自适应结构网格并行应用支撑软件框架研究2011年度报告
基于流体特征的任意多边形自适应网格技术

输。这里,数据传输可 以是串行或并行的。数据传输总是伴随着网格片层次结构而 出现的。当网格片结构
层次 的变化 时,就 产生 数据传 输 求 。在 J M1 框架 中,数据 传输 被分 为 3类 :粗 网格 层到细 网格层 的 AS N
数据传 输 ,同层数据 传 输和细 网格层 到粗 网格 层 的数据 传 输 。
态 。每 次注 册指 明了源 和 目的数 据片信 息 , 以及 与数 据通 信相 关 的空 间( 时间) 和 插值算 子 。 每个通 信算 法
对象独 立于 自适应 网格 片层 次结构 的配 置 。通 常 ,通信 算法 的状 态只需 要在 问题求 解初始 建立 阶段 中的注 册过程 中定义 一次 ,就 可 以在 整个计算 过程 中维 持不变 。() 2通信调 度 ,由通信 算法基 于一特 定 的网格 片层
在 J S N 中,数 据 传输基 于对象 化设计 ,采 用策 略 设计模式 ,分 为 3 层次 :() 算法 ,它支 持 A M1 个 1通信 对计算 中 的数 据传 输阶 段 的算法 级描述 。通信 算法确 定 了待 通信 的变量 以及对这 些变 量在 一个 自适 应 网格 片层 次结构 上进行 时 间和空 间插值 的算 子 。用户 在创 建一 个通 信算 法对象 后 ,通过 一组注 册操 作定义其 状
细节 ,而专注 于计算 方法 的研 究 。在 J M1 上 开发 的流 体 界面不 稳定性 等多个 程序 ,不 需要 关注底层 数 AS N 据传 输细 节 , 制周期 短 , 研 采用 自适应技 术 , 能较 好地 捕捉 流 体界面 上 的变 化 。 些 应用 结果均表 明 J M1 这 AS N 中的数据传 输方 法 的有效 性 。
的一 些方法 。
国家企业信息化应用支撑软件工程技术研究中心(清华大学)

发展建设
近年来,在国家科技部、教育部和清华大学的领导下,中心以清华大学的技术与人才为依托,充分发挥其企 业信息化支撑软件及其技术集散地的优势,配合国家企业信息化工程,承担了一批国家863、973、十五科技攻关 等重大科研项目,完成了企业信息化、政府信息化、城市信息化等一批项目,开发出了一系列具有我国知识产权 的软件系统和产品,推出了适合企业不同需求的可定制的一体化解决方案。这些成果的推广应用,大大促进了企 业的产品创新与技术革新,提高了企业的现代管理水平和市场竞争力,充分发挥了国家工程中心承上启下的作用, 为发展中国软件产业做出了积极贡献。
研究力量
目前,工程中心有全时研究人员91人,兼职研究人员12人,其中院士4人、大型系企业总工程师3人。2003年 5月,国家科技部以国家企业信息化应用支撑软件工程技术研究中心为依托,批准成立国家制造业信息化培训中心, 赋予了工程中心更多的使命。
孙家广
工程中心主任;教授,国务院学位委员会委员,国家制造业信息化领导小组副组长,863先进制造与自动化 领域首席科学家,清华大学校务委员会委员,中国工程院院士,清华大学教授。
汪劲松
博士,特聘教授。现任职清华大学机械工程学院副院长、精密仪器与机械学系系主任,863计划机器人技术 主题专家组专家。
戴先中
教授,东南大学“控制科学与工程”一级学科学科带头人之一,博士生导师,东南大学机器人研究中心主任。
研究方向
工程中心以清华大学软件学院的学科方向为前导,重点研究领域有:软件系统平台与软件体系结构、应用中 间件技术、可信软件技术、软件重构技术、信息安全与系统安全、嵌入式系统、自动化编程与简约编程技术、数 据库基础技术、企业信息管理技术、数据挖掘和数据网格技术、软件项目管理、软件质量与软件测试、计算机图 形学、计算机辅助几何设计、图像处理等。
高性能计算在目标电磁散射特性分析中的应用

高性能计算在目标电磁散射特性分析中的应用刘阳;周海京;郑宇腾;陈晓洁;王卫杰;鲍献丰;李瀚宇【摘要】基于高性能计算的电磁数值模拟在目标电磁散射特性分析中发挥着越来越重要的作用.由于任一种数值方法都有一定的适用范围,不能高效处理所有问题,因此,有必要发展和集成多种数值方法,形成能够为不同类型问题的雷达散射截面(radar cross section,RCS)计算提供高效解决途径的软件系统.文中在并行自适应结构/非结构网格应用支撑软件框架之上,充分考虑数值方法的可扩展性以及物理个性的可分离性,通过基于机理、数据的混合可计算建模和接口设计,以及算法的模块化开发,发展了多种用于RCS计算的数值方法,并将其集成到高性能电磁数值模拟软件系统JEMS中.数值算例表明了JEMS具有高效分析多种目标电磁散射特性的能力,并在大规模并行计算方面具有显著优势.%The electromagnetic numerical simulation based on high performance computing gains more and more attention in analyzing the electromagnetic scattering characteristics of targets to meet the engineering increasing requirements. Since each method has its own advantages and disadvantages, and there is no one method which can deal with all problems, it is necessary to develop multi approach for integrating the software system, which can provide efficient means to analyze the electromagnetic scattering characteristics of different targets. Considering scalability of algorithms and separability of physical characteristics, based on parallel adaptive structured/unstructured mesh applications infrastructure, several numerical methods are developed and integrated into the electromagnetic numerical simulation software system, JEMS, with studying computable modeling, interface design andmodularized realization of algorithms. Some numerical examples illustrate JEMS has the capability in efficient solving the radar cross sections of different targets, and has advantages in large-scale parallel computing.【期刊名称】《电波科学学报》【年(卷),期】2019(034)001【总页数】9页(P3-11)【关键词】电磁散射;雷达散射截面;高性能计算;数值方法;并行支撑框架【作者】刘阳;周海京;郑宇腾;陈晓洁;王卫杰;鲍献丰;李瀚宇【作者单位】北京应用物理与计算数学研究所, 北京 100094;北京应用物理与计算数学研究所, 北京 100094;北京应用物理与计算数学研究所, 北京 100094;中物院高性能数值模拟软件中心, 北京 100088;中物院高性能数值模拟软件中心, 北京100088;中物院高性能数值模拟软件中心, 北京 100088;北京应用物理与计算数学研究所, 北京 100094【正文语种】中文【中图分类】O441引言目标电磁散射特性在雷达技术、目标识别、隐身与反隐身技术等应用中都有重要意义[1-4]. 电子技术的不断发展使它在军事和民用领域的应用日益拓展,以致目标电磁散射特性的数据获取与分析评估一直备受瞩目,建立在计算电磁学基础上的数值模拟技术为其提供了强有力的研究手段. 同时,各应用领域不断提高的实际工程需求,也为目标电磁散射特性的数值模拟提出了许多具有挑战性的问题,如超电大尺寸、复杂结构(包括深腔、缝隙、尖劈等)、复杂材质(非线性、各向异性、色散、时变媒质等)、宽频谱等[5-7]. 这些问题的求解不仅需要从数值算法设计的角度提高计算效率和精度,还需要从计算资源和并行技术的角度来增强对大规模计算的支撑. 近年来,计算机集群技术和并行计算技术的进步,促进电磁场问题的并行计算技术蓬勃发展,使基于高性能计算的电磁场数值模拟在实际工程应用中发挥着越来越重要的作用[8-10]. 许多商业软件,如CST、FEKO、HFSS等均提供并行版本,国内外很多科研团队也都针对不同的数值方法发展了各自的并行程序,有的甚至已形成了较为成熟的软件,如美国伊利诺伊大学的W. C. Chew教授的团队[8]、美国俄亥俄大学的J. F. Lee教授的团队[9],国内电子科技大学聂在平教授的团队[10]、北京理工大学盛新庆教授团队[11]、西安电子科技大学张玉教授的团队[12]等.由北京应用物理与计算数学研究所研制的并行自适应结构/非结构网格应用支撑软件框架(JASMIN/JAUMIN/JCOGIN)是针对科学计算中的结构/非结构网格应用,将高性能的数据结构进行了封装、并屏蔽了大规模并行和网格自适应的计算技术,能够支撑物理建模、数值方法、高性能算法的创新研究,可有效缩短基于现代高性能计算机的并行计算应用程序的研制时间[13]. 在该框架基础上,我们发展了高性能计算软件系统JEMS(J electro magnetic solver),用于多种电磁场问题的高效数值模拟. 本文将主要介绍JEMS中可用于目标电磁散射特性计算方面的内容,从各种数值算法及适用问题展开阐述,并通过介绍JEMS中针对不同类型问题的雷达散射截面计算的数值方法的研究进展和一系列数值算例,展示了JEMS具有高效分析多种目标电磁散射特性的能力,及其在大规模并行计算方面具有的优势.1 电磁散射的数值计算方法雷达散射截面[5](radar cross-section, RCS)是度量目标对电磁波散射能力的一个重要量化指标. RCS的定义为单位立体角内目标朝接收方向散射的功率与从给定方向入射于该目标的平面波功率密度之比的4π倍. 快速和精确获取目标的RCS成为衡量用于目标电磁散射特性研究数值方法有效性的关键.用于RCS计算的方法大致分为三类. 一类是解析方法,如Mie级数方法. 这类方法效率高且可得到问题的准确解,便于分析问题的物理本质,但适用范围太窄,不能满足复杂目标的分析需求.另一类是高频近似方法,如物理光学(physical optics, PO)、几何光学(geometrical optics, GO)、几何绕射理论(geometrical theory of diffraction, GTD)和物理绕射理论(physical theory of diffraction, PTD)等[14-16]. 高频近似方法计算速度快且对存储需求不高,特别在对电大尺寸目标的RCS计算中具有明显优势,能满足一定的工程需要. 然而对目标隐身与识别等应用,特别是含复杂结构或复杂材质的工程问题来说,该类方法的精度不够或无法求解.第三类是全波方法. 这类方法是目前计算电磁学的主流研究方向,如矩量法(method of moments, MoM)及其加速算法、有限元方法(finite element method, FEM)、时域有限差分法(finite difference time domain, FDTD)等[17-18],多用于处理电小或电中尺寸问题. 这类方法能够处理复杂目标,且给出较精确的数值解. MoM是基于积分方程的数值方法,积分方程中格林函数的使用,使无穷远处的辐射条件能够自然满足,场在数值网格中的传播过程得到精确描述,因此该方法的数值色散误差很小. 此外,MoM未知量数目较少且阻抗矩阵条件数较好. 然而,生成的阻抗矩阵是稠密的,造成矩阵元素的计算和存储以及矩阵方程的求解成为影响MoM求解能力的关键因素. 因此,其快速算法成为MoM重要的研究方向,如基于快速傅里叶变换的方法(CG-FFT、IE-FFT、AIM等)[19-20]、基于低秩矩阵压缩的纯代数方法(ACA、MLMDA等)[21-22]和基于快速多极子的方法(MLFMA)[23],有效解决了MoM的上述问题,使其在RCS计算中得到广泛使用. FEM[24]和FDTD[25]均是基于微分方程的方法. 这类方法通常算法简单,易于编程实现和程序并行化. 而且,FEM通用性强,可以处理复杂材质和结构,生成的矩阵具有稀疏性,但矩阵条件数较差. FDTD 方法是计算电磁学中被广泛使用的时域方法,具有宽频带瞬变电磁场分析计算的能力,适用于对宽带RCS的计算需求. 然而,这类方法在求解开的或无限大区域的问题时,需要辅以截断边界. 由于这类方法的未知量分布在整个传播空间,且为了保证所需的计算精度,在处理大尺寸和复杂结构时,往往需要较大的截断区域和精细的网格,从而造成巨大的未知量数目,导致其对计算机资源需求很大. 偏微分方程的局域性还造成这类方法中电磁场在数值网格的传播过程中形成较大的色散误差,导致其计算精度较差. 由于每种数值方法各具优点和劣势,因此将多种数值方法有效结合,取长补短发挥各自的优势,更好地高效求解RCS成为目前的研究热点之一.如全波方法之间的一种混合,即有限元边界积分(finite element boundary integral, FEBI)方法,它是有限元方法和积分方程方法的结合,能够有效消除FEM的截断误差,实现计算区域的最小化,同时具有处理复杂结构和材质的能力,其很强的实用性使其得到了深入发展. 此外,FEM和MoM的许多研究成果都能够应用到FEBI中[26]. 虽然在近几十年全波方法得到了系统的发展,各种快速算法、并行技术、矩阵求解加速技术等不断拓展了全波方法的求解能力,但是仍然有许多实际工程问题是全波方法无法有效或独立解决的. 因此,全波方法与高频方法的混合技术不可避免也成为一个备受关注的发展方向[5,27],包括MoM与PO、MoM与PTD、FEM与PO等,这类混合虽然由于高频近似方法的使用在一定程度上损失了计算精度,但是,它们不仅能够刻画电大目标上电小复杂结构,而且实现了较高的计算效率和较低的内存需求,在解决一些实际工程问题中成为能够折中考虑精度和效率的有效方法.综上所述,各种数值方法都有一定的适用范围,可以高效地求解一些问题. 然而,至今还未有哪种方法可以高效地处理所有问题,因此,有必要发展和集成用于RCS计算的多种数值方法,形成能够为不同类型问题的RCS计算提供高效解决途径的软件系统.2 电磁数值模拟软件系统JEMS目前,国防和高端商用领域迫切需要解决的复杂电磁工程问题,常常具有超电大尺寸、多尺度、多介质或复杂介质、多物理等特性. 基于高效能计算环境和并行支撑软件框架,我们将多种数值方法有机集成,发展了JEMS软件系统,用于电磁场问题的高效数值模拟. JEMS软件系统的设计,充分考虑了保持计算方法的持续可扩展性,并基于机理、数据的混合可计算建模及接口设计,保持物理个性的可分离性及可扩展性. 此外,由于并行支撑软件框架支持基于分布式内存和共享式内存的高性能计算,因此在该框架上发展的JEMS软件系统也支持上述两种高性能计算模式.JEMS软件系统的数值模拟能力并不仅限于目标散射特性分析,因而,本文在简单地整体回顾JEMS软件系统之后,将着重介绍JEMS中针对不同类型问题的RCS计算的解决方案和一系列数值算例,展示JEMS在大规模并行计算方面的优势.2.1 JEMS软件系统简介JEMS软件系统是基于并行自适应结构/非结构网格应用支撑软件框架(JASMIN/JAUMIN/JCOGIN)以算法模块联合研究的形式,与国内优势高校合作,充分发挥国内优势高校的研究力量,将国内外许多最新成果持续融入到软件平台的设计和研制中.综合考虑电磁场问题物理问题的特性、所关注的具体物理量,以及不同物理层次所需的模拟软件算法的共性基础构架的不同,发展的JEMS软件系统的软件体系如图1所示. 该软件系统的总体目标是通过突破在并行支撑框架上高效并行实现电磁脉冲源模拟、区域级/场景电磁模拟、电大多尺度结构全波电磁模拟以及多物理电磁计算等关键技术,在高性能计算环境中构建能力型电磁数值模拟软件系统,为具有明确应用牵引的高价值目标提供基于高性能计算的复杂电磁系统分析、优化及评估解决方案,为国内重大电磁工程问题快速定制高端专用计算平台[28].图1 电磁数值模拟软件系统JEMS体系图Fig.1 System diagram of electromagnetic numerical simulation software system JEMS用于目标电磁散射特性分析的多种数值方法属于平台级全波电磁模拟软件. 该软件包括时域和频域两部分内容,时域部分发展了基于HPA-adaptive模式的时域多算法求解技术,频域部分则采用基于非重叠区域分解的多种频域全波方法的混合集成技术,此外还发展了并行网格剖分技术、基于耦合波方法的电大馈线系统的快速计算技术以及电磁场/电路协同计算技术. 为典型的平台级目标(如飞行器等)构建了精确建模和电磁模拟能力,可实现目标近场和远场的多种电磁特性仿真数据. 此外,JEMS还包括电磁脉冲源模拟软件、区域级电磁模拟软件,以及器件级多物理电磁模拟软件.由于不同数值方法所需要的输入数据形式迥异,如网格数据、模型参数等,JEMS目前对基于不同数值方法发展的求解器的输入数据未做统一. 然而,JEMS中多种数值方法所需的网格数据均可由前处理引擎SuperMesh产生.2.2 用于RCS计算的不同数值方法的研究进展实际应用中需要进行电磁散射特性分析的目标从电尺寸、结构复杂度、材质以及频谱范围等方面都不尽相同,为从精度和效率两方面满足不同应用需求,JEMS软件系统提供多种算法供实际计算选择,包括MLFMA、FEM、PTD、FEBI-MLFMA-PO 以及FDTD等. 下面将逐一对其特点和适用范围进行介绍.2.2.1 多层快速多极子方法JEMS中的平台级频域全波电磁模拟软件JEMS-FD提供了基于组合场积分方程的MLFMA. 特别地,该方法通过高阶奇异值提取技术保证了算法的数值精度和计算稳定性,并提供块对角、稀疏近似逆等预条件技术保证超电大含腔目标的求解稳定性,可满足电大尺寸金属目标对应千万自由度矩阵方程的RCS高效求解. 算例1和算例2分别是使用JEMS中MLFMA对不同频率下F117隐身战机和含腔超电大目标的电磁散射特性分析.算例1 F117隐身战机不同频率下的电磁散射特性分析.模型如图2所示,入射平面波频率为1.5 GHz,入射方向沿机头正入射且采用垂直极化,模型电尺寸为88.8λ×60λ×10.6λ,λ为波长. 表面剖分的三角形网格数目97.6万,未知量数目146.5万,使用16个CPU核并行计算,计算时间为2.27 h,内存需求为7.9 GB,该频率下F117隐身战机的双站RCS如图3所示,与商业软件FEKO的结果吻合很好.当入射平面波频率为5.0 GHz时,模型电尺寸为310.8λ×210λ×37.1λ. 表面剖分的三角形网格数目为996.8万,未知量数目 1 495.2万,使用10个CPU核并行计算,计算时间约5.5 h,内存需求约为84.3 GB,图4给出该频率下F117隐身战机的双站RCS的模拟结果.图2 F117隐身战机模型Fig.2 F117 model图3 频率1.5 GHz时F117的双站RCSFig.3 Bistatic RCS of F117model(frequency=1.5 GHz)图4 频率5 GHz时F117的双站RCSFig.4 Bistatic RCS of F117model(frequency=5 GHz)算例2 含腔超电大目标的电磁散射特性分析. 模型如图5所示,入射平面波频率为0.9 GHz,入射方向沿机头正入射且采用垂直极化,模型电尺寸为66λ×48λ×20λ. 网格剖分的未知量数目约118万,计算时间13 181 s,内存需求为6.7 GB,此含腔超电大目标的双站RCS如图6所示.图5 含腔超电大目标模型Fig.5 Model for the electrical large target with a cavity图6 频率0.9 GHz时含腔超电大目标的双站RCSFig.6 Bistatic RCS of the electrical large target with a cavity(frequency=0.9 GHz)2.2.2 有限元方法在频域全波方法中,还发展了针对复杂多尺度、多材料(包括介质、金属、吸波材料、频变材料、各项异性材料等)结构的FEM,可支持多种激励源(如平面波、高斯波束、点源、波导激励源、电压/电流源等),采用非结构网格并行自适应加密技术和区域分解求解技术,具有数万CPU核的并行扩展能力,可实现对数亿网格规模复杂目标的RCS分析. 算例3和算例4分别是使用JEMS中FEM分析频率选择表面和舰船模型的电磁散射特性.算例3 频率选择表面的电磁散射特性分析. 模型如图7所示含1 000个单元. 入射平面波频率0.3 GHz,入射方向沿-Z轴(即垂直于频率选择表面),极化方向沿+X轴. 模型电尺寸为数十个波长,四面体网格数目为414万,采用8个CPU核并行,区域分解迭代步数为8. 如图8中所示,JEMS中FEM获得的该模型的双站RCS计算结果与商业软件HFSS的一致.图7 频率选择表面的模型Fig.7 Model for frequency selective surface图8 频率0.3 GHz时频率选择表面的双站RCSFig.8 Bistatic RCS of the frequency selective surface(frequency=0.3 GHz)算例4 舰船模型的电磁散射特性分析. 模型如图9所示,尺寸为130.8 m×20m×23.1 m. 入射平面波频率为1 GHz,入射方向的俯仰角为45°,方位角为0°,且为水平极化. 四面体网格规模约为3亿,在天河-2超级计算机上启动400个进程,共计9 600CPU核完成自适应计算. 图10是舰船模型在频率1 GHz时的双站RCS.图9 舰船模型Fig.9 The ship model图10 频率1 GHz时舰船的双站RCSFig.10 Bistatic RCS of theship(frequency=1 GHz)2.2.3 物理绕射理论目标的电尺寸越大,其表面散射场的局部效应越明显,可利用高频方法的局部性原理来求解其散射场. JEMS中提供了PTD方法,通过考虑边缘的绕射电流达到对PO方法的修正,以提高其计算精度. 另外,采用深度缓冲器(z-buffer)算法判断遮挡,区分物体表面的照射和非照射区域,从而实现对超电大尺寸金属和多层涂覆目标的RCS计算. 算例5和算例6是采用JEMS中PTD对金属舰船模型以及涂覆介质材料的舰船模型的电磁散射特性分析.算例5 舰船模型的电磁特性分析. 仍然考虑算例4中的舰船模型. 入射平面波的频率为0.3 GHz,且采用垂直极化,当入射方向的俯仰角为90°,方位角从0°扫描到360°时,JEMS中PTD计算的舰船模型的单站RCS与商业软件CST中的SBR方法的结果如图11所示,二者吻合得较好.图11 频率0.3 GHz时舰船的单站RCSFig.11 Monostatic RCS of theship(frequency=0.3 GHz)算例6 涂覆舰船模型的电磁特性分析. 仍采用算例4中的舰船模型,表面共涂覆三层介质,表1中给出其相对介电常数、相对磁导率,以及厚度等参数. 入射平面波频率为3 GHz,入射方向的俯仰角为90°,方位角从0°扫描到360°. 图12是CST软件的PO方法与JEMS中PTD方法的计算结果对比.表1 涂层介质材料的参数Tab.1 Material parameters for dielectric coats层号相对介电常数相对磁导率涂层厚度/mm 11514.412-j12.3531.02 2151-j5.2421.77 34.254-j2.3311.96图12 频率3 GHz时涂覆舰船的单站RCSFig.12 Monostatic RCS of the coated ship(frequency=3 GHz)2.2.4 全波与高频混合方法最近,针对含金属/介质混合局部结构的电大尺寸问题的RCS分析,JEMS还研发了迭代型全波与高频混合方法FEBI-MLFMA-PO,充分利用FEBI处理复杂结构和材质的能力,以及PO方法处理电大平滑目标的高效性. 通过MLFMA实现对全波算法部分的加速,并采用自适应交叉近似方法提高全波与高频区域相互作用子矩阵的计算效率. 全波与高频区域的耦合子矩阵为稠密阵,采用自适应交叉近似方法可有效降低计算复杂度和内存需求,该算法主要包括求一行或一列的最大值、计算矩阵元素以及每步的误差.在JEMS中,将整个计算区域划分成多个块,求一行或一列中最大值转化为并行求出每一块中最大值,再通过比较块的最大值找出一行或一列的最大值;矩阵元素则是在每一块上并行计算;每步的误差则是先通过每块上计算所属部分的值,而后通过归约计算得到总的每步误差. 在保证一定精度的前提下,有效减少了未知量数目,降低了计算复杂度. 算例7是使用JEMS中FEBI-MLFMA-PO方法分析观察室内含介质体的舰船电磁散射特性.算例7 观察室内含介质体的舰船电磁散射特性分析. 模型如图13,观察室内介质体的相对介电常数为1.5,尺寸3 m×2.5 m×2.0 m.入射平面波频率为50 MHz,入射方向的俯仰角为45°,方位角为0°,且为水平极化. 网格剖分40 109个四面体,以及9 956个三角形(如果全部使用FEBI,则网格剖分含40 109个四面体,以及58 778个三角形),有效减少了未知量数目. 图14给出了利用JEMS中的FEBI-MLFMA-PO,商业软件FEKO中的全波方法MLFMA和混合方法MoM-PO三种方法的计算结果比较.可以看出,在前向和后向附近,与FEKO的MoM-PO混合方法相比,JEMS 中的FEBI-MLFMA-PO的结果与FEKO全波方法MLFMA的结果吻合更好.图13 观察室内含介质体的舰船模型Fig.13 Ship model with a cabin having dielectric object图14 观察室内含介质体的舰船的双站RCSFig.14 Bistatic RCS of the ship witha cabin having dielectric object2.2.5 时域有限差分方法此外,考虑到一些工程问题中对宽带RCS的计算需求,JEMS中的平台级时域全波电磁模拟软件JEMS-TD提供FDTD方法计算宽带RCS的功能. 应用FDTD计算瞬态近场,再由时域近远场外推公式得到特定频率的远场信息,为提高计算效率和精度,特别开发了混合阶和非均匀网格技术. 算例8给出JEMS中FDTD计算的整机模型的RCS.算例8 整机电磁散射特性分析. 整机尺寸为35 m×38 m×12 m,机身为全金属半硬壳式结构,包括四段机身结构、有机玻璃机头罩、起落架及发动机等结构. 入射波频率为1 GHz,沿机头正入射,且采用垂直极化. 利用FDTD计算该飞机模型的水平面和垂直面的双站RCS,六面体网格剖分规模约300亿,使用10 800个CPU核,计算结果如图15~16,并与CST中SBR进行了对比.图15 水平面上飞机的双站RCSFig.15 Bistatic RCS of airplane on horizontal plane图16 垂直面上飞机的双站RCSFig.16 Bistatic RCS of airplane on vertical plane3 结论本文从工程应用中目标电磁散射特性分析遇到的许多难题引出发展基于高性能计算的电磁数值方法的重要性. 首先回顾了用于RCS计算的三类方法,通过分析每种数值方法的利弊,阐明了它们具有不同的适用范围.由于没有一种数值方法能够同时解决所有问题,为从精度和效率两方面满足不同应用需求,需通过发展不同算法供实际计算选择. 本文着重介绍了以这种思路为指导的基于并行支撑框架JASMIN/JAUMIN/JCOGIN的高性能计算软件系统JEMS. JEMS本身的功能很多,这里只介绍其中针对不同类型问题的雷达散射截面计算的数值方法的研究进展,并通过一些相关算例展示出JEMS具有分析多种类型目标电磁散射特性方面的能力以及其在大规模并行计算方面的优势. 实际上,JEMS的研发团队持续通过算法模块形式,将国内外计算电磁学的最新成果融入到软件系统当中,期待通过不断丰富算法功能、优化算法效率为国内重大电磁工程问题提供基于高性能计算的复杂电磁系统分析、优化及评估解决方案.参考文献【相关文献】[1] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005.[2] 庄钊文, 袁乃昌, 莫锦军, 等. 军用目标雷达散射截面预估与测量[M]. 北京: 科学出版社, 2007.[3] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.[4] 阮颖铮. 雷达散射截面与隐身技术[M]. 北京: 国防工业出版社, 1998.[5] 聂在平, 方大纲. 目标与环境电磁散射特性建模——理论、方法与实现[M]. 北京: 国防工业出版社, 2009.[6] 桑建华. 飞行器隐身技术[M]. 北京:航空工业出版社, 2013.[7] 艾俊强, 周莉, 杨青真. S弯隐身喷管[M]. 北京: 国防工业出版社, 2017.[8] SONG J M, LU C C, CHEW W C, et al. Fast illinois solver code (FISC) [J]. IEEE antennas and propagation magazine, 1998, 40(3): 27-34.[9] PENG Z, LIM K H, LEE J F. Non-conformal domain decomposition method for solving large multi-scale electromagnetic scattering problem[J]. Proceedings of the IEEE, 2013, 101(12): 298-319.[10] 胡俊, 聂在平, 王军, 等. 三维电大尺寸目标电磁散射求解的多层快速多极子方法[J]. 电波科学学报, 2004, 19(5): 509-514.HU J, NIE Z P, WANG J, et al. Multilevel fast multipole algorithm for solving scattering from 3-D electrically large object[J]. Chinese journal of radio science, 2004, 19(5): 509-514. (in Chinese)[11] 潘小敏, 盛新庆. 电特大复杂目标电磁特性的高效精确并行计算[J]. 电波科学学报, 2008, 23(5): 888-891.PAN X M, SHENG X Q. Efficient and accurate parallel computation of electromagnetic scattering by extremely large targets[J]. Chinese journal of radio science, 2008, 23(5): 888-891.(in Chinese)[12] ZHANG Y, ZHAO X W, DONORO D G, et al. Parallelized hybrid method with higher-order MoM and Po for analysis of phased array antennas on electrically large platforms[J]. IEEE transactions on antennas and propagation, 2010, 58(2): 4110-4115.[13] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: A software infrastructure for large scale parallel adaptive structured mesh application[J]. Frontiers of computer science in China, 2010, 4(4): 480-488.[14] KLINE M, KAY I. Electromagnetic theory and geometrical optics[M]. New York: Wiley Inter-science, 1965.[15] KELLER J B. A geometrical theory of diffraction[M]. New York: Mc Graw-hill Book Co.,。
中国建筑科学研究院结构设计软件的发展与展望_黄吉锋

第29卷第11期2013年11月建筑科学BUILDING SCIENCEVol.29,No.11Nov.2013[文章编号]1002-8528(2013)11-0022-08中国建筑科学研究院结构设计软件的发展与展望黄吉锋,杨志勇,马恩成,张志远,沈文都(中国建筑科学研究院建研科技股份有限公司,北京100013)[摘要]简要回顾了中国建筑科学研究院结构设计软件的发展史,重点阐述了当前国内主流软件PKPM 的功能与特点,同时介绍了基于BIM 技术的结构设计软件新架构。
[关键词]结构设计软件;发展史;PKPM ;BIM [中图分类号]TU311.41[文献标识码]ADevelopment and Prospect of the Structural Design Software in China Academy of Building ResearchHuang Ji-feng ,Yang Zhi-yong ,Ma En-cheng ,Zhang Zhi-yuan ,Shen Wen-du (Institute of Building Structure ,ChinaAcademy of Building Research ,Beijing 100013,China )Abstract :The development history of the structural design software is briefly reviewed in China Academy of Building Research.The features of the PKPM structural design software series ,which currently occupy the mainstream market of China ,and the entirely new PKPM structural design software planning based on the BIM technology ,are introduced in detail.Keywords :structural design software ;development history ;PKPM ;BIM[收稿日期]2013-09-20[作者简介]黄吉锋(1969-),男,博士,研究员[联系方式]huangjifeng@cabrtech.com1结构设计软件的发展历史回顾计算机技术的发展为复杂建筑结构的计算分析与设计绘图提供了坚实平台。
【国家自然科学基金】_结构框架_基金支持热词逐年推荐_【万方软件创新助手】_20140730

科研热词 框架 抗震性能 agent 框架结构 web服务 本体 体系结构 网格计算 振动台试验 抗震设计 spring 高层体系结构 钢筋混凝土框架结构 软件工程 软件体系结构 试验 结构方程模型 第一性原理 知识表示 知识共享 构件 有限元 损伤模型 损伤指数 塑性铰 可视化 半刚性连接 pushover分析 高层建筑 风险 非线性 钢筋混凝土 钢框架 语义网 自适应 结构分析 粗糙集 空间钢框架 稳定性 破坏形态 知识管理 电子结构 模型 时程分析 数据挖掘 数值模拟 损伤识别 抗侧刚度 技术创新 延性 工作流 多agent系统
ห้องสมุดไป่ตู้
牵引释放试验 物质流分析 物质代谢 灰色理论 滞回耗能 滞回性能 滑移 混凝土 流形 治理结构 汶川地震 水库大坝 模拟 模态分析 模态pushover分析 模式匹配 模型库 模块化 案例研究 核心能力 标准化 极小值原理 服务 有限元分析 时频分析 整体抗震能力 数据采集 故障诊断 放大系数 改进的二次分类函数 支持向量机 控制反转 接口 损伤诊断 损伤定位向量 指标体系 技术进步 形式化 弹塑性分析 弦支穹顶 异构数据库 异形柱 建模 应用框架 广义置信度 平面框架 嵌入式系统 对等计算 密肋复合墙体 字符识别 子字并行 姿态估计 多尺度力学 多主体
塔式分解格式 地震反应分析 制造执行系统 制造业 减震效果 体系可靠度 产品设计 二氧化钛 pushover分析 高层建筑结构 风险管理 面向对象 非线性 静力弹塑性分析 震害 集聚 随机振动 防屈曲支撑 阈值 钢管混凝土 金属耗能器 连续倒塌 连接方式 软件平台 超高层建筑 财务绩效 调度框架 调度 语义检索 试验研究 试验平台 设计模式 计算长度系数 计算机应用 自然布局 能量方法 聚类算法 耦合 耗散结构 统一建模语言 结构方程模型 结构工程 组合梁 第一性原理 神经网络 破坏机制 知识转移 知识表示 知识经济 知识管理系统 知识库 知识 相对稳定性 电子病历
高性能科学与工程计算支撑软件框架体系

售 息、 材料、制 造、能 源等领域应用软 件
J J I J I
l
结 构 网格
非结 构 网格
组 合 几何
J A S M I N  ̄ I I J A U M I N 框 架一 J C O G I N 框 架
支 撑 软 件 框 架 体 系
图 1 支 撑 软 件 框 架 体 系
持续 发展 。
2 支 撑应用 软件 的重构 和发 展 经过 多年 的发展 ,J A S MI N 框 架 已成 功应 用于核 武器 物理 、激 光聚变 、高功率微 波武 器等 领域 ,支 撑重 构 、发展和 研制 了 2 0多个 并行应 用程 序 。表 1列 出了 5个 己在 万核上 开展模 拟 的应用 软件 。基 于
无 需考虑 并行 计算 细 节 , 只 需在 个人 电脑 上通 过编 写 串行 的数值 计算 子程序 , 实现 物 理模 型和 技术及 问
题相 关 的数值 算法 ,就可 以研 制高 效 的并行 应用 软件 。 通 过 软件 重用 ,缩 短程 序 的研 制周期 ,提高生 产 效率 ,同时 ,提升 软件 质量 。基 于框架 提供 的规 范
体 、 多面体 等 。它 可应用 于 弹塑 性流 体力 学 、结构 力学 、工程 力 学 、计 算 电磁学 等 。 J COGI N 框 架 并 行 无 网格 组 合 几 何 计 算 支 撑 软 件 框 架 ( J me s h . f r e e C o mb i n a t o r y G e o me t r y I n f r a s t r u c t u r e ) 。它支撑 无 网格 组合 几何计 算 ,可应 用 于核 反应 MC计算 等 。 该框 架 体系 具有 以下 特色 : 屏蔽 并行 计算 细 节 , 支 撑按 串行 方式 编 写并行 程序 。 基 于框 架提供 的并行编 程接 口, 应用 领域专 家 ,
研究生实践报告
研究生实践报告第一篇: 研究生实践报告实践(实习)目的、意义及主要内容随着新学期的到来,我们一年的实习也告一段落了,这次实习着实应该感谢亚太建筑设计研究院给了我们这样一个难能可贵的机会。
在这一年的时间里面,我从实际的设计中学到了很多关于钢结构和混凝土结构设计的东西。
其中很多是我们在学校虽然知道到的,但是,也是只知道个概念,认识的不透彻、不明白。
这一年的时间里面真切的体会到了作为传说中的拿高薪的结构工程师是那么的不容易。
从一个菜鸟到一个可以迅速完成一个完美的结构设计模型和一套有利于施工的施工图需要有那么漫长的路,是需要几多春秋的积累才能达到的,而且,在真正从事结构设计的时候需要考虑到的因素是我们在学校自己做设计的时候不能想象得到的。
总之,这一年的实习,让我们加深了对于土木方面结构设计和施工的认识,同时积累了一定的关于设计的经验,可以说感受良多,收获颇丰。
通过设计院的实习,了解结构师和设计人员的基本工作程序、工作方法、毕业后能更好适应市场的发展和社会的要求,同时,也是检验学生在校的学习下的成果,弥补课堂学习之不足,提高综合设计的技能,以达到专业培养的目标。
其实习目的为:1、了解设计院的工作程序,做结构设计人员的的基本工作内容和工作方法。
2、了解设计院不同专业相互合作方式,学习结构工程师的职业素质、及协调能力。
3、结合实际工作,学习运用计算机绘图,进行结构设计方案和结构施工图的绘制。
这次实习的意义是为我们步入社会的一个准备,也是我们研究生学学习阶段重要的实践性教学环节之一,是理论与实践相结合的重要方式,是提高学生政治思想水平、业务素质和动手能力的重要环节,对培养坚持四项基本原则,有理想、有道德、有文化、有纪律的德才兼备的技能性、应用性人才有着十分重要的意义。
通过切身体会,可加深理解并巩固所学专业知识,进一步提高认识问题、分析问题、解决问题的能力,为今后走向社会,找一个适合自己的岗位做好思想准备和业务准备。
陈志明--千万亿次科学计算的挑战
陈志明:千万亿次科学计算的挑战2009年10月29日,我国首台千万亿次超级计算机系统“天河一号”在国防科技大学建成,使得我国成为世界上第二个掌握千万亿次超级计算机系统技术的国家。
这标志着我国超级计算机系统的硬件研制能力进入国际先进行列,也标志着我国科学计算事业进入千万亿次科学计算时代。
科学计算利用先进的计算能力认识和解决复杂的科学工程问题,它融建模、算法、软件研制和计算模拟为一体,是计算机实现其在高科技领域应用的必不可少的纽带和工具。
计算与理论和实验一起已成为当今世界科学技术创新的主要方式,一个国家的科学计算能力已成为国家竞争力的具有战略意义的标志。
可以预见,千万亿次超级计算机系统的建成,将极大地促进我国对气候与生态环境、航空航天、地球物理、药物设计、纳米材料等复杂系统在各种现实条件下的性态和行为进行精确的模拟和预测,使这些复杂系统的科学原理突破和实际设计达到世界发达国家的先进水平。
千万亿次科学计算的特点千万亿次科学计算的一个显著特点是可以计算问题的规模巨大,一般的千万亿次超级计算机系统拥有10万以上的处理器核心,每个处理器核心可以处理100万个自由度(未知量),这意味着千万亿次计算机可以计算处理具有1000亿个自由度的复杂系统。
尽管如此,如果对应用软件所使用的算法不进行研究,千万亿次计算机仍然无法满足许多复杂的实际需求。
以全球系统模式为例,地球表面积约为5亿平方公里,以一平方公里为一网格单元,垂直于地球表面的第三个方向分为200层计算,那么就需要1000亿个网格。
其中,最主要的分量模式——大气环流模式——在每个网格上需要计算的基本物理量包括大气速度、压力、温度和湿度等未知量,那么一平方公里分辨率的大气模式需要7000亿个自由度,对于实际的气候时间演化模拟,常常需要模拟100年到1000年,而对于一公里的分辨率,模拟时间步长可能不足1秒,这样需要进行至少十亿到百亿时间步的计算。
因此,如果对算法不加以改进,这样的模拟计算远远超出了千万亿次计算机的能力,甚至也超出了美国计划在2017年推出的100万万亿次超级计算机系统的能力!千万亿次科学计算的第二个特点是计算机体系结构非常复杂,这使得支持千万亿次科学计算的应用软件研制极为困难。
计算机软件技术研究现状与发展
计算机软件技术研究现状与发展计算机软件技术研究现状与发展00计算机软件作为一门学科,从其诞生到现在不过短短的半世纪,已取得了令人瞩目的发展,同时也随着技术的进步而在酝酿着不断的创新。
本文在简单介绍软件技术的研究内容基础之上,按照可运行软件的功能分类,从系统软件、支撑软件、和应用软件三个方面对其现状和发展趋势予以综述。
一、软件技术研究开发现状(一)、软件及其分类软件技术是指支持软件系统的开发、运行和维护的技术。
其核心内容是:高效的运行模型及其支撑机制,有效的开发方法学及其支撑机制。
作为可运行的系统,软件已经形成共识的分层模型,即:软件可以分为系统软件(操作系统、数据库等)、支撑软件(高级语言编译器、程序库、CASE工具等)和应用软件。
(二)、世界各国的重大软件计划各国政府相继启动国家级的重大软件技术计划,基础软件和软件开发方法研究都成为这些国家级计划中优先推荐或重点发展的内容。
中国信息产业部在2001年5月发布了《信息产业“十五”计划纲要》,其中软件业的发展被纳入重点。
(三)、系统软件研究开发现状作为计算机系统中最靠近硬件层次的软件,系统软件包括操作系统,数据库管理系统,以及诸如应用服务器等的中间件,下面将分别对各类系统软件的研究发展现状予以阐述。
1、操作系统研究开发现状操作系统是管理硬件资源(处理器、存储器、显示器、打印机等)、控制应用软件运行、改善人机界面并为应用软件提供支持的软件。
操作系统向高层应用软件提供编程接口,为用户方便地开发应用系统提供了基础。
随着计算机网络等技术的发展,近年来操作系统在网络化、并行化、智能化等方面将会取得更加显著的发展。
2、商业嵌入式操作系统研究开发现状嵌入技术是信息技术发展过程中形成的一种新技术。
所谓嵌入就是将计算机的硬件和软件嵌入其他机电设备中去,构成了一种新的系统,即嵌入式系统。
可以说嵌入式技术和设备在我国国防、国民经济建设中有着广泛地应用,有着巨大的市场。
目前嵌入式操作系统的品种较多,仅用于信息家电的嵌入式操作系统就有40种左右。
电力设备多物理场仿真技术及软件发展现状
电力设备多物理场仿真技术及软件发展现状发布时间:2022-07-30T02:54:20.650Z 来源:《当代电力文化》2022年6期作者:赵丽丽[导读] 多物理场建模技术在IGBT研究中已得到广泛应用赵丽丽山东省邹平县宏旭热电有限公司摘要:多物理场建模技术在IGBT研究中已得到广泛应用,但由于实际物理场的复杂性和计算机模拟本身的缺点(如计算资源消耗大、模拟难以收敛等。
多物理场建模技术需要进一步发展,以满足更多的应用和分析更复杂的机理。
本文对电力设备多物理场仿真技术及软件发展现状进行分析,以供参考。
关键词:电力设备;多物理场仿真技术;软件发展引言绝缘双极晶体管(IGBT)是双极晶体管。
Bj)、金属氧化物半导体场效应晶体管(metal-oxide-semiconductor-field effect stor,MOSFET)是新一代的场控半导体,它结合了两者的优点,不仅具有较高的开关频率和较高的耐压性,而且还具有电气调制效应。
1多物理仿真软件的技术优势物理多场建模仿真平台集成了建模所需的所有工具,可在统一的环境中模拟各种物理和技术问题,便于扩展应用程序并降低学习成本。
仿真平台可以随时断开各种物理效果,准确再现真实的工程问题,支持模型交互界面的快速自定义,并开发仿真应用程序。
COMSOL-Server在部署、管理和运行模拟应用程序方面具有与COMSOL-Multiphysics相同的计算能力。
它支持远程访问、模拟应用程序运行和集成的安全管理工具,包括应用程序管理工具和用户访问管理。
2推动电力设备智能化管理 2.1三维立体巡检无死角中国电科院高压所设备评价中心团队成员利用变电数字孪生平台三维立体巡检模块发布任务,位于现场的在线智能巡检装置从不同位置和不同角度观测试验变压器,并将采集数据回传平台。
“这次采集的数据很全面,像变压器顶面、冷却器和本体连接的油管这种难以观测部位的数据都采集到了。
”该团队采用可视化模型技术思路,通过三维参数设计和实景三维扫描,构建变电设备的三维立体模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Modeling and Simulation of Processes& Devices & Circuits for 16 nm Technology Node end
Beyond
Liu Xiaoyan Du Gang
(Peking University) Abstract:IC technology has scaled down to 22 nm node. TCAD becomes an important area to support the technology development.In this projeer, To meet the needs of 16 Elm and beyond technology,we will develop nano scale devices simulation method,investigate model of nano scale devices,and build the TCAD tools for new type logic devices and NV memory devices.in the past years。all members of this research group are working hard and have achieved series innovation results on fast computing method of full circuit leakage current analyst,statics model of device parameter variation,compact model of RRAM devices,large scale memory array simulating method,carrier transports in lII— V material and 2D semiconductor material based devices. Key W ords:Device Modeling and simulationlRRAM ModeltNano scale deviceslCarrier transport
201 1 Annual Report forel Adaptive Structured M esh A pplications Infrastruture’’
Cheng Juan’ Me Zeyao’ Xu Xiaowen’ An Hengbin’ Hu Qiya
摘 要 :.斌年度霞研 究繁窘围绕JAsMIN框架对实际应用复杂化和 多样化的功能发展 和由数百上千处理器向数千至数万处理嚣柱 的性 能发展需求,在数据结构.非规 则数据 通信算法,负|簟【平衡算法,并行 自适应 网格方法 并行多重 一格算法,特征值快速求解
科技创新导报 Science end Technolcm'v Innnua+i^n u
阅读 全 文 链 接 (需 实名 注 册 ):http://www.nstrs.cn/xiangxiBG.aspx?id=515l3&flag=l
自适应结构 网格 并行应用 支撑软件框架研 究20 1 1 年 度 报 告
成娟’ 奠则尧’ 徐小文’ 安恒斌’ 胡齐芽 (1.北京应用物理与计算数学研究所 ;2.中国科学院数学与系统科学研究院)
科 技 报 告 导 读
面 向 1 6纳 米 及 以下 技 术 代 的 工 艺 器 件 与 电路 建模和模拟20 1 3年度报告
刘晓彦 杜刚 (北京大学 )
摘 要 :试研 究面向16 nm及以下技 术代集成电路 工艺,发展 纳来扳半导体 器件的模型,模 拟技术 ,建立新原理逻辑和存 储器 件的模型和优 化设计方法并进行实验验 证 ,为纳来尺度工艺节点下集成电路 的TCAD奠定理论基础。为基于新原理器件的集成电 路设计提供方法和工兵。在过去 1年 中,经过课 题 纽全体 人 员密切合作和努力,在基于电路拓扑结 构的漏电流快速计算程序,器 件参 数波动性 的统计模型,适于电路模 拟的新型阻变存 储器模型以及 大规模 存储阵列的模拟 ,基于III—v半导体 材料和二维半 导体 材料 的新材料半 导体器件中的赣运特 性研 究等多方 面开展 了创新工作,取得 了一系列的阶段 性成果。超额完成 了{Ic年度的 研 究任 务。 关键词 :器件模型与模 拟 阻变存 储器模型 纳米尺度器件 裁流予输运
’
科 技 报 告 导 读 方 法、高效 并行 算 法与先 进 计算 方 法 等方 面,开展 系统深 入 的 研 究 ,突破 核 心 算法 与关键 技 术 ,研 究 成 果 集成 于JAsMIN框 架 。
1
关键词 :JASMIN框架 并行算法 数据 结构 负戴平衡方法 快速算法 先进算法
(1.institute of Applied Physics and Computational Mathematics;2.Academy of Mathematics and Systems Science,Chinese Academy of Sciences) Abstract:This report illustrates the annual progress of the program “parallel adaptive structured mesh applications infrastructure” in 201 1. Driven by the function demand from the complexity and diversity of real application and the performance demand of transition from hundreds to thousands cores to thousands to tens of thousands cores, within the framework of research 0n the JASM IN infrastructure, the program made deep inVestigations mainly Oil data structure, communication algorithm for irregular data, load balance algorithms, parallel adaptive grid method, parallel algebraic multi-grid algorithms, high performance parallel algorithms and advanced numerical methods, ere. Some breakthr0ughs have been made about critical algorithms and key technologies. The research achievements have been integrated into JASM IN infrastructure, based on which the performance of JASMIN and many application codes have been improved dramatically, and many application codes have got the ability to simulate on tens of thousands of cores. In general, the annual goals of the program have been fulfilled successfully. Key W ords:JASMIN infrastructure;Parallel algorithm;Ddata structure;Load balance alg0rithm