有限元分析及应用讲义

合集下载

有限元分析及应用讲义(北理工)

有限元分析及应用讲义(北理工)

有限元分析方法及应用 机电学院本科课程内部讲义北京理工大学2014目 录第一章 有限元概述 (3)1.1 有限元历史 (3)1.2 有限元的定义及基本原理 (4)1.3 有限元分析的一般流程 (6)1.4 有限元的应用范围 (7)第二章 基础知识篇 (8)2.1 外力、应力、应变和位移 (8)2.2 两类平面问题 (10)2.3 平衡微分方程 (11)2.4 几何方程 (12)2.5 物理方程 (14)2.6 边界条件 (17)2.7 弹性力学的解题方法(解析法) (18)2.8 虚功方程 (27)第三章 应用CAE篇 (31)3.1 几何清理及网格划分 (32)3.2 材料模型及单元类型 (55)3.3 边界与载荷 (56)3.4 后处理 (60)第四章 线性分析及应用篇 (62)4.1 线性静力分析基础 (62)4.2静力分析简介及步骤 (64)4.3模态分析 (71)第五章 非线性 (75)5.1 几何非线性问题的有限元法 (76)5.2 材料非线性问题的有限元法 (83)第一章有限元概述1.1 有限元历史20世纪40年代,由于航空事业的飞速发展,对飞机结构提出了愈来愈高的要求,即重量轻、强度高、刚度好,人们不得不进行精确的设计和计算,在这一背景下,逐渐在工程中产生了矩阵分析法。

结构分析的有限元方法在二十世纪五十年代到六十年代创立的。

1956年,波音公司的Turner, Clough, Martin, Topp在纽约举行的航空学会年会上介绍了将矩阵位移法推广到求解平面应力问题的方法,即把结构划分成一个个三角形和矩形“单元”,在单元内采用近似位移插值函数,建立了单元节点力和节点位移关系的单元刚度矩阵,并得到了正确的解答。

1960年,Clough在他的名为“The finite element in plane stress analysis”的论文中首次提出了有限元(Finite Element)这一术语。

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

有限元分析与应用——第一章 PPT课件

有限元分析与应用——第一章 PPT课件

0
0
k2u2 k2u3 k3u3 k3u4
k3u3 k3u4 k4u4 k4u5 0
k4u4 k4u5 P
写成矩阵的形式为
k1
=
k1 k1 k2 k2 0 0
k1 k1 0 0 0
0 k2 k 2 k3 k3 0
k1 k1 k2 k2 0 0
有限元方法与ANSYS简介
有限元方法是用于求解工程中各类问题的数值方法,应 力分析中稳态的、瞬态的、线性的或非线性的问题以及热传导、 流体流动和电磁学中的问题都可以用有限元方法进行分析解决。 现代有限元方法的20世纪早期开始,20世纪50年代,boeing公司 采用三角元对机翼进行建模,推动了有限元方法的应用。到20 世纪60年代,人们接受了“有限元”这个词。 ANSYS是一个通用的有限元计算机程序,其代码长度超 过10万行。应用ANSYS可以进行静态、动态、热传导、流体流 动和电磁学等分析。在过去的20多年里,ANSYS是主要的有限 元分析程序。现在ANSYS被广泛应用在如航天、汽车、电子、 核科学等领域。
第一章 概述
有限元方法是广泛用于解决应力分析、热传 递、电磁场和流体力学等工程问题的数值方 法。
本章的内容
(1)工程问题 (2)数值方法 (3)有限元方法与ANSYS简介 (4)有限元方法的基本步骤 (5)直接公式法 (6)最小总势能公式 (7)加权余数法 (8)结果的验证 (9)理解问题
工程问题
0
R1 0 0 0 0
0 k2 k 2 k3 k3 0
0 k3 k3 k 4 k4
0 u1 0 0 u 2 0 0 u3 0 k4 u 4 0 k4 P u5

有限元分析应用 ppt

有限元分析应用 ppt


由分析可知,在锯片上加载转速,锯片基体常用材料为 65 Mn, (屈服强度)σ 0.2 =410 MPa,考虑到开散热孔和水槽等对锯片强度的 影响,取安全系数为 1.5 ,则许用应力 [ σ ]= σ 0.2/1.5 约为 270 MPa,根据第三强度理论:σ 1-σ 3 ≤[σ ],由图 2 中的分析所得到 应力最大节点处的值为 4.17 MPa,远远小于金刚石圆锯片基体的强 度极限值. 这也可以从业内有关研究资料上得到证实,如果单从转速 和锯片强度角度考虑,单独计算工作时所受的回转应力,它们所引起的 应力皆不足以造成锯片的破坏,而由锯片强度所决定的转速远远高于目 前锯片工作时采用的转速。 对圆锯片工作时回转应力的计算 , 已有资料从理论上进行过计算 , 从理论计算和有限元分析 , 我们可以得到圆锯片应力的分布规律 : 切向应力在中心孔边最大,锯片外缘最小,且皆为拉应力;径向应力 在中心孔边缘和锯片外缘为零,最大值大约在半径的 1/3 处,且也为 拉应力.

4 结论
由此我们可以得出,在锯片中引起的回转应力在圆周方 向和半径方向皆为拉应力. 这一应力状态对锯片的影响为增 加其刚度,即“刚化作用’。
请老师同学们批评指 正
9/20
2/20
2 有限单元法的分析过程
有限单元法的分析过程概括起来可以分为以下 六步: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析
3/20
3 金刚石锯片离心力有限元分析

理论分析上一般将圆锯片计算模型简化为一个空心圆盘结构,圆锯 片的受力研究问题视为平面应力问题处理,这种简化已得到业内认可, 并与实际基本吻合。 为了更为真实的反应圆盘锯片的应力分布情况,取基体上开有小 圆孔的锯片进行有限元分析,此种圆锯片通过选取合理的结构参数可 以在散热和工作稳定性上取得较为理想的效果。

有限元分析与应用技术培训教材

有限元分析与应用技术培训教材
基于问题的基本方程,建立单元节点的平衡方程(即单元刚度方程)
借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组即可。
添加标题
添加标题
添加标题
添加标题
1-3 有限元法基本思想
实例1(离散系统)结构离散
节点位移向量表示: 节点力向量表示: 节点1沿x方向的位移 、其余节点位移全为0时轴向压力为:
1-1工程和科学中典型问题
1-2 场问题的一般描述 --微分方程+边界条件
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
应力场----弹性力学
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。

有限元分析经典课件

有限元分析经典课件

有限元分析经典课件1. 简介有限元分析(Finite Element Analysis, FEA)是一种以数值模拟方法为基础,通过离散化处理求解结构力学问题的工程方法。

本课件将介绍有限元分析的基本原理和常用的应用领域。

2. 有限元分析的基本原理2.1 有限元方法概述有限元方法(Finite Element Method, FEM)是有限元分析的基础理论和计算方法。

本部分将介绍有限元方法的基本概念、基本步骤、离散化处理等内容。

2.2 有限元网格划分有限元网格划分是有限元分析的关键步骤,它将结构离散化为有限个小单元。

本部分将介绍有限元网格划分的方法、常用网格类型以及网格质量评价的方法。

2.3 有限元方程与加载有限元方程是描述结构力学问题的关键方程。

本部分将介绍有限元方程的推导过程,以及加载条件的处理方法。

2.4 有限元解与后处理有限元解是通过有限元分析得到的结构响应结果。

本部分将介绍有限元解的计算方法以及后处理方法,包括位移、应力、应变等结果的计算和可视化展示。

3. 有限元分析的应用案例3.1 结构力学分析结构力学分析是有限元分析的主要应用之一。

本部分将通过实例演示有限元分析在结构力学分析中的具体应用,包括静力学分析、动力学分析等。

3.2 热力学分析热力学分析是有限元分析的另一个重要应用领域。

本部分将通过实例演示有限元分析在热力学分析中的具体应用,包括热传导、热稳定性等问题的分析。

3.3 流体力学分析流体力学分析是有限元分析的扩展应用领域之一。

本部分将通过实例演示有限元分析在流体力学分析中的具体应用,包括流体流动、压力分布等问题的分析。

4. 有限元分析软件的介绍有限元分析软件是进行有限元分析的工具,市场上有多种成熟的有限元分析软件可供选择。

本部分将介绍一些常用的有限元分析软件,包括Ansys、Abacus等。

5. 总结有限元分析作为一种重要的数值模拟方法,已广泛应用于不同领域的工程问题。

本课件从理论原理到实际应用都进行了全面的介绍,相信对有限元分析的学习和应用都有很大帮助。

《有限元分析及应用》课件

《有限元分析及应用》课件

受垂直载荷的托架
31
体单元
•线性单元 / 二次单元 –更高阶的单元模拟曲面的精度就越高。
低阶单元
更高阶单元
32
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
36
第二章 有限元分析的力学基础
(3) 研究的基本技巧
采用微小体积元dxdydz的分析方法(针对任意变
形体)
40
2.2 弹性体的基本假设
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
物质连续性假定: 物质无空隙,可用连续函数来描述 ;
物质均匀性假定: 物体内各个位置的物质具有相同特 性;
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
28
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
29
30
y
dy zy
1 2
zy
z
dz
0
略去微量项,得 yz zy
MY 0 zx xz
MZ 0
xy yx
剪切力互等定律
53
二维问题: 平衡微分方程
x yx X 0
x y xy y Y 0 x y
剪切力互等定律

《有限元分析概述》课件

《有限元分析概述》课件

PART 05
有限元分析的未来发展与 挑战
新技术与新方法的探索
人工智能与机器学

利用人工智能和机器学习技术, 自动构建有限元模型、优化求解 过程和提高分值算法和 求解技术,提高有限元分析的稳 定性和精度。
多物理场耦合
探索多物理场耦合的有限元分析 方法,以解决复杂工程问题中的 多物理场耦合问题。
边界条件的处理
在有限元分析中,边界条件的处理是重要的环节。边界条件通常通过在边界节点上施加约束或加载来实现,以模拟实际系统 的边界条件。
边界条件的处理方式需要根据具体问题进行分析和设定,以确保求解结果的准确性和可靠性。
求解与后处理
求解是有限元分析的核心步骤,涉及到建立方程组、求解方程组并得到离散化模型的结果。常用的求 解方法包括直接法、迭代法和优化算法等。
优化设计
03
根据计算结果,对结构进行优化设计,提高其性能或降低成本

PART 04
有限元分析的优缺点
有限元分析的优缺点
• 有限元分析(FEA)是一种数值 分析方法,用于解决各种工程问 题,如结构分析、热传导、流体 动力学等。它通过将复杂的物理 系统离散化为有限数量的简单单 元(或称为“有限元”)来模拟 系统的行为。这些单元通过节点 相互连接,形成一个离散化的模 型,可以用来预测系统的性能和 行为。
2023-2026
ONE
KEEP VIEW
有限元分析概述
REPORTING
CATALOGUE
目 录
• 有限元分析简介 • 有限元分析的基本原理 • 有限元分析的实现过程 • 有限元分析的优缺点 • 有限元分析的未来发展与挑战
PART 01
有限元分析简介
定义与背景
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析及应用讲义
识别无效的结果
分析的对象的一些行为 计算出的几何项 求解的自由度及应力 反作用力或节点力

有限元分析及应用讲义
1.分析的对象的一些基本的行为:
• • • • • 重力方向总是竖直向下的 离心力总是沿径向向外的 没有一种材料能抵抗 1,000,000 psi 的应力 轴对称的物体几乎没有为零的 环向应力 弯曲载荷造成的应力使一侧受压,另一侧受拉
13
有限元分析及应用讲义
局部的细化
采用plane42单元网格局部细化与未细化
能量百分比误差 局部细化
Displacement DMX=0.88E-03 SEPC=14.442
未细化
DMX=0.803E-03
应力偏差
Element Solution(SDSG) SDSG SMN=63.453 SMN=64.528 SMX=426.86 SMX=689.589
s = 1200 Elem 2 s = 1300
节点的 ss 是积分点 的外插)
(
savg = 1200
7
有限元分析及应用讲义
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
误差信息:
s
mnb j
min( s
a jm
s n )
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi (difference ~ 450 psi ~ 1.5 %)
s mxb max( s a s n ) j jm 例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限
节点n的应力矢量:
s s s
i n a n i n
所关心位置上的应力偏差值~450 psi (30,000 psi 应力的1.5%)
N en 察看应力偏差:Plot Results > Element Solu > Error Estimation > Stress deviation (SDSG)
ei 1 s T D1s d (vol) 2 vol
其中:ei 单元i的能量误差
D — 单元的应力 应变矩阵 s — 应力误差矢量
整个模型的能量误差: e ei Nr单元数
i 1 nr
vol — 单元体积
察看能量误差:Plot Results > Element Solu > Error Estimation > Energy error (ENER).
+ + – –
映射网格 通常包含较少的单元数量. 低阶单元也可能得到满意的结 果,因此DOF(自由度)数目较少. 面和体必须形状 “规则”, 划 分的网格必须满足一定的准则. 难于实现, 尤其是对形状复杂 的体.
有限元分析及应用讲义
...映射网格划分
自由网格

自由网格是面和体网格划分时的缺省设置. 生成自由网格比较容易: – 导出 MeshTool 工具, 划分方式设为自由划 分. – 推荐使用智能网格划分 进行自由网格划分, 激活它并指定一个尺寸级别. 存储数据库. – 按 Mesh 按钮开始划分网格. 按拾取器中 [Pick All] 选择所有实体 (推荐). – 或使用命令 VMESH,ALL 或 AMESH,ALL.
如果只有一个载荷施加在结构上,检验结果比较容易. 如果有多个载荷,可单独施加一个或几个载荷分别 检验,然后施加所有载荷检验分析结果.
2
有限元分析及应用讲义
2.计算出的几何项:
在输出窗口中输出的质量特性,可能会揭示在几何 模型、材料属性(密度)或实常数方面存在的错误.
3.检验求解的自由度及应力:
• 确认施加在模型上的载荷环境是合理的. • 确认模型的运动行为与预期的相符 - 无刚体平动、 无刚体转动、无裂缝等. • 确认位移和应力的分布与期望的相符,或者利用物 理学或数学可以解释.
5
有限元分析及应用讲义
ANSYS网格划分精度估算
网格误差估算 局部细化 P方法&举例
有限元分析及应用讲义
ANSYS网格误差估计
ANSYS通用后处理包含网格离散误差估计.
误差估计是依据沿单元内边界的应力或热流的不连续性,是平均 与未平均节点应力间的差值.
savg = 1100
s = 1000 Elem 1 s = 1100
有限元分析及应用讲义
映射网格划分&举例
映射网格划分

由于面和体必须满足一定的要求,生成映射网格不如生成自由网格容 易: – 面必须包含 3 或 4 条线 (三角形或四边形). – 体必须包含4, 5, 或 6 个面 (四面体, 三棱柱, 或六面体). – 对边的单元分割必须匹配. 对三角形面或四面体, 单元分割数必须为偶数.
3
有限元分析及应用讲义
4.反作用力或节点力
模型所有的反作用力应该与施加的点力、压力和惯性力 平衡.
在所有约束节点的竖 直方向的反作用力...
…必须与施加的竖直方 向的载荷平衡 在所有约束节点水平方向的反 作用力必须与水平方向的载荷 平衡. 所有约束节点的反作用力矩必 须与施加的载荷平衡. 注意包含在约束方程中自由度 的反力,不包括由这个约束方 程传递的力. 4
12
有限元分析及应用讲义
应力上下限
应力上下限可以确定由于网格离散误 差对模型的应力最大值的影响.
显示或列出的应力上下限包括: • 估计的上限 - SMXB • 估计的下限 - SMNB 应力上下限限并不是估计实际的最 高或最小应力。它定义了一个确信 范围。 如果没有其他的确凿的验证 ,就不能认为实际的最大应力低于 SMXB.
P方法应用控制:
P方法用于线弹性结构分析—实体和壳 体。 P单元由以下5种单元: 2-D Quadrilateral (Plane145) 2-D Triangle (Plane146) 3-D Brick (Solid 147) 3-D Tetrehedron (Solid 148) 3-D Shell (Solid 150)
有限元分析及应用讲义
...映射网格划分

因此 ,映射网格划分包含以下三个步骤: – 保证 “规则的”形状, 即, 面有 3 或4 条边, 或 体有 4, 5, 或 6 个面. – 指定尺寸和形状控制 – 生成网格0
SEPC ~ 2 %
PowerGraphic off Main menu > general postproc > plot results > deformed shape 选 :Def+undefedge
9
有限元分析及应用讲义
应力偏差
要检验某个位置的网格离散应 力误差,可以列出或绘制应力 偏差. 某一个单元的应力偏差是此单 元上全部节点的六个应力分量 值与此节点的平均应力值之差 的最大值. 应力偏差:
Element Solution(SERR) SERR SMN=0.365E-03 SMN=0.005173 SMX=0.600595 SMX=0.38503 Nodal solution(SEQV) SMN=725.21 SMNB=720.133 SMX=4579 SMXB=4623 SEQV SMN=773.769 SMNB=708.94 SMX=4421 SMXB=4999
举例:飞机模型机翼
y
弹性模量
x
Ex=38E03 psi 泊松比:0.3 密度:
10
斜度=0.25
z
D=1.033e-3 slugs/in3
2
机翼沿着长度方向轮廓一致,且它的横截面由直线和样条曲线 定义。机翼的一端固定在机体上,另一端为悬空的自由端。
采样点:A(0,0,0) B(2,0,0) C(2.3,0.2,0) D(1.9,0.45,0) E(1,0.25,0)
映射划分
– 面的单元形状限制为四边形,体的单元限制为六面
体 (方块). – 通常有规则的形式,单元明显成行. – 仅适用于 “规则的” 面和体, 如 矩形和方块.
有限元分析及应用讲义
映射网格划分
网格划分的优缺点:
+ – –
自由网格 易于生成; 不须将复杂形状的 体分解为规则形状的体. 体单元仅包含四面体网格, 致 使单元数量较多. 仅高阶 (10-节点) 四面体单元 较满意, 因此DOF(自由度)数目 可能很多.

有限元分析及应用讲义
延伸网格划分 & 举例

将一个二维网格延伸生成一个三维网格;三维网格生成后 去掉二维网格 步骤: 1.先生成横截面 2.指定网格密度并对面进行网格划分 3.拖拉面网格生成体网格
指定单元属性


拖拉,完成体网格划分。

4.释放已选的平面单元
有限元分析及应用讲义
能量误差估计
应力上下限
有限元分析及应用讲义
P方法及p单元的应用
P 单元的位移形函数 u=a1+a2x+a3y+a4x2+a5xy+a6y2
v=a7+a8x+a9y+ a10x2+a11xy+a12y2
P方法的优点:
如果使用 p-方法 进行结构分析,可以依靠p单元自动调整单元多项式阶数(28),达到收敛到设定的精度. 对这种方法的相信程度,与使用经验有关.
有限元分析及应用讲义
延伸网格划分:作业
截面宽度:10mm 手柄长度: 20cm 导角半径: 1cm
截面形状:正六变形 杆长 : 7.5cm
弹性模量: 2.07E11pa
相关文档
最新文档