(/)R ω+v ,B 处的人走动的角速度为12/4/2R R ωω⎛⎫-=- ⎪⎝⎭v v由角动量守恒定律()()()22222201111111/2/4/2222222mR mR m R mR mR R m R R ωωωω⎡⎤⎛⎫++=+++- ⎪⎢⎥⎣⎦⎝⎭v v解出 0ωω= 3.(0232)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①()22222000111222B J mgR J m R ωωω+=++v ②式中B v 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: ω=J 0ω 0 / (J 0 + mR 2)代入式②得B =v当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()22C m mg R =v, C =v 4.解:把子弹和杆看作一个系统.系统所受的外力有重力和轴对细杆的约束力.在子弹射入杆的极短时间里,重力和约束力均通过轴O ,因此它们对轴O 的力矩均为零,系统的角动量应当守恒.于是有 22(3)m a m l ma ω='+v ①子弹射入杆后,细杆在摆动过程中只有重力做功,所以以子弹、细杆和地球为一系统,则此系统的机械能守恒.于是有222(3)(2)(1cos30)m l ma mga m gl ω''+=+-②解式①和式②,得 =v练习九 (第六章 热力学基础)一、1. (4106) (B) 2. (4312) (A) 3. (4582) (B) 4. (4680) (C) 5. (4100) (B)6. (4105) (B)二、1. (4584) 等压 ; 等压 ; 等压2. (0238) 166 J3. (4147) 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量.4. (4316) AM ; AM 、BM5. (4472) 1123V p ; 0 三、1.(4102) 解:(1) 等温过程气体对外作功为⎰⎰===333ln d d V V V V RT V VRTV p W =8.31×298×1.0986 J = 2.72×103J(2) 绝热过程气体对外作功为 V VV p V p W V V V V d d 03003⎰⎰-==γγ RT V p 1311131001--=--=--γγγγ =2.20×103 J2.(4694)解:(1)由等温线 C pV =得 V pV p T -=)d d (由绝热线C pV =γ得 VpV p Q γ-=)d d (由题意知714.01//)/d (d )/d (d ==--=γγV p V p V p V p Q T故 =γ1/0.714=1.4由绝热方程 γγ2211V p V p =可得421121058.7)(⨯==γV V p p Pa (2) V V V p V p W V V V V d )(d 2121211γ⎰⎰==5.6012211=--=γV p V p J3.(4117)解:由图可看出 p A V A = p C V C从状态方程 pV =νRT可知 T A =T C , 因此全过程A →B →C 的 ∆E =0. B →C 过程是绝热过程,有Q BC = 0. A →B 过程是等压过程,有 )(25)( A A B B A B p AB V p V p T T C Q -=-=ν=14.9×105J .故全过程A →B →C 的 Q = Q BC +Q AB =14.9×105 J .p 12p(m 3)p 1×4×根据热一律Q =W +∆E ,得全过程A →B →C 的 W = Q -∆E =14.9×105 J .4.(5547) 解:(1) 由35=V pC C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23=(2) 该理想气体的摩尔数 ==000RT Vp ν 4 mol在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J全过程中气体对外作的功为 011lnp p RT W ν= 式中 1210//p p T T = 则 30111006.6ln⨯==T T RT W ν J . 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 5.(4112) 解:(1) p -V 图如图.12(2) T 1=(273+27) K =300 K 据 V 1/T 1=V 2/T 2,得 T 2 = V 2T 1/V 1=600 KQ =ν C p (T 2-T 1) =1.25×104 J(3) ∆E =0 (4) 据 Q = W + ∆E∴ W =Q =1.25×104 J练习十 (第六章 热力学基础)一、1.(4084) (C) 2.(4103) (C)3. (4122) (D) 4。