高中数学 第二章 基本初等函数(Ⅰ)章末总结 新人教A版必修1 (2)
人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。
注意:(1)na =(2)当 n a = ,当 n 是偶数时,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rsa a a r s R =>∈ (3)(b)(0,0,)rrra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1注意: 指数增长模型:y=N (1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b 〈0时,a,N 在1的 异侧.(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性. (4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。
(5)指数型函数:y=N (1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a - 底数, N — 真数,log a N — 对数式)说明:1。
高一数学(人教A版)必修1课件:第二章末归纳总结

[归纳总结] 该不等式与二次函数和对数函数有关,无法 直接求解,可作出两函数的图象,利用数形结合思想观察两 函数的大小关系.特别注意当对数函数的底数不确定时,要 对 a 分 a>1 和 0<a<1 两种情况讨论.
2.分类讨论思想
本章常见分类讨论思想的应用如下表:
高中数学课件
灿若寒星整理制作
成才之路·数学
人教A版·必修1
路漫漫其修远兮吾将上下而求索
第二章
基本初等函数(Ⅰ)
第二章
章末归纳总结
专题一 指数、对数的运算 题型探究: 指数与指数运算,对数与对数运算是两个重要的知识 点,不仅是本章考查的重要题型,也是高考的必考内容.
指数式的运算首先要注意化简顺序,一般负指数先转化 成正指数,根式化为指数;其次若出现分式,则要注意把分 子、分母因式分解以达到约分的目的.对数运算首先要注意 公式应用过程中范围的变化,前后要等价;其次要熟练地运 用对数的三个运算性质,并根据具体问题合理利用对数恒等 式和换底公式等.换底公式是对数计算、化简、证明常用的 公式,一定要掌握并灵活运用.
2x-1>0 (2)由题意得2x-1≠1,
3x-2>0
x>12 即x≠1,
x>23
从而原函数的
定义域为(23,1)∪(1,+∞). [答案] (1)(-∞,0] (2)(23,1)∪(1,+∞)
2.单调性问题
[例 3] (2012~2013 浙江省高一期中试题)若 0<x<y<1,
[例 5] 已知函数 f(x)对任意实数 x,y 均有 f(x+y)=f(x) +f(y),且当 x>0 时有 f(x)>0,f(-1)=-2,求 f(x)在[-2,1]上 的值域.
高中数学第二章基本初等函数(Ⅰ)章末复习提升课课件新人教A版必修1

定成立的是( )
A.3c>3b
B.3c>3a
C.3c+3a>2
D.3c+3a<2
【解析】 (1)由题意 y=logax(a>0,且 a≠1)的图象过(3,1)点,
可解得 a=3.选项 A 中,y=3-x=13x,显然图象错误;选项 B
中,y=x3,由幂函数图象可知正确;选项 C 中,y=(-x)3=
第二章 基本初等函数(Ⅰ)
章末复习提升课
指数与对数的运算
求下列各式的值: (1)287-23-3 e·e23+ (2-e)2+10lg 2; (2)lg25+lg2×lg 500-12lg215-log29×log32.
【解】 (1)287-23-3 e·e23+ (2-e)2+10lg 2 =233-23-e13·e23+(e-2)+2 =23-2-e+e-2+2=322=94. (2)lg25+lg 2×lg 500-12lg215-log29×log32 =lg25+lg 2×lg 5+2lg 2-lg15-log39 =lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2 =lg 5+lg 2-1=1-1=0.
解析:当 x=-1 时,y=a0-2=-1,所以该定点的坐标是(-1, -1). 答案:(-1,-1)
2.已知 lg a+lg b=0,则函数 f(x)=ax 与函数 g(x)=-logbx 的 图象可能是________(填序号).
解析:因为 lg a+lg b=lg(ab)=0, 所以 ab=1,即 b=1a, 则 f(x)=ax,g(x)=logax. 当 a>1 时,在各自的定义域内,f(x)是增函数,g(x)是增函数, 所以②正确;0<a<1 时,在各自的定义域内,f(x)是减函数,g(x) 是减函数,所以①③④都不正确.
高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1

2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2006浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1

理论
2.对数函数的图象
由于对数函数 y log a x与指数函数y a x 互为反函数,所以 y log a x 的图象与 y a x
的图象关于直线 y x 对称. 看一般图象:
5
4
3
y=ax (a>1) 2
1
44
33
y=ax 22
∴函数 y loga x2的定义域是 x | x 0
(2)由 4 x 0 得 x 4
∴函数 y loga (4 x) 的定义域是 x | x 4
(3) 由 9 x2 0 得 3 x 3
∴函数 y loga(9 x2) 的定义域是 x | 3 x 3
举例
例2 求下列函数的反函数
在R上是减函数
引例
引例: y 2 x 有无反函数?若有,则求出.
分析:视察图象知,有反函数
由 y 2x 得 x log 2 y 所以,反函数为:
4
fx3 = 2x
2
1
-4
-2
2
y log 2 x x (0,)
理论
1.对数函数的定义:
函数 y log a x (a 0且a 1) 叫做对数函数(logarithmic function), 其中x是自变量,函数的定义域为 (0,) , 值域为 (,) .
1 y 1 x 1;
2
2 y (1) x2 3 (x 0).
2
解 (: 1)
y
1
x
1
1 x
y
1
2
2
(2)
x log1 ( y 1)
2
f 1( x) log1 ( x 1)
高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版

x-13,x<2.
有两个不同的实根,则实数 k 的取值范围是______.
高中数学
解析:(1)作出
的图象,如
示.再把 f(x)的图象向左平移一个单位长度,可得到 y=
的图象.故选 B.
高中数学
(2)作出函数 f(x)=2x,x≥2,
的简图,如图
x-13,x<2.
方程 f(x)=k 有两个不同的实根,也就是函数 f(x)的图象 =k 有两个不同的交点,所以 0<k<1.
• (4)采用数形结合的方法,通过函数的图象解决
高中数学
比较下列各组数的大小:
(1)0.65.1,5.10.6,log0.65.1;
(2)log712,log812;
1
1
1
1
(3) a=0.22 ,b=0.32 ,c=331)因为 0<0.65.1<1,5.10.6>1,log0.65.1<0,
+
lg 42-lg 16+1-lg 14+log5 35-log
解:(1)原式=53212
3 +
-287-3÷(24)
3 -4
1
+25 ×
-1
=53-23-24+2-1=-22.
高中数学
1
(2)原式=(3-3) -3 + lg 42-2lg 4+1
-lg 4-1+log5
35 7
=3+ lg 4-12+lg 4+log5 5 =3+1-lg 4+lg 4+1
要题型,主要考查幂函数、指数函数、对数函 与性质的应用及差值比较法与商值比较法的应 用的方法有单调性法、图象法、中间搭桥法、 作商法. • (2)当需要比较大小的两个实数均是指数幂或对 可将其看成某个指数函数、对数函数或幂函数 值,然后利用该函数的单调性比较.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律方法 (1)比较两数大小常用的方法有单调性法、图象法、中间搭 桥法等. (2)当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数 或幂函数的函数值,然后利用该函数的单调性比较. (3)比较多个数的大小时,先利用“0”“1”作为分界点,然后在各部分内 再利用函数性质比较大小. (4)含参数的问题,要根据参数的取值进行分类讨论.
②n>0 时,幂函数 y=xn 在(0,+∞)上递增,则任取 x>0,均有( 1 )x>( 1 )x,故②对; 23
③由于 y= log1 x=-log2x,则在同一坐标系中,y=log2x 与 y= log1 x 的图象关于 x 轴对称,
2
2
故③对;
④A=R,B=R,f:x→y= 1 ,但 A 中的-1,B 中无元素对应,故 f 不为 A 到 B 的映射,故④错;
四、幂函数、指数函数、对数函数的综合
【典例4】(1)若y=lg(x2+mx+1)的定义域为R,则实数m的取值范围是
;
(2)若函数y=lg(x2+2x+a2)的值域是R,则实数a的取值范围是
.
解析:(1)把题中条件进行等价转化,即x2+mx+1>0在R上恒成立. 即Δ=m2-4<0,得-2<m<2. (2)y=lg(x2+2x+a2)的值域为R,即x2+2x+a2的值包含一切正数. 即Δ=4-4a2≥0,a2≤1,得-1≤a≤1. 答案:(1)(-2,2) (2)[-1,1]
③在同一坐标系中,y=log2x 与 y= log1 x 的图象关于 x 轴对称;
2
④A=R,B=R,f:x→y= 1 ,则 f 为 A 到 B 的映射; x 1
⑤y= 1 在(-∞,0)∪(0,+∞)上是减函数. x
其中正确的命题的序号是
.
解析:(2)①可举偶函数y=x-2,则它的图象与y轴不相交,故①错;
规律方法 对数函数的定义域为R与值域为R是两个不同的问题.定义 域为R,是对数的真数大于0恒成立;而值域为R,则应转化为真数能取遍 所有正数.
2
2
2
象向右平移一个单位,再向上平移一个单位得到,所以定点(1,0)也是向右平移一个单位,
再向上平移一个单位.定点(1,0)平移以后即为定点(2,1),故函数 y=1+ log1 (x-1)恒过的
2
定点为(2,1).故选 C.
(2)下列命题: ①偶函数的图象一定与 y 轴相交;
②任取 x>0,均有( 1 )x>( 1 )x; 23
二、指数函数、对数函数、幂函数的图象和性质
【典例 2】 (1)函数 y=1+ log1 (x-1)的图象一定经过点( )
2
(A)(1,1)
(B)(1,0)
(C)(2,1)
(D)(2,0)
解析:(1)因为函数 y= log1 x 恒过定点(1,0),而 y=1+ log1 (x-1)的图象是由 y= log1 x 的图
解:(1)原式=1+ 1 ×( 2 )- 3 =- 2 . 4 525
(2)原式=lg 2(lg 2+lg 5)+lg 5-3×log22-3=lg 2+lg 5-3×(-3)=1+9=10.
规律方法 (1)指数式的运算:注意化简顺序,一般负指数先转化成正指 数,根式化为分数指数幂运算. (2)对数式的运算:①注意公式应用过程中范围的变化,前后要等价.②熟练 地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化 简、证明常用的技巧.
三、比较大小 【典例3】 (1)设a=40.1,b=log30.1,c=0.50.1,则( ) (A)a>b>c (B)a>c>b (C)b>a>c (D)b>c>a
解析:(1)因为a=40.1>1,b=log30.1<0, 0<c=0.50.1<1,所以a>c>b.故选B.
(2)已知a=log2 1 ,b=( 1 )-0.1,c=2log52,则a,b,c的大小关系为( ) (A)c<b<a (B)3 a<c<b 3 (C)b<a<c (D)b<c<a (3)设a=log0.50.8,b=log1.10.8,c=1.10.8,则a,b,c的大小关系为( ) (A)a<b<c (B)b<a<c (C)b<c<a (D)a<c<b
√)
8.幂函数图象可在直角坐标系第四象限出现.( × )
9.对数函数图象一定在y轴右侧.( √ )
主题串讲——方法提炼·总结升华
一、指数、对数的运算
【典例1】 计算下列各式:
1
(1)(2
3 5
)0+2-2·|-0.064|
1 3
-
9 4
2
;
(2)lg22+lg 2·lg 5+lg 5- 2log2 3 ·log2 1 . 8
章末总结
网络建构
知识辨析
判断下列说法是否正确(请在括号中填“√”或“×”)
1.分数指数幂
m
an
可以理解为
m
个
a
相的图象一定在x轴的上方.( √ )
3.y=3·2x是指数函数.( × )
4.任何指数式都可以化为对数式.( × )
5.logaxy=logax+logay(a>0且a≠1).( × ) 6.y=x2与y=log2x互为反函数.( × ) 7.互为反函数的两个函数图象关于y=x对称.(
⑤可举
x x1=-1,x2=1,则
1 y1=-1,y2=1,不满足减函数的性质,故
y=
1
在(-∞,0)∪(0,+∞)上
x
不是减函数.故⑤错.故正确的命题的序号是②③.
答案:(1)C (2)②③
规律方法 (1)根据函数解析式判断函数的相关性质,如定义域、值域、 单调性、奇偶性等进行判断,也可根据函数性质进行排除干扰项而得到 正确结果. (2)根据函数解析式特征确定相关的基本初等函数,如指数函数、对数函 数、幂函数等,然后确定其平移变化的方向,从而判断函数图象. (3)指数函数与对数函数图象经过定点的实质是a0=1,loga1=0. (4)指数函数与对数函数都具有单调性,当0<a<1时,两者都是递减函数; 当a>1时,两者都是递增函数.