2020年河北中考文化课考试说明数学考试题型示例
河北省2020年中考数学试题(解析版)

6.如图 1,已知 ABC ,用尺规作它的角平分线.
如图 2,步骤如下,
第一步:以 B 为圆心,以 a 为半径画弧,分别交射线 BA , BC 于点 D , E ; 第二步:分别以 D , E 为圆心,以 b 为半径画弧,两弧在 ABC 内部交于点 P ;
第三步:画射线 BP .射线 BP 即为所求.
81012 变形得:
k
92 1112 1
k 8 10 12
9 19 1111111
8 10 12 8101012
8 10 12 10 .
故选:B.
【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.
10.如图,将 ABC 绕边 AC 的中点 O 顺时针旋转 180°.嘉淇发现,旋转后的 CDA 与 ABC 构成平行四
7.若 a ¹ b ,则下列分式化简正确的是( )
A.
a2 a b2 b
B.
a2 a b2 b
【答案】D
C. a2 a b2 b
D.
1 2
a
a
1b b
2
【解析】
【分析】
根据 a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.
【详解】∵a≠b,
∴
a b
2 2
a b
,选项
A
错误;
a b
∴a 0;
第二步:分别以
D
,
E
为圆心,大于
1 2
DE
的长为半径画弧,两弧在
ABC
内部交于点
P
;
∴ b 1 DE 的长; 2
第三步:画射线 BP .射线 BP 即为所求.
综上,答案为: a 0 ; b 1 DE 的长, 2
2020年河北省中考数学试卷及答案解析

2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b 2=abD .12a 12b =ab8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)系统找不到该试题26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b 2=abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心,∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A . 9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10. 故选:B .10.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.=()11.(2分)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k=((k•k)k=(k2)k=k2k,【解答】解:(k+k+⋯+k)k︸k个k故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6√2km,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,直接指出CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l :y =kx +b 中,当x =﹣1时,y =﹣2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)系统找不到该试题26.(12分)如图1和图2,在△ABC 中,AB =AC ,BC =8,tan C =34.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且AM =CN =2.点P 从点M 出发沿折线MB ﹣BN 匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持∠APQ =∠B .(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将△ABC 的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQS △ABC =(AP AB )2=49,∴AP AB =23, ∴AP =103, ∴PM =AP =AM =103−2=43.(3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2).当3<x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B , ∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y ,∴y =−15(x ﹣7)2+165, ∵−15<0, ∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165 当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32, ∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒.。
2020年河北中考数学试卷解析

2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图1,在平面内作已知直线m的垂线,可作垂线的条数有图1A.0条B.1条C.2条D.无数条【答案】D【解析】作已知直线m的垂线,应有无数条,故选D。
2.墨迹覆盖了等式“”的运算符号,则覆盖的是A.+B.-C.×D.÷【答案】D【解析】由幂的运算规则可知,,故选D。
3.对于①,②,从左到右的变形,表述正确的是A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解析】由定义可知,因式分解是把一个多项式化为几个整式乘积的变形,因此①属于因式分解。
②是整式乘法运算。
4.图2的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同图2【答案】D【解析】两个几何体的三视图均为2×2的正方形,均相同。
5.图3是小颖前三次购买苹果单价的统计图,第四次又买的苹果的单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =A .9B .8C .7D .6图3【答案】B【解析】分别代入四个选项验证,当a 为8时,中位数和众数均为8,中位数与众数一样。
6.如图4-1,已知,用尺规作它的角平分线.如图4-2,步骤如下:第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是A .a ,b 均无限制B.,的长C .a 有最小限制,b 无限制D.,的长【答案】B【解析】第一步画弧可以选取大于0的任意长度。
2020年河北省中考数学真题及答案(word版)

2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分。
卷Ⅰ为选择题,卷Ⅱ为非选择题。
本试卷共120分,考试时间120分钟。
卷I(选择题,共42分)一、选择题(本大题有 16 个小题,共 42 分, 1-10 小题各 3 分, 11-16 小题各 2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 .( 3 分)下列图形为正多边形的是()A .B .C .D .2 .(3 分)规定:(→ 2 )表示向右移动 2 记作 +2 ,则(← 3 )表示向左移动 3 记作()A . +3B .﹣ 3C .﹣D . +3 .( 3 分)如图,从点 C 观测点 D 的仰角是()A .∠ DAB B .∠ DCEC .∠ DCAD .∠ ADC4 .( 3 分)语句“ x 的与 x 的和不超过5 ”可以表示为()A .+ x ≤ 5B .+ x ≥ 5C .≤ 5D .+ x = 55 .( 3 分)如图,菱形 ABCD 中,∠ D = 150 °,则∠ 1 =()A . 30 °B . 25 °C . 20 °D . 15 °6 .( 3 分)小明总结了以下结论:① a ( b + c )= ab + ac ;② a ( b ﹣ c )= ab ﹣ ac ;③ ( b ﹣ c )÷ a = b ÷ a ﹣ c ÷ a (a ≠ 0 );④ a ÷( b + c )= a ÷ b + a ÷ c (a ≠ 0 )其中一定成立的个数是()A . 1B . 2C . 3D . 47 .( 3 分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A .◎代表∠ FECB . @ 代表同位角C .▲代表∠ EFCD .※代表 AB8 .( 3 分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A . 5 × 10 ﹣ 4B . 5 × 10 ﹣ 5C . 2 × 10 ﹣ 4D . 2 × 10 ﹣ 59 .( 3 分)如图,在小正三角形组成的网格中,已有 6 个小正三角形涂黑,还需涂黑 n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则 n 的最小值为()A . 10B . 6C . 3D . 210 .( 3 分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A .B .C .D .11 .( 2 分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:① 从扇形图中分析出最受学生欢迎的种类② 去图书馆收集学生借阅图书的记录③ 绘制扇形图来表示各个种类所占的百分比④ 整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A .② → ③ → ① → ④B .③ → ④ → ① → ②C .① → ② 一④ → ③D .② →④ → ③ → ①12 .( 2 分)如图,函数 y =的图象所在坐标系的原点是()A .点 MB .点 NC .点 PD .点 Q13 .( 2 分)如图,若 x 为正整数,则表示﹣的值的点落在()A .段①B .段②C .段③D .段④14 .( 2 分)图 2 是图 1 中长方体的三视图,若用 S 表示面积, S 主= x 2 +2 x , S 左= x 2 + x ,则 S 俯=()A . x 2 +3 x +2B . x 2 +2C . x 2 +2 x +1D . 2 x 2 +3 x15 .( 2 分)小刚在解关于 x 的方程 ax 2 + bx + c = 0 (a ≠ 0 )时,只抄对了 a = 1 ,b = 4 ,解出其中一个根是 x =﹣ 1 .他核对时发现所抄的c 比原方程的 c 值小 2 .则原方程的根的情况是()A .不存在实数根B .有两个不相等的实数根C .有一个根是 x =﹣ 1D .有两个相等的实数根16 .( 2 分)对于题目:“如图 1 ,平面上,正方形内有一长为 12 、宽为 6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数 n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数 n .甲:如图 2 ,思路是当 x 为矩形对角线长时就可移转过去;结果取 n = 13 .乙:如图 3 ,思路是当 x 为矩形外接圆直径长时就可移转过去;结果取 n = 14 .丙:如图 4 ,思路是当 x 为矩形的长与宽之和的倍时就可移转过去;结果取 n = 13 .下列正确的是()A .甲的思路错,他的 n 值对B .乙的思路和他的 n 值都对C .甲和丙的 n 值都对D .甲、乙的思路都错,而丙的思路对卷二(非选择题,共78分)二、填空题(本大题有 3 个小题,共 11 分, 17 小题 3 分: 18 ~ 19 小题各有 2 个空,每空 2 分,把答案写在题中横线上)17 .( 3 分)若 7 ﹣ 2 × 7 ﹣ 1 × 7 0 = 7 p ,则 p 的值为.18 .( 4 分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即 4+3 = 7则( 1 )用含 x 的式子表示 m =;( 2 )当 y =﹣ 2 时, n 的值为.19 .( 4 分)勘测队按实际需要构建了平面直角坐标系,并标示了 A , B , C 三地的坐标,数据如图(单位: km ).笔直铁路经过 A , B 两地.( 1 ) A , B 间的距离为 km ;( 2 )计划修一条从 C 到铁路 AB 的最短公路 l ,并在 l 上建一个维修站 D ,使 D 到 A , C 的距离相等,则 C , D 间的距离为 km .三、解答题(本大题有 7 个小题,共 67 分 . 解答应写出文字说明、证明过程或演算步骤)20 .( 8 分)有个填写运算符号的游戏:在“ 1 □ 2 □ 6 □ 9 ”中的每个□内,填入 + ,﹣,×,÷中的某一个(可重复使用),然后计算结果.( 1 )计算: 1+2 ﹣ 6 ﹣ 9 ;( 2 )若 1 ÷ 2 × 6 □ 9 =﹣ 6 ,请推算□内的符号;( 3 )在“ 1 □ 2 □ 6 ﹣9 ”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21 .( 9 分)已知:整式 A =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 ,整式 B > 0 .尝试化简整式 A .发现 A = B 2 ,求整式 B .联想由上可知, B 2 =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 ,当 n > 1 时, n 2 ﹣ 1 , 2 n , B为直角三角形的三边长,如图.填写下表中 B 的值:直角三角形三边n 2 ﹣ 1 2 n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22 .( 9 分)某球室有三种品牌的 4 个乒乓球,价格是 7 , 8 , 9 (单位:元)三种.从中随机拿出一个球,已知 P (一次拿到 8 元球)=.( 1 )求这 4 个球价格的众数;( 2 )若甲组已拿走一个 7 元球训练,乙组准备从剩余 3 个球中随机拿一个训练.① 所剩的 3 个球价格的中位数与原来 4 个球价格的中位数是否相同?并简要说明理由;② 乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到 8 元球的概率.又拿先拿23 .( 9 分)如图,△ ABC 和△ ADE 中, AB = AD = 6 , BC = DE ,∠ B =∠ D = 30 °,边 AD 与边 BC 交于点 P (不与点 B , C 重合),点 B , E 在 AD 异侧, I 为△ APC 的内心.( 1 )求证:∠ BAD =∠ CAE ;( 2 )设 AP = x ,请用含 x 的式子表示 PD ,并求 PD 的最大值;( 3 )当 AB ⊥ AC 时,∠ AIC 的取值范围为 m °<∠ AIC < n °,分别直接写出 m , n 的值.24 .( 10 分)长为 300 m 的春游队伍,以 v ( m / s )的速度向东行进,如图 1 和图 2 ,当队伍排尾行进到位置 O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为 2 v ( m / s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置 O 开始行进的时间为 t ( s ),排头与 O 的距离为 S 头( m ).( 1 )当 v = 2 时,解答:① 求 S 头与 t 的函数关系式(不写 t 的取值范围);② 当甲赶到排头位置时,求 S 的值;在甲从排头返回到排尾过程中,设甲与位置 O 的距离为 S 甲( m ),求 S 甲与 t 的函数关系式(不写 t 的取值范围)( 2 )设甲这次往返队伍的总时间为 T ( s ),求 T 与 v 的函数关系式(不写 v 的取值范围),并写出队伍在此过程中行进的路程.25 .( 10 分)如图 1 和 2 ,▱ ABCD 中, AB = 3 , BC = 15 ,tan ∠ DAB =.点 P 为 AB 延长线上一点,过点 A 作⊙ O 切 CP 于点 P ,设 BP = x .( 1 )如图 1 , x 为何值时,圆心 O 落在 AP 上?若此时⊙ O 交 AD 于点 E ,直接指出 PE 与 BC 的位置关系;( 2 )当 x = 4 时,如图 2 ,⊙ O 与 AC 交于点 Q ,求∠ CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;( 3 )当⊙ O 与线段 AD 只有一个公共点时,直接写出 x 的取值范围.26 .( 12 分)如图,若 b 是正数,直线 l : y = b 与 y 轴交于点 A ;直线 a : y = x ﹣ b 与 y 轴交于点 B ;抛物线 L : y =﹣ x 2 + bx 的顶点为 C ,且 L 与 x 轴右交点为 D .( 1 )若 AB = 8 ,求 b 的值,并求此时 L 的对称轴与 a 的交点坐标;( 2 )当点 C 在 l 下方时,求点 C 与 l 距离的最大值;( 3 )设x 0 ≠ 0 ,点( x 0 , y 1 ),( x 0 , y 2 ),( x 0 , y 3 )分别在 l , a 和 L 上,且 y 3 是 y 1 , y 2 的平均数,求点( x 0 , 0 )与点 D 间的距离;( 4 )在 L 和 a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出 b = 2019 和 b = 2019.5 时“美点”的个数.2019 年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有 16 个小题,共 42 分, 1-10 小题各 3 分, 11-16 小题各 2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 .【解答】解:正五边形五个角相等,五条边都相等,故选: D .2 .【解答】解:“正”和“负”相对,所以,如果(→ 2 )表示向右移动 2 记作 +2 ,则(←3 )表示向左移动 3 记作﹣ 3 .故选: B .3 .【解答】解:∵从点 C 观测点 D 的视线是 CD ,水平线是 CE ,∴从点 C 观测点 D 的仰角是∠ DCE ,故选: B .4 .【解答】解:“ x 的与 x 的和不超过5 ”用不等式表示为x + x ≤ 5 .故选: A .5 .【解答】解:∵四边形 ABCD 是菱形,∠ D = 150 °,∴ AB ∥ CD ,∠ BAD =2 ∠ 1 ,∴∠ BAD + ∠ D = 180 °,∴∠ BAD = 180 °﹣ 150 °= 30 °,∴∠ 1 = 15 °;故选: D .6 .【解答】解:① a ( b + c )= ab + ac ,正确;② a ( b ﹣ c )= ab ﹣ ac ,正确;③ ( b ﹣ c )÷ a = b ÷ a ﹣ c ÷ a (a ≠ 0 ),正确;④ a ÷( b + c )= a ÷ b + a ÷ c (a ≠ 0 ),错误,无法分解计算.故选: C .7 .【解答】证明:延长 BE 交 CD 于点 F ,则∠ BEC =∠ EFC + ∠ C (三角形的外角等于与它不相邻两个内角之和).又∠ BEC =∠ B + ∠ C ,得∠ B =∠ EFC .故AB ∥ CD (内错角相等,两直线平行).故选: C .8 .【解答】解:= 0.00002 = 2 × 10 ﹣ 5 .故选: D .9 .【解答】解:如图所示, n 的最小值为 3 ,故选: C .10 .【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到 C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选: C .11 .【解答】解:由题意可得,正确统计步骤的顺序是:② 去图书馆收集学生借阅图书的记录→ ④ 整理借阅图书记录并绘制频数分布表→ ③ 绘制扇形图来表示各个种类所占的百分比→ ① 从扇形图中分析出最受学生欢迎的种类,故选: D .12 .【解答】解:由已知可知函数 y =关于 y 轴对称,所以点 M 是原点;故选: A .13 .【解答】解∵ ﹣=﹣= 1 ﹣=又∵ x 为正整数,∴ ≤ x < 1故表示﹣的值的点落在②故选: B .14 .【解答】解:∵ S 主= x 2 +2 x = x ( x +2 ), S 左= x 2 + x = x ( x +1 ),∴俯视图的长为 x +2 ,宽为 x +1 ,则俯视图的面积 S 俯=( x +2 )( x +1 )= x 2 +3 x +2 ,故选: A .15 .【解答】解:∵小刚在解关于 x 的方程 ax 2 + bx + c = 0 (a ≠ 0 )时,只抄对了 a = 1 , b = 4 ,解出其中一个根是 x =﹣ 1 ,∴(﹣ 1 ) 2 ﹣ 4+ c = 0 ,解得: c = 3 ,故原方程中 c = 5 ,则 b 2 ﹣ 4 ac = 16 ﹣ 4 × 1 × 5 =﹣ 4 < 0 ,则原方程的根的情况是不存在实数根.故选: A .16 .【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为 n = 14 ;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选: B .二、填空题(本大题有 3 个小题,共 11 分, 17 小题 3 分: 18 ~ 19 小题各有 2个空,每空 2 分,把答案写在题中横线上)17 .【解答】解:∵ 7 ﹣ 2 × 7 ﹣ 1 × 7 0 = 7 p ,∴﹣ 2 ﹣ 1+0 = p ,解得: p =﹣ 3 .故答案为:﹣ 3 .18 .【解答】解:( 1 )根据约定的方法可得:m = x +2 x = 3 x ;故答案为: 3 x ;( 2 )根据约定的方法即可求出 nx +2 x +2 x +3 = m + n = y .当 y =﹣ 2 时, 5 x +3 =﹣ 2 .解得 x =﹣ 1 .∴ n = 2 x +3 =﹣ 2+3 = 1 .故答案为: 1 .19 .【解答】解:( 1 )由 A 、 B 两点的纵坐标相同可知:AB ∥ x 轴,∴ AB = 12 ﹣(﹣ 8 ) 20 ;( 2 )过点 C 作 l ⊥ AB 于点 E ,连接 AC ,作 AC 的垂直平分线交直线 l 于点 D ,由( 1 )可知: CE = 1 ﹣(﹣ 17 )= 18 ,AE = 12 ,设 CD = x ,∴ AD = CD = x ,由勾股定理可知: x 2 =( 18 ﹣ x ) 2 +12 2 ,∴解得: x = 13 ,∴ CD = 13 ,故答案为:( 1 ) 20 ;( 2 ) 13 ;三、解答题(本大题有 7 个小题,共 67 分 . 解答应写出文字说明、证明过程或演算步骤)20 .【解答】解:( 1 ) 1+2 ﹣ 6 ﹣ 9= 3 ﹣ 6 ﹣ 9=﹣ 3 ﹣ 9=﹣ 12 ;( 2 )∵ 1 ÷ 2 × 6 □ 9 =﹣ 6 ,∴ 1 × × 6 □ 9 =﹣ 6 ,∴ 3 □ 9 =﹣ 6 ,∴□内的符号是“﹣”;( 3 )这个最小数是﹣ 20 ,理由:∵在“ 1 □ 2 □ 6 ﹣9 ”的□内填入符号后,使计算所得数最小,∴ 1 □ 2 □ 6 的结果是负数即可,∴ 1 □ 2 □ 6 的最小值是 1 ﹣ 2 × 6 =﹣ 11 ,∴ 1 □ 2 □ 6 ﹣ 9 的最小值是﹣ 11 ﹣ 9 =﹣ 20 ,∴这个最小数是﹣ 20 .21 .【解答】解: A =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 = n 4 ﹣ 2 n 2 +1+4 n 2 = n 4 +2 n 2 +1 =( n 2 +1 ) 2 ,∵ A = B 2 , B > 0 ,∴ B = n 2 +1 ,当 2 n = 8 时, n = 4 ,∴ n 2 +1 = 4 2 +1 = 15 ;当 n 2 ﹣ 1 = 35 时, n 2 +1 = 37 .故答案为: 15 ; 3722 .【解答】解:( 1 )∵ P (一次拿到 8 元球)=,∴ 8 元球的个数为 4 × = 2 (个),按照从小到大的顺序排列为 7 , 8 , 8 , 9 ,∴这 4 个球价格的众数为 8 元;( 2 )① 所剩的 3 个球价格的中位数与原来 4 个球价格的中位数相同;理由如下:原来 4 个球的价格按照从小到大的顺序排列为 7 , 8 , 8 , 9 ,∴原来 4 个球价格的中位数为= 8 (元),所剩的 3 个球价格为 8 , 8 , 9 ,∴所剩的 3 个球价格的中位数为 8 元,∴所剩的 3 个球价格的中位数与原来 4 个球价格的中位数相同;② 列表如图所示:共有 9 个等可能的结果,乙组两次都拿到 8 元球的结果有 4 个,∴乙组两次都拿到 8 元球的概率为.23 .【解答】解:( 1 )在△ ABC 和△ ADE 中,(如图 1 )∴△ ABC ≌△ ADE ( SAS )∴∠ BAC =∠ DAE即∠ BAD + ∠ DAC =∠ DAC + ∠ CAE∴∠ BAD =∠ CAE .( 2 )∵ AD = 6 , AP = x ,∴ PD = 6 ﹣ x当 AD ⊥ BC 时, AP =AB = 3 最小,即 PD = 6 ﹣ 3 = 3 为 PD 的最大值.( 3 )如图 2 ,设∠ BAP =α ,则∠ APC =α +30 °,∵ AB ⊥ AC∴∠ BAC = 90 °,∠ PCA = 60 °,∠ PAC = 90 °﹣α ,∵ I 为△ APC 的内心∴ AI 、 CI 分别平分∠ PAC ,∠ PCA ,∴∠ IAC =∠ PAC ,∠ ICA =∠ PCA∴∠ AIC = 180 °﹣(∠ IAC + ∠ ICA )= 180 °﹣(∠ PAC + ∠ PCA )= 180 °﹣( 90 °﹣α +60 °)=α +105 °∵ 0 <α < 90 °,∴ 105 °<α +105 °< 150 °,即 105 °<∠ AIC < 150 °,∴ m = 105 , n = 150 .24 .【解答】解:( 1 )① 排尾从位置 O 开始行进的时间为 t ( s ),则排头也离开原排头 t ( s ),∴ S 头= 2 t +300② 甲从排尾赶到排头的时间为 300 ÷( 2 v ﹣ v )= 300 ÷ v = 300 ÷ 2 = 150 s ,此时 S 头= 2 t +300 = 600 m甲返回时间为:( t ﹣ 150 ) s∴ S 甲= S 头﹣ S 甲回= 2 × 150+300 ﹣ 4 ( t ﹣ 150 )=﹣ 4 t +1200 ;因此, S 头与 t 的函数关系式为 S 头= 2 t +300 ,当甲赶到排头位置时,求 S 的值为 600 m ,在甲从排头返回到排尾过程中, S 甲与 t 的函数关系式为 S 甲=﹣4 t +1200 .( 2 ) T = t 追及 + t 返回=+ =,在甲这次往返队伍的过程中队伍行进的路程为: v ×( T ﹣ 150 )= v ×(﹣﹣ 150 )= 400 ﹣ 150 v ;因此 T 与 v 的函数关系式为: T =,此时队伍在此过程中行进的路程为( 400 ﹣ 150 v ) m .25 .【解答】解:( 1 )如图 1 , AP 经过圆心 O ,∵ CP 与⊙ O 相切于 P ,∴∠ APC = 90 °,∵ ▱ ABCD ,∴ AD ∥ BC ,∴∠ PBC =∠ DAB∴ =tan ∠ PBC =tan ∠ DAB =,设 CP = 4 k , BP = 3 k ,由 CP 2 + BP 2 =BC 2 ,得( 4 k ) 2 + ( 3 k ) 2 = 15 2 ,解得 k 1 =﹣ 3 (舍去), k 2 = 3 ,∴ x = BP = 3 × 3 = 9 ,故当 x = 9 时,圆心 O 落在 AP 上;∵ AP 是⊙ O 的直径,∴∠ AEP = 90 °,∴ PE ⊥ AD ,∵ ▱ ABCD ,∴ BC ∥ AD∴ PE ⊥ BC( 2 )如图 2 ,过点 C 作 CG ⊥ AP 于 G ,∵ ▱ ABCD ,∴ BC ∥ AD ,∴∠ CBG =∠ DAB∴ =tan ∠ CBG =tan ∠ DAB =,设 CG = 4 m , BG = 3 m ,由勾股定理得:( 4 m ) 2 + ( 3 m ) 2 = 15 2 ,解得 m = 3 ,∴ CG = 4 × 3 = 12 , BG = 3 × 3 = 9 , PG = BG ﹣ BP = 9 ﹣ 4 = 5 , AP = AB+ BP = 3+4 = 7 ,∴ AG = AB + BG = 3+9 = 12∴ tan ∠ CAP === 1 ,∴∠ CAP = 45 °;连接 OP , OQ ,过点 O 作 OH ⊥ AP 于 H ,则∠ POQ =2 ∠ CAP = 2 × 45 °= 90 °,PH =AP =,在 Rt △ CPG 中,== 13 ,∵ CP 是⊙ O 的切线,∴∠ OPC =∠ OHP = 90 °,∠ OPH + ∠ CPG = 90 °,∠ PCG + ∠ CPG = 90 °∴∠ OPH =∠ PCG∴△ OPH ∽△ PCG∴ ,即 PH × CP = CG × OP ,× 13 = 12 OP ,∴ OP =∴劣弧长度==,∵ <2 π < 7∴弦 AP 的长度>劣弧长度.( 3 )如图 3 ,⊙ O 与线段 AD 只有一个公共点,即圆心 O 位于直线 AB 下方,且∠ OAD ≥ 90 °,当∠ OAD = 90 °,∠ CPM =∠ DAB 时,此时 BP 取得最小值,过点 C 作 CM ⊥ AB 于 M ,∵∠ DAB =∠ CBP ,∴∠ CPM =∠ CBP∴ CB = CP ,∵ CM ⊥ AB∴ BP = 2 BM = 2 × 9 = 18 ,∴ x ≥ 1826 .【解答】解:( 1 )当 x = 0 吋, y = x ﹣ b =﹣ b ,∴ B ( 0 ,﹣ b ),∵ AB = 8 ,而 A ( 0 , b ),∴ b ﹣(﹣ b )= 8 ,∴ b = 4 .∴ L : y =﹣ x 2 +4 x ,∴ L 的对称轴 x = 2 ,当 x = 2 吋, y = x ﹣ 4 =﹣ 2 ,∴ L 的对称轴与 a 的交点为( 2 ,﹣ 2 );( 2 ) y =﹣( x ﹣) 2 + ,∴ L 的顶点 C ()∵点 C 在 l 下方,∴ C 与 l 的距离 b ﹣=﹣( b ﹣ 2 )2 +1 ≤ 1 ,∴点 C 与 1 距离的最大值为 1 ;( 3 )由題意得,即 y 1 + y 2 = 2 y 3 ,得 b + x 0 ﹣ b = 2 (﹣ x 0 2 + bx 0 )解得 x 0 = 0 或 x 0 = b ﹣.但 x 0 #0 ,取 x 0 = b ﹣,对于 L ,当 y = 0 吋, 0 =﹣ x 2 + bx ,即 0 =﹣ x ( x ﹣ b ),解得 x 1 = 0 , x 2 = b ,∵ b > 0 ,∴右交点 D ( b , 0 ).∴点( x 0 , 0 )与点 D 间的距离 b ﹣( b ﹣)=( 4 )① 当 b = 2019 时,抛物线解析式 L : y =﹣ x 2 +2019 x 直线解析式 a : y = x ﹣ 2019联立上述两个解析式可得: x 1 =﹣ 1 , x 2 = 2019 ,∴可知每一个整数 x 的值都对应的一个整数 y 值,且﹣ 1 和 2019 之间(包括﹣ 1和﹣ 2019 )共有 2021 个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有 2021 个整数点∴总计 4042 个点,∵这两段图象交点有 2 个点重复重复,∴美点”的个数: 4042 ﹣ 2 = 4040 (个);② 当 b = 2019.5 时,抛物线解析式 L : y =﹣ x 2 +2019.5 x ,直线解析式 a : y = x ﹣ 2019.5 ,联立上述两个解析式可得: x 1 =﹣ 1 , x 2 = 2019.5 ,∴当 x 取整数时,在一次函数 y = x ﹣ 2019.5 上, y 取不到整数值,因此在该图象上“美点”为 0 ,在二次函数 y = x +2019.5 x 图象上,当 x 为偶数时,函数值 y 可取整数,可知﹣ 1 到 2019.5 之间有 1009 个偶数,并且在﹣ 1 和 2019.5 之间还有整数 0 ,验证后可知 0 也符合条件,因此“美点”共有 1010 个.故 b = 2019 时“美点”的个数为 4040 个, b = 2019.5 时“美点”的个数为 1010 个.。
2020年河北省中考数学试题(图片版含答案)

2020年河北省初中毕业生升学文化课考试数学试卷注意事项:1・本试卷共X页,总分120分,考试时间120分钟.2・答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位≡±.3・答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,将答案写在答Sg卡上.写在本试卷上无效.4・考试结束后,将本试卷和答SS卡一井交回.一、选择题(本大題有16个小题,共42分.1〜10小題各3分・11〜16小題各2分.在每小題给出的四个选项中,只有一项是符合題目要求的)1・如图1.在平面内作己知亘线加的垂线,可作垂线的条数有A∙ 0 条B∙ 1 条~ fn图1 C・2条 D.无数条2.墨迹椅盖了尊式“ Z3∙x = χ2 (XH0)”中的运算符号,则覆盖的是A- +- B- "uC- ×D・÷3.对于①x —3Xy = X(I・3刃,②(X + 3)(x — 1) = X a÷2x-3 »从左到右的变形・表述正确的是A・都是因式分解,B・都是乘法运算C・Φ½B式分解,②圧乘法运算D・①是乘法运算,②是因式分解4.图2的两个几何体分别由7个和6个相同的小正方体搭成.比较两个几何体的三视图,正确的是A・仅主视图不同B・仅俯视图不同'OQ C・仅左视图不同D・主视图、左视图和俯视图都相同5.图3是小颖曲三次购买苹果单价的统计图,第四次又买的苹果单价是。
元/千克・发现这四个单价的中位数恰好也足众数,则α =A. 9 B- 8C *7 D∙ 66∙如图4' C知∕MC,用尺规作它的和平分线如图4∙2∙步骤如下,姑步・・灯为圆心,以诅半径嘶■分别交射线呗眈于点D & 第二炽分别以D, E为圆心.以必半径吹两弧业初C内部交于点P;第三步:画射线&P.射线EP即为所求A. a.方均无限制C. α有最小限制,b无限制7.若a≠b・则下列分式化简正确的是B・α AO, b>∣DE 的长D∙ α No, b <-DE的长2B・应,b-2 b8∙在图5所示的网格中・以点O为位似中心,四边形ABCD 的位似图形是A・四边形NPMQ B.四边形NPMRC.四边形N〃M0D.四边形MMR9.若(!iz>x∏2-1)=8xl0xl2,则“k下列正确的是1 -α2A图5作补充•下列正确的足H.若斤为正幣教•则(&+«+•••+&「S------- V ------- Zit*IO •如图b 將“"C 堆边,4「的屮z ∙ OWRliIteH IKO a •筋汎发现・旋转厉的厶Cw U^ABC 构 MMpI 叫讪仪 HHlJnII 卜,点儿C 分別Hi>J 7 Λ G X 处, 而,m 了点D 处.:CB AD 9J 口边彫ABCD 是半行四边形•小明为保IlL 站m 的Jff PP 更严悴• ffl ⅛ΛH*<l 1 U^Cn-AD. f∏ w Λ四边形 ... WZ 何Λ. KiHffl 理严ib 不必补允 B ∙应补允:∖IAB≈CD.C.应补充:fl AR//CD.D ∙应补充:H0Λ≈()C.12. taffl7∙从笔ri 的公路I 旁一点P 岀发•向西走6km 到达人从P 出发向北走6km 也到达/・卜列说法错误的是• •A ・从点P 向北偏西45°走3km 到达/ B. 公Wn 的走向堆南偏两45∙ C. 公埒/的走向是北偏东45°13.己知光連为300 000千米/杪,光经过f 秒(IWfWlO )传播的览肉用科学记故注&示为4? XIO A千米.IM n nl(½为A. 5 C. 5 PlCB ・6 D ・ 5 Λ 6N. ff -ItSth -已如:点O 力△・(〃('的'卜心・C8(XUU ∙・*Z.4.- SJSJ 的解呑为: 以及它的外忆翹 α iitt OB.OC.切图 8.由ZMXu-IMF .65* .而miKi%∣的不卅全•"还⅛fιM -个不屈的備.・F 列刿妙止的的足A. IMiMift 的対,且Z4的列个VLlt ∏5' B ・MuK 说的不对∙rt<y 65C. SZti 求的rΛMid ∙对・厶4应紂Mr D ・两人林不対・Z.4应"3个不同(ft数学试卷D ∙ k 2A.北尽IS.如图9 •现婴在抛物线yκ(4-n上找点PS b).针対6的不同収值,所找点P的个数,三人的说法如下,甲:若b = 5,则点P的个数为0;乙:若b=4.则点P的个数为1;丙:若b=3,则点P的个数为∣∙下列判断正确的是A.乙错,丙对B.甲和乙都错C.乙对,丙错D・I卩情,內对∣6.图IO是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是 1.2, 3. 4. 5.选取其中三块(可重复选取)按图10 的方式组成图案,使所围成的三用形是面积最大的直角• •三角形,则选取的三块纸片的面积分别是图IO A- 1, 4, 5 B. 2, 3, 5C. 3∙49 5D. 2. 2, 4二.填空题(本大题有3个小题•共12分• 17〜18小題各3分;19小题有3个空•每空2分)17._______________________________________ 己知:√ΓS->∕2≡α√2-√2=5√2 r IlM ab^ _______________________________________18.________________________________________________ 正六边形的一个内角是正丹边形一个外角的4倍,则F l= ___________________________________19.图11是8个台阶的示意图•每个台阶的高和宽分别足1和2.每个台阶凸出的角的顶点记作几S为1~8的整数)•曲数八'(x<0)的图象为曲线厶(1)若2过点环则" ____________ ;(2)若Z过点门,则它必定还过另一点&・则m≡_____________ I(3)若曲线丄使得TLT*这些点分布在它的两侧・毎.侧各4个点,则&的整数值冇________ 个・三、解答题(本大题冇7个小越•共66分•解拧应坷出文孑说明、证明过稈或演題步骤)20.(本小题満分R分)己知两个有理数:-9和5・(1)计算;匕聖艺;2(2)若再添一个负整数刃.且-9・5与刊这三个数的平均数仍小T求"的值•21.(本小题满分8分)有一电脑稈序:每按一次按键,屏幕的A区就会自动加上/・同时B区就会口动诚去3α,且均显示化简后的结果・己知A, B 两区初始显示的分别是25和-16・如图12・如,第一次按⅛t⅛, A I B两区分别显示:2;胃訂E器鸟^<1)从初始状态按2次后,分别求A, B两区显示的结果;(2)从初始状态按4次后,计算A, B两区代数式的和,请判断这个和能为负数吗?说明理由22・(本小题满分9分)如图13•点O为X〃中点,分别延长0/1到点C, OB到点D・使OC = OD.以点0 为圆心,分别以6, OQ为半径在CD上方作两个半圆•点P为小半圆上任一点(不与点A,〃車合),连接OP 并延长交大半圆于点E,连接*£・CP.(1)① 求证:∆A0E^∆P0C;②写出Zl, Z2和ZC1三者间的数蛍关系,井说明理由.(2)若OC≈2OA=2l当ZC最大时,皐悸指出CP与小半圆的位置关系,并求此时S吨OD(答集保窗兀>・Ill23・(本小题满分9分)用承垂捋数〃衡凰水平放置的长方休木板的最大承3i.fi.实验室冇些同材质冋长同 宽而厚度不-的木板,实验发规:木板承航拾数“与木板耳度X (厘米〉的平方成正比. 当x=3时,"=3・(1>求卩与X 的函数关系式・(2〉如图】4・选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为X (厘米〉, ① 求0与X 的函数关系式: ② Jr 为何值时,。
2020年河北省初中毕业生升学文化课考试数学试题(word无答案)

2020年河北省初中毕业生升学文化课考试数学试题(word无答案)一、单选题(★★) 1 . 在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0B.﹣1C.0.5D.(﹣1)2(★) 2 . 在圆的面积计算公式S= 中,变量是()A.S B.R C.π,R D.S,R(★) 3 . 如图,在△ABC中,∠ A=36°, AB=AC, BD平分∠ ABC,则图中等腰三角形的个数是()A.0个B.1个C.2个D.3个(★★) 4 . 下列等式成立的是()A.(-x-1)=(x-1)B.(-x-1) =(x+1)C.(-x+1)=(x+1)D.(x+1) =(x-1)(★) 5 . 现有一列式子:①55 2-45 2;②555 2-445 2;③5555 2-4445 2…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×1017(★) 6 . 函数中自变量 x的取值范围在数轴上表示正确的是()A.B.C.D.(★) 7 . 下列说法正确的是()A.调查湘江河水的水质情况,采用抽样调查的方式B.数据2,0,,1,3的中位数是C.可能性是的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生(★) 8 . 的平方根是()A.3B.﹣3C.3和﹣3D.(★) 9 . 如图,∠B的同位角可以是A.∠1B.∠2C.∠3D.∠4(★) 10 . 在△ ABC和△ A1B1C1中,下列四个命题(1)若 AB=A1B2, AC=A1C1,∠ A在∠ A,则△ ABC≌△ A1B1C1;(2)若 AB=A1B2, AC=A1C1,∠ B= ∠ B 1,则△ ABC≌△ A1B1C1;(3)若∠ A= ∠ A 1,∠ C= ∠ C 1,则△ ABC∽△ A1B1C1;(4)若 AC : A1C1=CB : C1B1,∠ C= ∠ C 1,则△ ABC∽△ A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个(★★) 11 . 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A. 选①②B. 选②③C. 选①③D. 选②④(★★) 12 . 下列三个函数:①y=x+1;② ;③ .其图象既是轴对称图形,又是中心对称图形的个数有()A.0B.1C.2D.3(★★) 13 . 如图,在△ ABC中, BC> AB> AC.甲、乙两人想在 BC上取一点 P,使得∠ APC =2∠ ABC,其作法如下:(甲)作 AB的中垂线,交 BC于 P点,则 P即为所求;(乙)以 B为圆心, AB长为半径画弧,交 BC于 P点,则 P即为所求.对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确(★★) 14 . 矩形 ABCD中, AB=10, AD=4,点 P是 CD上的动点,当∠ APB=90 °时, DP的长是()A.2B.6C.2或6D.2或8(★★) 15 . 如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△PAB= S矩形ABCD,则点P到A、B两点间距离之和PA+PB的最小值为()A.B.C.D.(★★) 16 . 如图,直线 AB 、 CD相交于点 O,∠ AOC=30 °,半径为2 cm的 P的圆心在射线OA上,且与点 O的距离为6 cm,如果 P以1 cm/s的速度沿直线 AB由 A向 B的方向移动,那么 P与直线 CD相切时☉ P运动的时间是()A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒二、填空题(★) 17 . |-3-2|=_____.(★) 18 . 已知△ ABC与△ DEF相似且面积比为4:25,则△ DEF与△ ABC的相似比为_____.(★) 19 . 对于三个数 a、 b、 c,用 M{ a, b , c}表示这三个数的中位数,用max{ a , b , c}表示这三个数中最大数,例如: M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1, a}=解决问题:M{sin45°,cos60°,tan60°}=_____,如果max{3,5-3 x,2 x-6}=3,则 x的取值范围为______.三、解答题(★) 20 . 先化简,再求值:,其中.(★) 21 . 某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份 B款运动鞋的销售量是 A款的80%,则一月份 B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.(★★) 22 . 如图,已知反比例函数的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为4.(1)求 k和 m的值;(2)若点C(x,y)也在反比例函数的图象上,当y≤2(y≠0)时,求自变量x的取值范围.(★★) 23 . (2017内蒙古通辽市)如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在 OA的位置时俯角∠ EOA=30°,在 OB的位置时俯角∠ FOB=60°,若OC⊥ EF,点 A比点 B高7cm.求:(1)单摆的长度(≈1.7);(2)从点 A摆动到点 B经过的路径长(π≈3.1).(★★) 24 . 工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?(★★) 25 . 如图,直角△ ABC中,∠ BAC=90°, D在 BC上,连接 AD,作BF⊥ AD分别交AD于 E,交 AC于A.(1)如图(1),若BD=BA,求证:∠BAD=∠C+∠CAD;(2)如图(2),若 BD=4DC,取AB 的中点G,连接CG交AD于M,求证:①GM=2MC;②.(★★★★) 26 . 如图(1),已知抛物线经过坐标原点 O和 x轴上另一点 E,顶点 M的坐标为(2,4);矩形 ABCD的顶点 A与点 O重合, AD 、 AB分别在 x轴、 y轴上,且 AD=2, AB=3.(1)求直线 y=3与抛物线交点的坐标;(2)将矩形 ABCD以每秒1个单位长度的速度从图⑴所示的位置沿 x轴的正方向匀速平行移动,同时一动点 P也以相同的速度从点 A出发向 B匀速移动,设它们运动的时间为 t秒(0≤t≤3),直线 AB与该抛物线的交点为 N(如图(2)所示).①当时,判断点 P是否在直线 ME上,并说明理由;②设以 P 、 N 、 C 、 D为顶点的多边形面积为 S,试问 S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.。
2020年部编人教版河北省中考数学试题及答案(Word精析版)
2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2020年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
河北省2020年中考数学试题(解析版)
2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条 【答案】D【解析】【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( ) A. +B. -C. ×D. ÷【答案】D【解析】【分析】直接利用同底数幂的除法运算法则计算得出答案.【详解】∵3x 2x x =(0x ≠), 32x x x ÷=,∴覆盖的是:÷.故选:D .【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【答案】C【解析】【分析】根据因式分解的定义进行判断即可;【详解】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同【答案】D【解析】【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 6【答案】B【解析】【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【点睛】本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键.∠,用尺规作它的角平分线.6.如图1,已知ABC如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B【解析】【分析】根据作角平分线的方法进行判断,即可得出结论. 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.若a b ,则下列分式化简正确的是( ) A. 22a a b b +=+ B. 22a a b b -=- C. 22a a b b = D. 1212a a bb = 【答案】D【解析】【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a≠b,∴22a ab b +≠+,选项A错误;22a ab b-≠-,选项B错误;22a ab b≠,选项C错误;1212a abb=,选项D正确;故选:D.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【答案】A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故选:A【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.若()()229111181012k --=⨯⨯,则k =( ) A. 12 B. 10 C. 8 D. 6【答案】B【解析】【分析】利用平方差公式变形即可求解.【详解】原等式()()229111181012k --=⨯⨯变形得: ()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯ 810101281012⨯⨯⨯=⨯⨯ 10=.故选:B .【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下: 点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =, C . 应补充:且//AB CDD. 应补充:且OA OC =,【答案】B【解析】【分析】 根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B .【点睛】本题主要考查了平行四边形的判定和旋转的性质,牢记旋转前、后的图形全等,熟练掌握平行四边形的判定方法是解题的关键.11.若k 为正整数,则()k k k k k k ++⋅⋅⋅+=个( ) A. 2k k B. 21k k + C. 2k k D. 2k k +【答案】A【解析】【分析】根据乘方的定义及幂的运算法则即可求解.【详解】()k k kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k , 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l的走向是南偏西45° C. 公路l 走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l【答案】A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°,又PH ⊥AB ,∴△PAH 为等腰直角三角形,∴PH=2=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( )A. 5B. 6C. 5或6D. 5或6或7【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值【答案】A【解析】【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°.故选:A .【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键. 15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1.下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【答案】C【解析】【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【答案】B【解析】【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c ,A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.==,则ab =_________.【答案】6【解析】【分析】根据二次根式的运算法则即可求解.-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.【答案】12【解析】【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°,∴正n 边形的边数为:360°÷30°=12.故答案为:12.【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数k y x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7【解析】【分析】(1)先确定T 1的坐标,然后根据反比例函数k y x=(0x <)即可确定k 的值; (2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T 1~T 8的横纵坐标积,再从小到大排列,然后让k 位于第4个和第5个点的横纵坐标积之间,即可确定k 的取值范围和k 的整数值的个数.【详解】解:(1)由图像可知T 1(-16,1)又∵.函数k y x =(0x <)的图象经过T 1 ∴116k =-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8)∵L 过点4T∴k=-10×4=40 观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k 是解答本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-.【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m 的取值,故可求解.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m -++<m 解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【解析】【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).【答案】(1)①见详解;②∠2=∠C+∠1;(2)CP 与小半圆相切,43π. 【解析】【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当C ∠最大时,可知此时CP 与小半圆相切,可得CP⊥OP,然后根据222OC OA OP ===,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .【详解】(1)①在△AOE 和△POC 中=AO PO AOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1;(2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值,∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π. 【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =.(1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】【答案】(1)213W x =;(2)①124Q x =-;②2cm x =. 【解析】【分析】(1)设W=kx 2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx 2,∵3x =时,3W =∴3=9k∴k=13∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm∴厚板的厚度为(6-x )cm ,∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q 是W 薄的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【答案】(1)l :31y x ;(22;(3)a 的值为52或175或7 【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l ',联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l ,直线l '和y 轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k b b -=-+⎧⎨=⎩, 解得31k b =⎧⎨=⎩, ∴直线l 的解析式为31y x , (2)依题意可得直线l '的解析式为3y x ,作函数图像如下:令x=0,得y=3,故B (0,3), 令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩, ∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3, 解得a=7;②当对称点在直线l '上时,则2×(a-3)=13a -, 解得a=175; ③当对称点在y 轴上时,则13a -+(3a -)=0, 解得a=52; 综上:a 的值为52或175或7. 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终..停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接..写出k的值.【答案】(1)14P=;(2)256m n=-;当4n=时,距离原点最近;(3)3k=或5【解析】【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为12,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为12,②甲猜正,乙猜反,概率为14,③甲猜反,乙猜正,概率为14,(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;【详解】(1)题干中对应的三种情况的概率为:①11111+= 22222⨯⨯;②11111+= 24244⨯⨯;③11111+= 24244⨯⨯;甲的位置停留在正半轴上的位置对应情况②,故P =14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k =.【点睛】本题主要考查了概率的求解,通过数轴的理解进行准确分析是解题的关键. 26.如图1和图2,ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【答案】(1)3;(2)43MP =;(3)当03x ≤≤时,24482525d x =+;当39x ≤≤时,33355d x =-+;(4)23t s =【解析】【分析】(1)根据当点P 在BC 上时,PA ⊥BC 时PA 最小,即可求出答案;(2)过A 点向BC 边作垂线,交BC 于点E ,证明△APQ ∽△ABC ,可得2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,根据S S 上下=45可得 24=9APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,可得23AP AB =,求出AB=5,即可解出MP ; (3)先讨论当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,求解即可,再讨论当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,根据d=CP·sinC 即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==, ∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, ∴23AP AB =, AE=2BC ·tan 3C =, 根据勾股定理可得AB=5, ∴2253AP MP AB +==, 解得MP=43; (3)当0≤x≤3时,P BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ , ∵AP=x+2, ∴25AP x PQ AB BC+==, ∴PQ=285x +⨯, ∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94, 移动的速度=936=14, ①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-, 整理得y 2-8y=554-, (y-4)2=94, 解得y 1=52,y 2=112, 52÷14=10秒, 112÷14=22秒, ∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键。
2020年河北省初中毕业生升学文化课考试数学样卷
数学试卷 第1页(共9页)20XX 年河北省初中毕业生升学文化课考试数 学 试 卷 (样卷)注意事项:1.本试卷共9页,总分120分,考试时间120分钟。
2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上。
3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,考生务必将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) .下列图形为正多边形的是 .规定:(→2)表示向右移动2记作2+,则(←3)表示向左移动3记作A .3+B .3-C .13-D .+13.如图1,从点C 观测点D 的仰角是A .∠DAB B .∠DCEC .∠DCAD .∠ADC.语句“x 的18与x 的和不超过5”可以表示为A .8x x +≤5B .8x x +≥5C .85x +≤5D .8x x +=55.如图2,菱形ABCD 中,150D ∠=︒,则1=∠A .30°B .25°C .20°D .15°图2ABE D C图1水平地面 CDBA数学试卷 第2页(共9页)6.小明总结了以下结论:①()a b c ab ac +=+;②()a b c ab ac -=-;③()b c -÷a b =÷a c -÷a (0a ≠); ④a ÷()b c +=a ÷b a +÷c (0a ≠). 其中一定成立的个数是 A .1 B .2 C .3D .47则回答正确的是 A .◎代表∠FEC B .@代表同位角 C .▲代表∠EFCD .※代表AB8.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为 A .4510-⨯ B .5510-⨯ C .4210-⨯D .5210-⨯9.如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案 恰有三条对称轴,则n 的最小值为 A .10 B .6 C .3D .210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是11.某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表.正确统计步骤的顺序是A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①12.如图4,函数1(0)1(0)⎧⎪⎪=⎨⎪-⎪⎩xxyxx<,>A.点M B C.点P D13.如图5,若x为正整数...,则表示22(2)1441xx x x+-+++的值的点落在A.段①B.段②C.段③D.段④图5A 50°70°B 50°70°C 50°70°D 50°70°图4数学试卷第3页(共9页)数学试卷 第4页(共9页)14.图6-2是图6-1中长方体的三视图,若用S 表示面积,且22S x x =+主,2S x x =+左,则S =俯 A .232x x ++ B .22x + C .221x x ++ D .223x x +15.小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是 A .不存在实数根 B .有两个不相等的实数根 C .有一个根是1x =-D .有两个相等的实数根16.对于题目:“如图7-1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界.....通过移转 (即平移或旋转)的方式,自由地从横放移转到竖放, 求正方形边长的最小整数n .”甲、乙、丙作了自认为 边长最小的正方形,先求出该边长x ,再取最小整数n . 甲:如图7-2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =.乙:如图7-3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取14n =.丙:如图7-4,思路是当x倍时 就可移转过去;结果取13n =. 下列正确的是A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对主视图 俯视图左视图图6-2正面 图6-1图图7-2 图7-3图7-4数学试卷 第5页(共9页)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空 2分.把答案写在题中横线上)17.若p7777012=⨯⨯--,则p 的值为 .18.如图8,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x 的式子表示m = ;(2)当2y =-时,n 的值为 .19.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图9(单位:km ).笔直铁路经过A ,B 两地. (1)A ,B 间的距离为km ;(2)计划修一条从C 到铁路AB 的最短公路....l ,并在l 上建一个维修站D ,使D 到A ,C 的距离 相等,则C ,D 间的距离为 km .三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:1269+--;(2)若1÷2×6□96=-,请推算□内的符号;(3)在“1□2□69-”的□内填入符号后,使计算所得数最小,直接..写出这个最小数.图8C (0,-17)图9 ,1)数学试卷 第6页(共9页)21.(本小题满分9分)已知:整式222(1)(2)A n n =-+,整式B >0. 尝试 化简整式A . 发现 2A B =.求整式B .联想 由上可知,2222(1)(2)B n n =-+,当n >1时,21n -,2n ,B 为直角三角形的三边长,如图10.填写下表中B 的值:22.(本小题满分9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知8=P (一次拿到元球)12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.① 所剩的3个球价格的中位数与原来4个球价格的 中位数是否相同?并简要说明理由;② 乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法...(如图11)求乙组两次都拿到8元球的概率.图11又拿先拿21n -2n图10数学试卷 第7页(共9页)23.(本小题满分9分)如图12,△ABC 和△ADE 中,6AB AD ==,BC DE =,30B D ∠=∠=︒.边AD 与 边BC 交于点P (不与点B ,C 重合),点B ,E 在 AD 异侧.I 为△APC 的内心. (1)求证:BAD CAE ∠=∠;(2)设AP x =,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为 m °<∠AIC < n °,分别直接..写出m ,n 的值.24.(本小题满分10分)长为300 m 的春游队伍,以v (m/s )的速度向东行进.如图13-1和图13-2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头..与O 的距离为S 头(m ). (1)当2v =时,解答:①求S 头 与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头 的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m ),求S 甲 与t 的函数关系式(不写t 的取值范围).图12ADICEP备用图ABC东O (尾) 头图13-1O甲图13-2东数学试卷 第8页(共9页)(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.(本小题满分10分)如图14-1和14-2,□ABCD 中,3AB =,15BC =,4tan 3DAB ∠=.点P 为AB 延长线上一点,过点A 作⊙O 切CP 于点P ,设BP x =.(1)如图14-1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接..指出PE 与BC 的位置 关系;(2)当4x =时,如图14-2,⊙O 与AC 交于点Q ,求∠CAP的度数,并通过计算比较弦AP 与劣弧PQ ︵长度的大小;(3)当⊙O 与线段..AD 只有一个公共点时,直接..写出x 的取值范围.图14-1图14-2备用图ABCDP数学试卷 第9页(共9页)26.(本小题满分12分)如图15,若b 是正数..,直线l :y b =与y 轴交于点A ;直线a :y x b =-与y 轴交于点B ;抛物线L :2y x bx =-+的顶点为C ,且L 与x 轴右交点为D .(1)若8AB =,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设00x ≠,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上...,把横、纵坐标都是整数的点称为“美点”,分别直接..写出2019b =和2019b =.5时“美点”的个数.图15。
河北省2020年初中毕业生升学文化课考试说明——数学(2020与2019年比较)(1)(1)(1)
河北省2020年初中毕业生升学文化课考试说明
数学
◆编者——与2019年一致
◆考试性质——与2019年有变化
2019年一、指导思想部分中“促进高中阶段学校的均衡发展和教育质量整体提高”,在2020年一、指导思想部分中变为“促进高级中等学校的均衡发展和教
◆考试形式与试卷结构——与2019年一致
考试采用闭卷笔试形式,全卷总分为120分.考试时间为120分钟.
整个试卷包括卷Ⅰ和卷Ⅱ.卷Ⅰ为选择题,卷Ⅱ为非选择题.
数与代数、图形与几何和统计与概率所占分数的百分比与它们在教学中所占课时的百分比大致相同.数与代数:图形与几何:统计与概率=5:4:1(以上三部分均蕴涵了适量的综合与实践的内容).
试题分选择题、填空题和解答题三种题型.选择题是四选一型单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算求解题、操作探究题、实验作图题、猜想证明题、实践决策题、综合应用题等,解
答应写出文字说明、演算步骤或推证过程(要求直接写出
....的除外).
数学考试应具有较高的信度、必要的区分度和适当的难度.
试题按其难度分为容易题、中等题和较难题.难度在0.7以上的题为容易题,难度在0.4~0.7之间的题为中等题,难度在0.2~0.4之间的题为较难题,三种试题分值之比约为3:5:2,整套试卷的难度系数为0.65左右.
◆考试内容——与2019年有变化
2019年考试内容三、函数部分中出现的图象(人教版,北师大版数学教材是图象),在2020年考试内容三、函数部分全部变成图像(冀教版数学教材是图像),其余没有变化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.原点或原点右侧
(增)9.(2011 年河北 3 题)下列分解因式正确的是
A.-a+a3=-a(1+a2)
B.2a-4b+2=2(a-2b)
C.a2-4=(a-2)2
D.a2-2a+1=(a-1)2
(增)10.(2018 年河北 4 题)将 9.52 变形正确的是( )
A.9.52=92+0.52
随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为: x甲 x丙 13 , x乙 x丁 15 ;
s 甲 2=s 丁 2=3.6,s 乙 2=s 丙 2=6.3.则麦苗又高又整齐的是( )
A.甲
B.乙 C.丙
D.丁
18.(2018.河北 14.)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只
(增)7.(2018 年河北 3 题)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )
A.l1
B.l2 C.l3
D.l4
1
(换)7.观察图中前五个图形符号的排列规律,则⑥的图形符号是( )
8.若 a﹣|a|=2a,则实数 a 在数轴上的对应点一定在( )
A.原点左侧 B.原点或原点左侧 C.原点右侧
A.
B.
C.
D.
14.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就
记载了利用算筹实施“正负术”的方法,图 1 表示的是计算 3+(﹣4)的过程.按照这种
方法,图 2 表示的过程应是在计算( )
A.(﹣5)+(﹣2) B.(﹣5)+2
C.5+(﹣2)
D.5+2
15.在利用如图所示的程序进行计算时,下列事件中, 属于必然事件的是( ) A.当 x=2 时,y=0 B.当 x=0 时,y=0 C.当 x>0 时,y>0 D.当 x>0 时,y<0
则正确的配对是( ) A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ
B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
(增)13.(2018 年河北 7 题)有三种不同质量的物体“ ”“ ”“ ”,其中,同一种物体的质 量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等, 则该组是( )
“0”的个数为( )
A.4
B.6
C.7
D.10
(增)6.(2015
年河北
11
题)利用加减消元法解方程组
2x 5 x
5y 3y
10 6
① ,下列做法正确的
②
是(
)
A.要消去 y,可以将 ① 5 ② 2 B.要消去 x,可以将 ① 3 ② (5)
C.要消去 y,可以将 ① 5 ② 3 D.要消去 x, 可以将 ① (5) ② 2
3.如图,桌面上有木条 b、c 固定,木条 a 在桌面上绕点 O 旋转 n°
(0<n<90)后与 b 平行,则 n=( )
A.20
B.30
C.70
D.80
(增)4.(2019 年河北 4 题)语句“x 的 与 x 的和不超过 5”可以表示为( )
A. +x≤5
B. +x≥5
C. ≤5
D. +x=5
(增)5.(2018 年河北 2 题)一个整数 815550…0 用科学记数法表示为 8.1555×1010,则原数中
C. 2m n3
4
D. m2 3n
21.如图,AB 是⊙O 的直径,弦 CD⊥AB,∠C=30°,CD=2 .则 S 阴影=( )
A.π
B.2π
C.
D. π
21 题图
22 题图
22.如图,用两根等长的金属丝,各自首尾相接,分别围成正方形 ABCD 和扇形 A1D1C1,
使 A1D1=AD,D1C1=DC,正方形面积为 P,扇形面积为 Q,那么 P 和 Q 的关系是( )
B.9.52=(10+0.5)(10﹣0.5)
C.9.52=102﹣2×10×0.5+0.52
D.9.52=92+9×0.5+0.52
10.如图,一艘海轮位于灯塔 P 的南偏东 70°方向的 M 处,它以每小时 40 海里的速度向正
北方向航行,2 小时后到达位于灯塔 P 的北偏东 40°的 N 处,则 N 处与灯塔 P 的距离
为( )
A.40 海里
B.60 海里
C.70 海里
D.80 海里 (增)11.(2018 年河北 5 题)图中三视图对应的几何体是( )
A.
B.
B.
D.
2
(增)12.(2018 年河北 6 题)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作 线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:
能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程
如图所示:
接力中,自己负责的一步出现错误的是( )
A.只有乙
B.甲和丁 C.乙和丙
D.乙和丁
(增)19.(2019 年河北 11 题)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排
乱的统计步骤:
①从扇形图中分析出最受学生欢迎的种类
3
输入 x ×2 -4 输出 y
(增)16.(2018 年河北 8 题)已知:如图,点 P 在线段 AB 外,且 PA=PB,求证:点 P 在线 段 AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A.作∠APB 的平分线 PC 交 AB 于点 C B.过点 P 作 PC⊥AB 于点 C 且 AC=BC C.取 AB 中点 C,连接 PC D.过点 P 作 PC⊥AB,垂足为 C (增)17.(2018 年河北 9 题)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中
2020 年河北中考文化课考试说明数学考试 题型示例
一.选择题(共 45 小题) (增)1.(2018 年河北 1 题)下列图形具有稳定性的是( )
A.
B.
C.
Hale Waihona Puke D.(增)2.(2015 年河北 2 题)下列说法正确的是(
)
A.1 的相反数是-1 B.1 的倒数是-1 C.1 的立方根是±1
D.-1 是无理数
②去图书馆收集学生借阅图书的记录
③绘制扇形图来表示各个种类所占的百分比
④整理借阅图书记录并绘制频数分布表
正确统计步骤的顺序是( )
A.②→③→①→④
B.③→④→①→②
C.①→②一④→③
D.②→④→③→①
m个2
(增)20.(2017
年河北
4
题)4.
2 2… 2 33 …3
(
)
n个3
A. 2m 3n
B. 2m 3n