[精选PPT]运筹学约束最优化方法
《约束优化方法》课件

牛顿法
01 总结词
基本原理、优缺点
02
基本原理
牛顿法基于泰勒级数展开,通 过迭代更新参数,构造出目标 函数的二次近似模型,并利用 该模型求解最优解。在约束优 化问题中,牛顿法通常用于处 理等式约束或非线性不等式约 束。
03
优点
04
收敛速度快,通常只需要较少的 迭代次数就能找到最优解。
缺点
对初值选择敏感,如果初值选择 不当,可能无法收敛到最优解; 同时计算量较大,需要存储和计 算Hessian矩阵。
物流配送问题旨在在满足客户需求和运输能力等约束 条件下,合理安排货物的配送路线和运输方式,以最 小化运输成本或最大化运输效率。
详细描述
物流配送问题需要考虑客户分布、运输网络、运输能 力、时间限制等多个约束条件,通过优化配送路线和 运输方式,提高物流效率和客户满意度。
2023
REPORTING
THANKS
非线性规划的解法包括梯度法、牛顿 法、共轭梯度法等,这些方法可以用 于解决函数优化、机器学习、控制系 统等领域的问题。
整数规划
整数规划是约束优化方法中的一种特殊类型,它要求所有决策变量均为整数。
整数规划的解法包括分支定界法、割平面法等,这些方法可以用于解决车辆路径问题、背包问题、布局问题等具有整数约束 的问题。
REPORTING
线性规划
线性规划是最早的约束优化方法之一 ,它通过寻找一组变量的最优解来满 足一系列线性不等式约束和等式约束 ,并最大化或最小化某个线性目标函 数。
线性规划的解法包括单纯形法、分解 法、网络流算法等,这些方法可以用 于解决生产计划、资源分配、运输问 题等实际应用。
非线性规划
非线性规划是约束优化方法的一个重 要分支,它研究的是目标函数和约束 条件均为非线性的优化问题。
运筹学 第八章 约束最优化方法

第八章 约束最优化方法无约束优化方法是优化方法中最基本最核心的部分。
但是,在工程实际中,优化问题大都是属于有约束的优化问题,即其设计变量的取值要受到一定的限制,用于求解约束优化问题最优解的方法称为约束最优化方法。
由于约束最优化问题的复杂性,无论是在理论方面的研究,还是实际中的应用都有很大的难度。
目前关于一般的约束最优化问题还没有一种普遍有效的算法。
本书重点介绍几种常用的算法,力求使读者对这类问题的求解思路有一个了解。
8.1 约束优化方法概述一、约束优化问题的类型根据约束条件类型的不同可以分为三种,其数学模型分别如下: 1)等式约束优化问题 考虑问题l1,2,...,j x h t s x f j ==0)(..)(min其中,l 1,2,...,j x h x f j =),(),(为R R n→上的函数。
记为)(fh 问题。
2)不等式约束优化问题 考虑问题m1,2,...,i x g t s x f i =≤0)(..)(min其中,m 1,2,...,i x g x f i =),(),(为R R n→上的函数。
记为)(fg 问题。
3)一般约束优化问题()()()⎩⎨⎧===≤l ,1,2,j x h m ,1,2,i x g t s x f j i L L 00..min其中,l 1,2,...,j m i x h x g x f j i ==;,2,1),(),(),(L 为R R n→上的函数。
记为)(fgh 问题。
二、约束优化方法的分类约束优化方法按求解原理的不同可以分为直接法和间接法两类。
1)直接法只能求解不等式约束优化问题的最优解。
其根本做法是在约束条件所限制的可行域内直接求解目标函数的最优解。
如:约束坐标轮换法、复合形法等。
其基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。
可行性:迭代点必须在约束条件所限制的可行域内,即满足m i x g i ,...,2,1,0)(=≤适用性:当前迭代点的目标函数值较前一点的目标函数值是下降的,即满足)()()()1(k k x F x F <+2)间接法该方法可以求解不等式约束优化问题、等式约束优化问题和一般约束优化问题。
运筹学-约束最优化方法

若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即
35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.
28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).
借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.
6 约束最优化设计ppt课件

g3(x)=0
n*J阶矩阵;
G [g1( xk ),g2 ( xk ),L ,gJ ( xk )]
10
4.步长的确定
xk1 xk kd k (k 0,1,2,L )
确定的步长应使新的迭代点为可行点,且目标函数具 有最大的下降量 。——约束一维搜索 1)取最优步长 从xk点出发,沿dk方向进行一维最优化 搜索,取得最优步长,计算新点x的值 。
可行方向法
可行方向是求解大型约束优化问题的主要方法之一。这种方
法的基本原理是在可行域内选择一个初始点 x0,当确定了一个
可行方向d和适当的步长后,按式:
xk1 xk kd k (k 0,1,2,L )
进行迭代计算,迭代点既不超出可行域,又使目标函数的值 有所下降。在不断调整可行方向的过程中,使迭代点逐步逼近 约束最优点。
x2
a*dk
xk x k+1
g2(x)=0
dk
g1(x)=0
0
x1
11
取到约束边界的最大步长
从xk点出发,沿dk方向进行一维最优化搜索,得到的 新点x为不可行点。
x2 xk
0
a*dk aMdk
xk+1
x
g1(x)=0
g2(x)=0 dk x1
改变步长,使 新点x返回到约束面 上来。使新点x恰好 位于约束面上的步 长称为最大步长 。
x0
f ( x0 )
xk
f1( x)
xk+1 x
g1(x)=0
0
g2(x)=0
g3(x)=0 x1
4 沿非线性约束面的搜索
5
2.产生可行方向的条件 可行方向是指沿该方向作微小移动后,所得到的新点是可
第四章约束问题的最优化方法PPT课件

s.t. gu(x) 0,u1,2,...,p
2、等式约束优化问题(EP型)
minF(x)
xD Rn
s.t. hv(x) 0,v 1,2,...,q
3、一般约束优化问题(GP型)
min F(x)
x D Rn
s.t. gu( x) 0, u 1,2,..., p
1
hv ( x) 0, v 1,2,...,q
惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。
加权因子(即惩罚因子): r1 , r2
无约束优化问题:m.in (x,r1,r2)
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2…
其收敛必须满足:
4. 求解过程分析:
18
§4.3 外点惩罚函数法 (衰减函数法)
一. 基本思想:
外点法将新目标函数
Φ( x , r ) 构筑在可行域 D 外,
随着惩罚因子 r(k) 的不断递增,
生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k))
4
序列从可行域外部趋向原目标
②
(x(k1) *((rx((kk 1 1)))*() r (k(1)x)k* )(r(k)))2
若均满足,停止迭代,有约束优化问题的最优点为 x* = xk*;
若有一个准则不满足,则令 x ( 0 ) x k * ( r ( k ) ) r ( k , 1 ) c r ( k ) , k k 1
5
m
p
新目标函数: (x,r1,r2)f(x)r1 u1G [gu(x) ]r2 v1H[hv(x)]
第五章约束问题的最优化方法

g1 ( x) [ 1 , 1 ]T
g2 ( x) x1 ,
g2 ( x) [ 1 , 0 ]T 。
g3 ( x) x2 ,
g3 ( x) [ 0 , 1 ]T 。
18
由K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
第七讲 约束非线性规划
约束极值及最优性条件
等式约束 不等式约束 一般约束问题
约束极值问题的算法
外点法 内点法 乘子法
1
一 、约束极值问题的最优性条件
1、约束极值问题的表示 min f ( x ) hi ( x ) 0 i 1 , 2 ,, m s .t . g j ( x ) 0 j 1 , 2 , , l
8
2 g3 ( x ) 0。 2
I ( x ) { 1 , 2 }。
x2 g2 ( x ) 0
g3 ( x ) 0
O
g1 ( x ) 0
x
x1
②如何判断一个方向是可行方向?
9
定理1:
给 定 点x Q , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量 d , 如果对任意的 i I ( x ) 有 gi ( x )T d 0 , 则 d 是 点 x 的 可 行 方 向 。
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
证略
③极值点的必要条件: 定理3:
设 x* Q, I ( x*)是其积极约束指标集。
f ( x) 和 gi ( x) (i I ( x*)) 在点x * 处可微,
2019运筹学与最优化方法.ppt
x2y2+
…+
xnyn
x , y 的距离: ‖x-y ‖= [(x-y)T(x-y)](1/2)
x 的长度: ‖x‖= [ xTx ](1/2)
三角不等式: ‖x + y ‖≤‖x‖+‖y‖
x
x+y
y
点列的收敛:设点列{x(k)}
Rn ,
x Rn
点列{x(k)}收敛到 x ,记
lim
k
x(k)
一阶中值公式:对x, , 使
f (x) = f (x*)+ [f (x*+(x-x*))]T(x-x*)
Lagrange余项:对x, , 记xx*+ (x-x*)
f (x) = f (x*)+ f T(x)(x-x*) + (1/2)(x-x*)T 2f (x )(x-x*)
1 )提出问题:目标、约束、决策变量、参数 2 )建立模型:变量、参数、目标之间的关系
表示 3 )模型求解:数学方法及其他方法 4 )解的检验:制定检验准则、讨论与现实的
一致性 5 )灵敏性分析:参数扰动对解的影响情况 6 )解的实施:回到实践中 7 )后评估:考察问题是否得到完满解决
四、运筹学模型的构造思路及评价
第一章 其它基础知识
复习下列知识:
线性代数的有关概念:向量与矩 阵的运算、向量的线性相关和线 性无关,矩阵的秩,正定、半正 定矩阵,线性空间等;
集合的有关概念:开集、闭集, 集合运算,内点、边界点等。
2f (x)=
2f /x1 2
2f /x1 x2
…
2f /x1 xn
2f /x2 x1 … 2f /xn x1
约束最优化方法-43页PPT精选文档
s.t.
g1(x1, x2 ) x12 x22 5 0
g2 (x1, x2 ) x1 2x2 4 0
g3(x1, x2 ) x1 0
g4 (x1, x2 ) x2 0
g3=0
x2
▽g2(x*) -▽f(x*)
(3,2)T
2 1
x*
▽g1(x*)
二、不等式约束问题的Khun-Tucker条件: (续)
f ( x)
m
uig i ( x) 0
i
u i 0, i 1,2, , m
ui g i (x) 0
2(x1 3) u1 2x1 u2 u3 0(1)
2(x2 2) u1 2x2 2u2 u4 0(2)
f T ( x ) B f T ( x ) B 1 N 为既约梯度
一、解线性约束问题的既约梯度法 (续)
寻找下降可行方向:
d
(1) d 为可行方向
Ad 0
d
j
0,当 x j
0时 .
proof . :" " d 为可行方向,即
0 , 当 ( 0, )时,
i
g
i
(x
)
i1
l
v
j
h
j
(
x
)
0
j1
u
i
0
i 1,2 , , m
u
i
约束问题的最优化方法PPT文档共65页
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
约束问题的最优化方法
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思