知识讲解不等式的全章复习与巩固提高

合集下载

[高一数学]不等式知识点归纳与总结

[高一数学]不等式知识点归纳与总结

授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。

北师大版初中数学八年级上册第七章复习、回顾与思考(教案)

北师大版初中数学八年级上册第七章复习、回顾与思考(教案)
三、教学难点与重点
1.教学重点
(1)不等式的性质与解法:重点在于理解不等式的性质,如传递性、加减乘除同性质等,以及掌握不等式的解法,如移项、合并同类项等。
举例:对于不等式3x - 2 > 7,学生需要掌握如何将不等式移项(加2到两边)得到3x > 9,然后除以3得到x > 3。
(2)一元一次不等式组的解法:重点在于掌握不等式组的解法原则,如同大取大、同小取小、大小小大中间找、大大小小无解了等。
4.关注学生的思维发展:在教学过程中,我注意到学生对问题的思考和分析能力有所提高,但仍有一部分学生在面对复杂问题时,不能很好地运用所学知识进行解决。为此,我需要在今后的教学中,多关注学生的思维发展,引导他们运用所学知识分析问题、解决问题。
5.课堂氛围的营造:在本节课中,我努力营造一个轻松、愉快的课堂氛围,让学生在愉悦的心情中学习。但从课堂实际情况来看,部分学生在课堂上的积极性仍有待提高。我需要继续探索如何激发学生的学习兴趣,让他们在课堂上更加活跃。
3.不等式的应用:探讨在实际问题中如何构建不等式模型,解决实际问题。
二、核心素养目标
本章节的核心素养目标主要包括:
1.培养学生的逻辑推理能力:通过不等式的性质与解法复习,让学生运用逻辑推理解决问题,提高其逻辑思维能力。
2.培养学生的数学建模素养:引导学生将实际问题抽象为一元一次不等式组,培养学生建立数学模型的能力。
2.教学难点
(1)不等式的性质理解:难点在于理解不等式性质的适用条件,尤其是乘除性质在变号时的处理。
举例:对于不等式-2x > 6,学生需要掌握除以-2时不等号方向改变,得到x < -3。
(2)一元一次不等式组的解法:难点在于解决含有多个不等式的复杂情况,尤其是含有不等式的乘除运算。

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)
由①得,x≥-3, 由②得,x<2, 不等式组的解集是-3≤x<2, 它的整数解为:-3,-2,-1,0,1, 所以,所有整数解的和为-5.
重点题型
1.(2020·吉林)不等式3x+1>7的解集为
3x-2<x,① 2.(2020·湖州)解不等式组13x<-2.②
x>2
3x-2<x,① 解:13x<-2.② 解①得 x<1; 解②得 x<-6. 所以,不等式组的解集为 x<-6.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半 ,且购买两种书的总价不超过1600元.请问有哪几种购买方案 ?哪种购买方案的费用最低?最低费用为多少元?
重点题型
题题组组训训练练
解:(1)购买《北上》的单价为35元,《牵风记》的单价为30元;
(2)设购买《北上》的数量 n 本,则购买《牵风记》的 数量为(50-n)本,
题题组组训训练练

重重点点题题型型
题 型 二 应用一元一次不等式(组)解决问题
题组训练
例3.(2020·哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种 地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买 2个大地球仪和1个小地球仪需用132元. (1)求每个大地球仪和每个小地球仪各多少元? (2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960 元,那么昌云中学最多可以购买多少个大地球仪?
精讲释疑
重重点点题题型型
题组训练
题 型 一 解一元一次不等式(组)
例1.(2020·嘉兴)不等式3(1-x)>2-4x的解在数轴上表示正确的 是( A )
重重点点题题型型
题组训练
4(x+1)≤7x+13,
例 2.(2020·枣庄)解不等式组x-4<x-3 8,

北京四中中考数学专练总复习《不等式与一次不等式组》全章复习与巩固(基础)巩固练习

北京四中中考数学专练总复习《不等式与一次不等式组》全章复习与巩固(基础)巩固练习

《不等式与一次不等式组》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1. 已知a>b>0,则下列不等式不一定成立的是( ).A. ab>b 2B. a+c>b+cC. 1a < 1bD. ac>bc 2. 如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围,在数轴上可表示为( ).3.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( ).A B C D 4. 如果关于x 的不等式 (a+1)x>a+1的解集为x<1,那么a 的取值范围是( ) . A. a>0B. a<0C. a>-1D. a<-1 5. 不等式组203x x -≤⎧⎨->⎩的正整数解的个数是( ).A .1个 B .2个 C .3个 D .4个6. 以下各式中,一元一次不等式个数为( ).①23<-a ;②31>--xx ;③0<-y x ;④132≤+x x ;⑤2131+>-x x A. 1B. 2C. 3D. 0 7.不等式9-x >x +的正整数解的个数是( ).A .1B .2C .3D .无数个8.三个连续自然数的和小于11,这样的自然数组共有( )组.A .1B .2C .3D .4二、填空题9. 当x_____时,代数式-3x +5的值不大于4.B A CD10.一个不等式的解集如图所示,则这个不等式的正整数解是_____.11.不等式组⎩⎨⎧<+≥+3201x x 的整数解是_______. 12.已知2(2)230x x y a -+--=,y 是正数,则a 的取值范围 .13.不等式组130x x ≥⎧⎨-<⎩的解集是 .14.关于x 的方程2x +3k =1的解是负数,则k 的取值范围是_______.15.若不等式(m-2)x >2的解集是x <,则m的取值范围是_______.16.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________.三、解答题17.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题. 抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分. 小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?18. 在数学学习中,及时对知识进行归纳、类比和整理是提高学习效率的有效策略,善于学习的小明在学习解一元一次不等式中,发现它与解一元一次方程有许多相似之处.小明列出了一张对照表:从表中可以清楚地看出,解一元一次不等式与解一元一次方程有一定的联系,利用这种联系解决下列问题:(1)若不等式kx >b 的解集是x <1,求方程kx=b 的解;(2)若方程kx=b 的解是x=-1,求不等式kx >b 的解集.19.解下列不等式(组),并把不等式的解集表示在数轴上.(1)4(1)33(21)x x -+≤+ (2)125336x --<≤20.2008年 5月12日,四川汶川发生了里氏0.8级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:刘老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于..50元...48元,小于请根据以上信息,帮助刘老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.【答案与解析】一.选择题1. 【答案】D;【解析】不等式的基本性质.2. 【答案】A;3. 【答案】B;4. 【答案】D;【解析】不等号的方向改变,说明a+1<0,即a<﹣1.5. 【答案】B;【解析】解得原不等式的解集为0≤x<3,其中正整数有1、2,共2个.6. 【答案】B;【解析】是一元一次不等式的是①和⑤.7.【答案】B;【解析】解不等式得,则正整数解为1,2.8.【答案】C;【解析】,解得n=0、1、2,共3组.二.填空题9. 【答案】;【解析】-3x+5410. 【答案】1、2;x<,所以正整数有1、2.【解析】由图可得311. 【答案】-1,0;【解析】不等式组的解集为11x -≤<,整数解为-1,0.12. 【答案】4a <;【解析】由2230x x y a =⎧⎨--=⎩,解得2220y x a a =-=⨯->,化简得4a <.13. 【答案】1≤x <3;14. 【答案】; 【解析】解方程得,则.15. 【答案】m<2;【解析】由不等式的基本性质3得,m-2<0. 16. 【答案】(或:等)【解析】答案不唯一三.解答题17.【解析】解:设小军答对x 道题,依题意得:3x -(20 -x )50≥,解得:2117≥x . ∵x 为正整数,∴x 的最小正整数为18.答:小军至少要答对18道题.18.【解析】解:(1)1=x .(2)当0k >时,1x >-;当.10-<<x k 时, 19. 【解析】解:(1)44363x x -+≤+410x ≤∴25x ≥ 将解集表示在数轴上,如下图:(2)18245x -<-≤2043x -<-≤∴354x >≥-将解集表示在数轴上,如下图:20.【解析】解:(1)设(2)班与(3)班的捐款金额各是y x ,元, 据题意得: ⎩⎨⎧=++=-77002000300y x y x解得:⎩⎨⎧==27003000y x 答:设(2)班与(3)班的捐款金额各是3000元和2700元.(2)再设(1)班的学生人数为z 人,据题意得: ⎩⎨⎧><200050200048z z解得:⎩⎨⎧><4066.41z z z 为正整数,所以41=z .答: (1)班的学生人数为41人.。

高中数学新人教B版必修5课件:第三章不等式章末复习

高中数学新人教B版必修5课件:第三章不等式章末复习

2 题型探究
PART TWO
题型一 利用均值不等式求最值
例1 函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1= 0(mn>0)上,则 m1 +1n 的最小值为__4__.
反思感悟 当所给附加条件是一个等式时,常见的用法有两个:一个是用这 个等式消元,化为命题角度1的类型;一个是直接利用该等式代入,或构造 定值.
跟踪训练2 设不等式x2-2ax+a+2≤0的解集为M,如果M⊆[1,4],求实数a 的取值范围.
题型三 一元二次不等式的解法
例3 解关于x的不等式x2-(a+a2)x+a3>0(a∈R).
反思感悟 对于含参数的一元二次不等式,若二次项系数为常数,则可先考 虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式分类讨论, 分类要不重不漏.
3.二元一次不等式表示的平面区域的判定 对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+By+C的符号相 同,取一个特殊点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表 示直线哪一侧的平面区域,可简记为“直线定界,特殊点定域”.特别地, 当C≠0时,常取原点作为特殊点. 4.求目标函数最优解的方法 通过平移目标函数所对应的直线,可以发现取得最优解对应的点往往是可行 域的顶点(或边界),于是在选择题中关于线性计划的最值问题,可采用求解 方程组代入检验的方法求解.
第三章 不等式
章末复习
学习目标
XUEXIMUBIAO
1.整合知识结构,进一步巩固、深化所学知识. 2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式. 3.会用均值不等式证明不等式,求解最值问题. 4.体会“三个二次”之间的内在联系在解决问题中的作用. 5.能熟练地运用图解法解决线性计划问题.

人教版七年级下册数学第9章 不等式与不等式组全章课件

人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。

一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。

常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。

2.不等式的解与解集不等式的解是使不等式成立的未知数的值。

不等式的解集是一个含有未知数的不等式的解的全体。

解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。

其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。

5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。

对于每段话,进行小幅度的改写,使其更加通顺易懂。

解一元一次不等式和解一元一次方程类似。

不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

这是解不等式时最容易出错的地方。

例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。

不等式与不等式组全章教案

不等式与不等式组全章教案

不等式与不等式组全章教案一、教学目标知识与技能:使学生掌握不等式的概念、性质和基本运算,能够解一元一次不等式;理解不等式组的含义,学会解不等式组,并能解决实际问题。

过程与方法:通过观察、实验、探究、归纳等方法,让学生体会数学与现实生活的联系,提高学生解决实际问题的能力。

情感态度与价值观:培养学生积极参与数学学习的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

二、教学内容1. 不等式的概念与性质(1)不等式的概念:介绍不等式的定义,让学生理解不等式表示两个数之间的大小关系。

(2)不等式的性质:讲解不等式的基本性质,如加减乘除不等式的性质,以及不等式两边乘以或除以同一个负数时不等号的方向改变等。

2. 不等式的基本运算(1)不等式的加减运算:讲解不等式加减运算的规则,让学生能够熟练进行不等式的加减运算。

(2)不等式的乘除运算:讲解不等式乘除运算的规则,让学生能够熟练进行不等式的乘除运算。

3. 一元一次不等式的解法(1)不等式的解集:讲解如何求解一元一次不等式的解集,让学生能够理解解集的含义。

(2)不等式的解法:讲解如何利用数轴求解一元一次不等式,让学生能够熟练运用数轴求解不等式。

4. 不等式组的解法(1)不等式组的概念:介绍不等式组的定义,让学生理解不等式组表示多个不等式之间的大小关系。

(2)不等式组的解法:讲解如何解不等式组,让学生能够熟练解不等式组,并求出解集。

三、教学重点与难点重点:不等式的概念、性质和基本运算,一元一次不等式的解法,不等式组的解法。

难点:不等式组的解法,特别是多个不等式组合时的解法。

四、教学方法与手段采用问题驱动法、案例分析法、合作学习法等,利用多媒体课件、黑板、教具等教学手段,生动形象地展示教学内容,引导学生主动参与学习过程。

五、教学安排本章内容安排如下:第1课时:不等式的概念与性质第2课时:不等式的基本运算(加减运算)第3课时:不等式的基本运算(乘除运算)第4课时:一元一次不等式的解法第5课时:一元一次不等式的应用第6课时:不等式组的解法(含练习)第7课时:不等式组的应用(含练习)第8课时:复习与总结第9课时:练习与提高第10课时:课堂小结与作业布置六、教学内容6. 不等式的应用(1)实际问题与不等式:通过生活实例,让学生了解如何将实际问题转化为不等式问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式》全章复习与巩固【学习目标】1.能正确的记忆和灵活运用不等式的性质;2.会从实际情境中抽象出一元二次不等式模型和二元一次不等式组,提高数学建模能力;3.掌握一元二次方程,二次函数,一元二次不等式,这三个“二次”的联系,会解一元二次不等式;4.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;5.会用基本不等式解决简单的最大(小)值问题,注意基本不等式适用的条件. 【知识网络】【要点梳理】要点一:不等式的主要性质 (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,, bd ac d c b a >⇒>>>>0,0(5) 乘方法则:0n na b a b >>⇒>(*1)n N n ∈>且 (6) 开方法则:0a b >>⇒>(*1)n N n ∈>且不等式不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与平面区域基本不等式最大(小)值问题简单的线性规划要点诠释:不等式性质中要注意等价双向推出和单向推出关系的不同. 要点二:三个“二次”的关系一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集:设相应的一元二次方程20ax bx c ++=(0)a >的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆0=∆0<∆二次函数cbx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数:2A ax bx c =++(0)a > (2)计算判别式∆,分析不等式的解的情况:①0∆>时,求根12,x x (注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解 (3)写出解集.要点诠释:若0a <,可以转化为0a >的情形解决. 要点三:线性规划用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)线性规划的有关概念: ①线性约束条件:如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by(a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:在线性规划问题中,满足线性约束条件的解(x,y )叫可行解.由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:求线性目标函数在线性约束条件下的最优解的步骤 (1)设变量,建立线性约束条件及线性目标函数; (2) 由二元一次不等式表示的平面区域做出可行域; (3)求出线性目标函数在可行域内的最值(即最优解); (4)作答.要点四:基本不等式 两个重要不等式①,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”);②基本不等式:如果,a b 是正数,那么2a b+≥(当且仅当a b =时取等号“=”). 算术平均数和几何平均数算术平均数:2ba +称为,ab 的算术平均数; 几何平均数:ab 称为,a b 的几何平均数;因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 基本不等式的应用,(0,)x y ∈+∞,且xy P =(定值),那么当x y =时,x y +有最小值; ,(0,)x y ∈+∞,且x y S +=(定值),那么当x y =时,xy 有最大值2S 41. 要点诠释 :在用基本不等式求函数的最值时,应具备的三个条件 ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 几个常用变形不等式:①222()a b 2a b ++≥(当且仅当a=b 时等号成立);②(a+b )2≥4ab (当且仅当a=b 时等号成立); ③()02>⋅≥+b a abb a ;特别地:()021>≥+a aa ;④ba ab ab b a b a +≥≥+≥+22222 (),a b R +∈. 【典型例题】 类型一:不等式的性质例1.若,a b 为实数,则下列结论中正确的是( )A. 若01ab <<,则1a b <或1b a > B. 若01ab <<,则1a b >或1b a<C. 若1a b <或1b a >,则01ab <<D. 若1a b >或1b a<,则01ab <<【思路点拨】利用不等式的性质,逐项进行判断.【解析】若01ab <<,则,a b 同号.当0,0a b >>时,由1ab <得1a b <; 当0,0a b <<时,由1ab <得1b a>.所以A 项正确,B 项错误. 由1a b <得10a b -<,即10ab b -<,所以0,1.b ab >⎧⎨<⎩或0,1.b ab <⎧⎨>⎩ 同理,由1b a >得0,1.a ab >⎧⎨>⎩或0,1.a ab <⎧⎨<⎩ 显然C 项不正确. 同理D 项也不正确.【总结升华】解答此类问题应注意一下几个方面: (1)准确理解不等式的性质;(2)掌握作差法比较大小这种最基本的方法; (3)了解符号的运算规律;(4)灵活利用特殊数值对结论进行检验. 举一反三:【变式1】已知0,0,a b c >><求证c c a b >。

【答案】因为0a b >>,所以ab>0,10ab>.于是 11a b ab ab ⨯>⨯,即11b a >由c<0 ,得c ca b>【变式2】已知,m n R ∈,则11m n>成立的一个充要条件是( )A.0m n >>B.0n m >>C.()0mn m n -<D.0m n << 【答案】C例2.已知函数2()f x ax c =-,满足4(1)1f -≤≤-,1(2)5f -≤≤,那么(3)f 的取值范围是 .【思路点拨】将(3)f 用(1)f 及(2)f 表示出来,再利用不等式性质求得正确的范围.【解析】解法一:方程思想(换元):由⎩⎨⎧=-=-)2(4)1(f c a f c a ,求得[]1(2)(1)341(1)(2)33a f f c f f ⎧=-⎪⎪⎨⎪=-+⎪⎩∴ )2(38)1(359)3(f f c a f +-=-= 又 340)2(3838,320)1(3535≤≤-≤-≤f f ∴ 20)2(38)1(351≤+-≤-f f ,即20)3(1≤≤-f 。

解法二:待定系数法设f(3)=9a-c=mf(1)+nf(2)=m(a-c)+n(4a-c)5-493()---183m m n m n n ⎧=⎪+=⎧⎪⇒⇒⎨⎨=⎩⎪=⎪⎩下略 解法三:数形结合(线性规划)-4(1)-1-4--1-1(2)5-14-5f a c f a c ≤≤≤≤⎧⎧⇒⎨⎨≤≤≤≤⎩⎩所确定区域如图:设9-z a c =,将边界点(0,1)(3,7)代入即求出.【总结升华】利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.举一反三:【变式】已知15a b -≤+≤,13a b -≤-≤,求32a b -的取值范围。

【答案】[-3,10] 类型二:不等式的求解例3.已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_______.【解析】2()f x x ax b =++的值域为[0,)+∞,204a b ∴-=,222()()42a a f x x ax x ∴=++=+,又()f x c <的解集为(,6)m m +,6m m a ∴++=-,132m a ∴=--,2211()(3)(3)9224a c f m a a a ∴==--+--+=.【总结升华】解决本题的关键是(1)准确把握一元二次不等式的解法;(2)掌握一元二次不等式的解集、一元二次方程的根与一元二次函数的零点三者之间的关系,根据需要进行彼此的互化.例4. 已知关于x 的方程220x ax --=的两根为12,x x ,试问是否存在实数m ,使得不等式21m lm ++≥ 12x x -对任意实数a ∈[-1,1]及l ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,说明理由.12121212212222||[1,1]||1||[1,1][1,1]13[1,1]20[1,1]x x a x x x x a x x m lm x x a l m lm l m lm l ∈≥∈∈≥∈≥∈【解析】由题意有+=,=-,所以-因为-,所以-要使不等式++-对任意-及-恒成立,当且仅当++对任意-恒成立,即+-对任意-恒成立.()222212(2)1201202 2.1||[1,1][1,1](2][2)g l ml m g m m g m m m m m m lm x x a l m ⎧(-)=--≥⎨()=+-≥⎩≤≥≥∈∈∞∞设=+-.由,解得-或故存在实数,使得不等式++-对任意实数-及-恒成立,且的取值范围是-,-,+.【总结升华】①在含参不等式问题中,二次不等式恒成立的充要条件的理论依据: ax 2+bx+c>0对任何x ∈R 恒成立⇔a>0且Δ=b 2-4ac<0; ax 2+bx+c<0对任何x ∈R 恒成立⇔a<0且Δ=b 2-4ac<0。

相关文档
最新文档