八年级数学上册第十四章整式的乘法与因式分解14.1整式的乘法作业课件新人教版
合集下载
人教版八年级上册数学整式的乘除全章课件

17个10 =1017
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 整式的乘法 第2课时 单项式乘以多项式

7.(3分)(易错题)要使x(x+a)+3x-2b=x2 +5x+4成立,则a,b的值分别 为( C )
A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 8.(3分)已知单项式M,N满足3x(M-5x)=6x2y2+N, 则MN=_____-__3_0_x_3_y_2_______.
人教版
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法 第2课时 单项式乘以多项式
单项式乘多项式法则
1.(3 分)填空:3m(3m2-13 m)=3m·__3_m_2_____+3m·_(-__13___m_)___ =_____9_m__3_-__m_2____.
2.(3分)(柳州中考)计算:x(x2-1)=( B ) A.x3-1 B.x3-x C.x3+x D.x2-x 3.(3分)下列各题计算正确的是( D ) A.(ab-1)(-4ab2)=-4a2b3-4ab2 B.(3x2+xy-y2)·3x2=9x4+3x3y-y2 C.(-3a)(a2-2a+1)=-3a3+6a2 D.(-2x)(3x2-4x-2)=-6x3+8x2+4x
10.(8 分)先化简,再求值:(-13 xy)2·[xy(2x-y)-2x(xy-y2)],其 中 x=-112 ,y=-2. 解:原式=19 x2y2·(2x2y-xy2-2x2y+2xy2) =19 x2y2·xy2=19 x3y4.当 x=-112 ,y=-2 时, 原式=19 ×(-112 )3×(-2)4=-6
【素养提升】 11.(8 分)某同学在计算一个多项式乘以-3x2 时,算成了加上-3x2, 得到的答案是 x2-12 x+1,那么正确的计算结果是多少?
人教版初中数学八年级上册精品课件 第14章 整式的乘法与因式分解 14.1.4 第1课时 整式的乘法

2
解:(1)-3x
3
2
3
-2
2
9
2
=(-3x)·x+(-3x)×(-2)=- x2+6x.
(2)12xny2(3yn-1-2xyn+1+1)
=12xny2·3yn-1-12xny2·2xyn+1+12xny2·1
=36xnyn+1-24xn+1yn+3+12xny2.
互动课堂理解
互动课堂理解
3.多项式与多项式相乘
1
4. 计算:(1)(-a2b)2·a=
(2)(-5an+1b)3·8ab=
1
(3)3ab·- 2 ·2abc=
3
2
3
4
5
6
;
;
.
关闭
(1)a5b2 (2)-1 000a3n+4b4 (3)-2a3b4c
答案
快乐预习感知
1
பைடு நூலகம்
2
3
4
5
6
5.计算:
(1)x2(x2-x+1)-x(x3-x2+x+1);
(
).
A.21a3+42a2 B.15a3+18a2
C.36a2+72a
D.36a3+72a2
关闭
D
答案
快乐预习感知
1
2
3.L形钢条的截面如图所示,它的面积为(
3
4
5
6
)
A.ac+bc
B.ac+(b-c)c
C.(a-c)c+(b-c)c
D.a+b+2c+(a-c)+(b-c)
解:(1)-3x
3
2
3
-2
2
9
2
=(-3x)·x+(-3x)×(-2)=- x2+6x.
(2)12xny2(3yn-1-2xyn+1+1)
=12xny2·3yn-1-12xny2·2xyn+1+12xny2·1
=36xnyn+1-24xn+1yn+3+12xny2.
互动课堂理解
互动课堂理解
3.多项式与多项式相乘
1
4. 计算:(1)(-a2b)2·a=
(2)(-5an+1b)3·8ab=
1
(3)3ab·- 2 ·2abc=
3
2
3
4
5
6
;
;
.
关闭
(1)a5b2 (2)-1 000a3n+4b4 (3)-2a3b4c
答案
快乐预习感知
1
பைடு நூலகம்
2
3
4
5
6
5.计算:
(1)x2(x2-x+1)-x(x3-x2+x+1);
(
).
A.21a3+42a2 B.15a3+18a2
C.36a2+72a
D.36a3+72a2
关闭
D
答案
快乐预习感知
1
2
3.L形钢条的截面如图所示,它的面积为(
3
4
5
6
)
A.ac+bc
B.ac+(b-c)c
C.(a-c)c+(b-c)c
D.a+b+2c+(a-c)+(b-c)
人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘

pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1);
解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
解:由题意得
3m 1 n 2n 3 m
6 4, 1,
解得
m 2, n 3.
∴
m2
+
n
=
7.
方法总结:单项式乘单项式就是把它们的系数和同底
数幂分别相乘,结合同类项的定义,列出二元一次方
程组求出参数的值,然后代值计算即可.
二 单项式与多项式相乘
问题 如图,试问三块草坪的的总面积是多少?
问题2 如果将上式中的数字改为字母,比如 ac5 ·bc2, 怎样计算这个式子?
ac5 ·bc2 = (a ·b) ·(c5 ·c2) (乘法交换律、结合律) = abc5+2 (同底数幂的乘法) = abc7.
根据以上计算,想一想如何计算单项式乘单项式?
知识要点 单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式.
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法
第1课时 单项式与单项式、多项式相乘
导入新课
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
人教版八年级数学上册第十四章整式的乘法与因式分解课件+课后作业14141

RJ(上)·数学 ·八年级 45分钟作业与单元评估
二合一
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第1页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
二合一
14.1 整式的乘法 14.1.4 整式的乘法
第十四章 整式的乘法与因式分解
第2页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
个单项式的系数,单项式中的_所__有__字__母__的__指__数__的__和___叫做这个单 项式的次数;单独一个非零数的次数是__0_.
2.单项式与单项式相乘,把它们的_系__数__、__同__底 ___数__幂___分别 相乘,对于只在一个单项式里含有的字母,则连同它的__指__数__作 为积的一个_因__式__.___
第十四章 14.1 14.1.4 第1课时
第10页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
二合一
3.如果单项式-2xa-2by2a+b 与 x3y8b 是同类项,那么这两个单 项式的积是( B )
A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y16
解析:由a2- a+2bb= =38, b 得ab= =72, , ∴-2x3y16·x3y16=-2x6y32.故选 B.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021
14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12
二合一
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第1页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
二合一
14.1 整式的乘法 14.1.4 整式的乘法
第十四章 整式的乘法与因式分解
第2页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
个单项式的系数,单项式中的_所__有__字__母__的__指__数__的__和___叫做这个单 项式的次数;单独一个非零数的次数是__0_.
2.单项式与单项式相乘,把它们的_系__数__、__同__底 ___数__幂___分别 相乘,对于只在一个单项式里含有的字母,则连同它的__指__数__作 为积的一个_因__式__.___
第十四章 14.1 14.1.4 第1课时
第10页
RJ(上)·数学 ·八年级 45分钟作业与单元评估
二合一
3.如果单项式-2xa-2by2a+b 与 x3y8b 是同类项,那么这两个单 项式的积是( B )
A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y16
解析:由a2- a+2bb= =38, b 得ab= =72, , ∴-2x3y16·x3y16=-2x6y32.故选 B.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021
14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12
新人教版八年级上册数学课件(第14章 整式的乘法与因式分解)

对于任意底数a与任意正整数m、n, (a m )n ? (a m )n a m a m ...a m
幂的乘方运算公式
n个am
=amn
( a m )n a m n (m,n都是正整数).
知1-导
幂的乘方,底数 不变 ,指数 相乘 . 思考: [(am )n] p = ?(m,n,p为正整数)能否利 用幂的 乘方法则来进行计算呢?
· am ·an =(aa…a) (aa…a)(乘方的意义)
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a =am+n (乘方的意义)
你们真棒,你的猜想是正确的!
同底数幂的乘法公式:
am ·an = am+n (m、n都是正整数)
同底数幂相乘, 底数 不变 ,指数 相加 . 运算形式(同底、乘法), 运算方法(底不变、指相加)
第十四章 整式的乘法与因式分解
14.1 整式的乘法
第1课时 同底数幂的乘法
1 课堂讲解 2 课时流程
同底数幂的乘法的法则 同底数幂的乘法法则的应用
逐点 导讲练
课堂 小结
作业 提升
知识回顾
1. 乘方:求几个相同因数的积的运算. 2. 幂: 乘方的结果.
a a an
n个a
底数
指数
a n 的 次幂.
例1 计算:
(103)5;
(2) (a4)4;
(3) (am)2; (4) -(x4)3.
解: (1) (103)5 = 103×5 = 1015 ;
(2)(a4)4=a4×4=a16;
(3) (am)2 =am×2=a2m ;
A.y5
B.-y5
八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.