超宽带天线技术概要
超宽带天线匹配网络的设计概要

超宽带天线匹配网络的设计B.S.Yarman, Istanbul University,TurkeyDesign of Ultra WidebandAntenna Matching Networks2008, 308pp.HardcoverISBN 9781402084171B.S.亚曼等著天线、天线匹配网络(或均衡器)、天线开关以及天线阵列相位移位器是超宽带通讯系统最重要的部件。
作为一个整体,它们构成了我们称谓的天线系统。
很显然这些关键的部件处于通讯系统的前端。
如果天线系统是宽带的,那么无线装备是宽带的几率就很高。
否则不论通讯系统的其余部分的有多好,该系统的带宽是受到天线设备限制的。
实时频率技术(RFT)是1977年由美国康乃尔大学的H.J.Carlin教授提出的,该方法对许多应用提供了建造功率传输网络的出色解决方案。
此外经简化的实时频率技术(SRFT)已被证实最适用于人们为天线设计匹配网络和微波放大器。
本书致力于采用SRFT设计超宽带实用天线匹配网络,这是同类书中的第一本,并且预计会填补无线通讯领域中非常重要的空白。
对于书中的每一个例子,作者都提供了开放式Matlab代码,因此读者可以很容易地产生并验证这些例子的结果。
本书共有13章。
1.实时频率技术;2.天线基础;3.移动无线通讯天线;4.移动电话天线开发中的挑战;5.内部终端天线的设计技术;6.终端天线测量;7.依据散射参数的无损耗二端描述;8.天线匹配问题的分析方法;9.经简化的实时频率技术;10.应用;11.经简化实时频率技术的预置;12.匹配网络分析与最优化Ⅰ;13.匹配网络分析与最优化Ⅱ。
本书是斯普林格《信号与通讯技术》丛书中的一本,作者坚信本书对于那些供职于商业无线通讯公司以及政府和军队机构的研究经理及工程师非常有用。
胡光华,高级软件工程师(原中国科学院物理学研究所)Hu Guanghua, Senior Software Engineer(Former Institute of Physics,CAS)。
小型化超宽带与极宽带印刷天线

小型化超宽带与极宽带印刷天线一、本文概述随着无线通信技术的飞速发展,超宽带(UWB)和极宽带(EBW)技术已成为当前研究的热点。
作为无线通信系统的关键组件,天线的设计和性能直接影响到整个系统的性能。
本文将对小型化超宽带与极宽带印刷天线进行深入研究,探讨其设计原理、实现方法以及性能优化等方面的内容。
本文将介绍超宽带和极宽带技术的基本概念和特点,以及它们在无线通信领域的应用场景。
然后,重点讨论小型化超宽带与极宽带印刷天线的设计方法,包括天线结构的选择、材料的选择、尺寸优化等方面。
同时,还将探讨天线性能的评价指标,如带宽、增益、效率等,以及如何通过优化设计提高天线的性能。
本文还将关注小型化超宽带与极宽带印刷天线在实际应用中的挑战和解决方案。
例如,如何在保证天线性能的同时实现小型化,以及如何降低天线成本等。
通过深入分析和研究,本文旨在为天线设计工程师提供有益的参考和指导,推动超宽带和极宽带印刷天线技术的进一步发展和应用。
本文将总结小型化超宽带与极宽带印刷天线的研究现状和发展趋势,展望未来的研究方向和应用前景。
二、超宽带与极宽带印刷天线的基本原理超宽带(Ultra-Wideband, UWB)和极宽带(Extreme-Wideband, EWB)印刷天线是近年来无线通信领域的研究热点,它们的主要优势在于能够在极宽的频带范围内实现高效、稳定的信号传输。
这些天线的设计原理主要基于电磁波的辐射和传播特性,以及印刷电路板(PCB)上的电流分布和阻抗匹配。
电磁波辐射与传播:天线作为电磁波的发射和接收装置,其性能与电磁波的辐射与传播特性密切相关。
超宽带和极宽带印刷天线通过合理设计天线的形状、尺寸和馈电方式,使得天线能够在极宽的频带范围内产生有效的电磁波辐射和接收。
电流分布与阻抗匹配:印刷天线通常由金属导体印刷在介质基板上构成,当电流通过金属导体时,会在导体表面形成电流分布。
超宽带和极宽带印刷天线的设计需要优化导体表面的电流分布,以实现宽频带内的阻抗匹配,从而提高天线的辐射效率和接收灵敏度。
超宽带技术概述

超宽带( UW)B 技术一、UWB 技术简介UWB(Ultra Wide Band) 是一种短距离的无线通信方式。
其传输距离通常在10m 以内,使用1GHz 以上带宽,通信速度可以达到几百Mbit/s 以上。
UWB 不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。
美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz至U 10.6GHz,最小工作频宽为500MHz 。
超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。
从传输带宽看,按照FCC的定义:信号带宽大于1.5G 或者信号带宽与中心频率之比大于25%的为超宽带。
超宽带传输技术直接使用基带传输。
其传输方式是直接发送脉冲无线电信号,每秒可以发送数10亿个脉冲。
然而,这些脉冲的频域非常宽,可覆盖数Hz〜数GHz。
由于UWB 发射的载波功率比较小,频率范围很广,所以,UWB 对传统的无线电波影响相当小。
UWB 的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。
二、UWB 技术的发展历程现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR ,Impulse Radio) 技术,出现于1960 年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。
通过Harmuth 、Ross 和Robbins 等先行公司的研究,UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。
至80 年代后期,该技术开始被称为" 无载波"无线电,或脉冲无线电。
美国国防部在1989 年首次使用了"超带宽"这一术语。
为了研究UWB 在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。
超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。
许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。
为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。
1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。
1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。
此后,超宽带这个术语才被沿用下来。
其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。
图1给出了带宽计算示意图。
可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。
为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。
美国NTIA等通信团体对此大约提交了800多份意见书。
2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。
根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。
根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。
为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。
超宽带平面正弦天线与设计概要

超宽带平面正弦天线与设计
本文对超宽带平面正弦天线的设计理论及实现方法进行了研究。
研究内容主要分为三部分:1、研制了3~15GHz的常规两臂平面正弦天线;2、研制了3~15GHz的带有小型化馈电巴伦的两臂平面正弦天线;3、研制了3~15GHz的
四臂平面正弦天线。
传统的平面螺旋天线,如阿基米德螺旋天线和等角螺旋天线存在极化方式单一的不足之处,而正弦天线除了具有传统平面螺旋天线所具有的超宽带、圆极化、单孔径的优点外,还具有独特的“全极化”特性。
本文在超宽带理论和大量仿真计算的基础上,分析了正弦天线结构、介电常数等参数的变化对天线性能的具体影响,在此基础上设计制造了三款正弦天线实物样机,并在微波暗室进行了实验测试。
首先设计了工作频段为3~15GHz的两臂平面正弦天线,为了实现天线的输入阻抗与50?同轴电缆的良好匹配,设计了用于该天线平衡馈电的指数渐变微带巴伦。
为了弥补该巴伦纵向尺寸过大的缺陷,设计了“小型化”的微带巴伦,并用于两臂正弦天线的馈电,在保持原天线电特性的基础上,显著降低了整个天线系统的纵向几何尺寸。
同时,为实现正弦天线的“全极化”特性,设计了带双巴伦馈电结构的四臂正弦天线。
上述三款天线均进行了实物样机的研制,并对其进行了测试,结果表明天线和巴伦在工作频段内较好地符合了设计预期,能够满足工程应用要求。
同主题文章
【关键词相关文档搜索】:电磁场与微波技术; 正弦天线; 超宽带; 全极化; 巴伦; 小型化
【作者相关信息搜索】:南京航空航天大学;电磁场与微波技术;曹群生;
陈振华;。
超宽带天线 (2)

超宽带天线1. 引言超宽带(Ultra-Wideband,简称UWB)技术是一种基于大带宽无线传输的技术,可以实现高速数据传输、精确定位以及物联网应用等多种功能。
而超宽带天线作为UWB系统中至关重要的组成部分,其设计和性能对系统的整体性能有着重要影响。
本文将详细介绍超宽带天线的概念、设计原则以及常见的超宽带天线类型。
2. 超宽带天线概述超宽带天线是一种能够在超宽带频段内工作的天线。
它能够传输大量的数据,且具备透过墙体和障碍物传输数据的能力,因此在无线通信、雷达系统、物联网等领域有着广泛应用。
与传统窄带天线不同,超宽带天线具备以下特点:•带宽宽广:超宽带天线的工作频率范围通常达到几百兆赫兹到几十吉赫兹,因此能够传输更多的信息。
•抗干扰能力强:超宽带技术采用短脉冲信号传输,在频域内具有较好的抗多径干扰能力。
•精确定位能力:超宽带信号能够提供高精度的时延测量,从而实现精确定位功能。
3. 超宽带天线设计原则3.1 带宽匹配超宽带天线的设计需要考虑到其工作频率范围的宽广性。
天线的输入阻抗和辐射模式应当在整个超宽带频段内保持稳定,以保证信号的传输质量和距离。
在设计过程中,可以采用多种技术手段来改善带宽匹配,如使用宽带阻抗转换器、多振子设计等。
3.2 辐射效率超宽带天线的辐射效率对系统性能至关重要。
辐射效率高意味着更好的信号传输质量和更远的传输距离。
辐射效率的提高可以通过合理的设计天线结构、优化天线材料以及减小辐射功率损耗等方式来实现。
3.3 多频段覆盖超宽带天线不仅要满足带宽宽广的要求,还需要能够在不同频段内工作。
因此,设计超宽带天线时需要考虑多频段覆盖的需求。
可以采用多种技术手段,如使用多振子结构、配置可调谐元件等来实现多频段覆盖。
4. 常见的超宽带天线类型4.1 偶极天线偶极天线是最常见的超宽带天线类型之一。
它由两个电极构成,能够在多个频段内较好地匹配和辐射。
偶极天线具有简单的结构和方便的制造工艺,因此被广泛应用于超宽带通信系统中。
超宽带技术(UWB)概述

UWB的特点
2、信道容量大,传输速率高
➢ 香农信道容量公式
C
W
log2 (1
S N
)
(b / s)
➢ 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹
(GHz)带宽,理论上可以提供极高的信道容量,达
到Gbps以上的传输速率,或者在很低的信噪比下,
以一定的传输速率实现可靠传输。假定一个超宽带信
号使用7GHz带宽,当信噪比S/N低至-10dB时,超宽 带可以提供的信道容量为C=7G×log2(1+0.1)≈ 0.963Gbps,接近1Gbps。
• 时隔这么多年后,在最近七八年中其它先 进的无线技术如蓝牙技术、WiFi、WiMAX 都先后面世,UWB为什么会重出江湖并引 起如此密切的关注呢?
UWB:由来
• UWB技术特点与时代需求的结合
– 随着网络技术的发展,网络信息传输从以文字 为主过渡到以多媒体信息为主,因此对带宽的 要求就比较高;
– 从技术层面来说,可靠地传输视频图像所需的 数据传输速度超过了蓝牙与WiFi的能力;
➢ 例如基于UWB技术的无线USB 2.0,可取代有线USB, 实现PC之间及消费类电子设备(电视、数码相机、 DVD播放器、MP3等)之间的无线数据互连与通信。
➢ 无线个域网(WPAN) 、高速智能无线局域网、智能交 通系统,公路信息服务系统,汽车检测系统,舰船、 飞机内部通信系统,楼内通信系统、室内宽带蜂窝电 话,战术组网电台,非视距超宽带电台,战术/战略 通信电台,保密无线宽带因特网接入等等
非正弦波形传输
传统无线发射信号
UWB发射信号
Signal1
Signal2
时域共享
Signal1
Signal2
超宽带阵列天线波束赋形技术

超宽带阵列天线波束赋形技术
超宽带阵列天线波束赋形技术是一种通过调整天线阵列中每个天线元素的相位和振幅来实现具有特定方向性和波束形状的信号发射或接收的技术。
它可以在空中传输多个独立的数据流,并提高通信系统的容量和效率。
超宽带阵列天线波束赋形技术的主要原理是利用天线阵列中的每个天线元素的相位差,使得相位叠加在某个方向上产生增强的信号,从而形成一个窄束。
这样一来,信号的传输方向性就可以被控制,可以避免多路径干扰和信号衰减,提高信号的传输质量和传输距离。
超宽带阵列天线波束赋形技术在无线通信领域有广泛的应用,例如室内Wi-Fi覆盖、5G通信系统、雷达系统等。
通过波束赋形技术,可以实现高速、高容量的通信,提高通信质量和用户体验。
同时,它也有助于降低功耗和减少电磁辐射,提高天线能效和系统效率。
总的来说,超宽带阵列天线波束赋形技术通过调整天线阵列中每个天线元素的相位和振幅,使得信号具有特定方向性和波束形状,从而提高通信质量、传输距离和系统效率。
它是无线通信领域中的重要技术之一,具有广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超宽带天线技术
超宽带(UWB)技术具有高传输速率、合理的图像解析和高安全性等优点,在无线通信、微波成像和电子对抗等诸多领域具有广阔的应用前景。
超宽带天线是超宽带通信系统的关键部件之一,其特性直接影响着整个系统的性能。
本文首先概要地叙述了超宽带通信系统和超宽带天线的发展现状,介绍了几种传统的超宽带天线;然后阐述了微带天线的理论分析方法,即传输线模型理论、空腔模型理论和全波分析理论;最后在理论分析的基础上,结合超宽带通信系统的要求,利用多种展宽频带的方法,设计了两款结构简单而紧凑、工作频带覆盖3.1—10.6GHz频段并在WLAN 5.2—5.8GHz和ITU 8.025—8.4GHz两个频带内具有明显陷波特性的超宽带天线。
在一款带状线宽缝天线的基础上,设计了具有新型贴片结构的超宽带微带天线,通过在馈线和矩形贴片之间附加一个“U”形结构来实现超宽带,而在贴片上蚀刻两个侧卧的“L”形槽来达到双带陷的效果。
与原天线相比,所设计的天线在尺寸缩小了31.1%的情况下保持了相对带宽基本不变,还实现了双带陷功能。
对部分地结构微带天线进行改进,设计了具有新型接地板结构的超宽带微带天线,通过在天线的接地板上附加一个平衡枝节来实现超宽带,在矩形贴片上蚀刻两个同心的带有缺口的圆环形槽来实现双频带陷。
在设计过程中,讨论分析了天线各个结构参数对天线性能的影响。
从仿真结果看,两款天线都具有良好的性能。
对具有新型接地板结构的超宽带微带天线加工出了样品,实测数据和仿真结果基本吻合。
同主题文章
【关键词相关文档搜索】:测试计量技术及仪器; 超宽带天线; 微带天线;
双带陷性能; 部分地结构
【作者相关信息搜索】:西安电子科技大学;测试计量技术及仪器;赵永久;杜立新;。