数字频率相位计
HG4181 型数字相位计 简易说明书

HG4181型数字相位计简易说明书1.概述HG4181型智能数字相位计,是一种可测正弦波、方波、三角波三种波形的测相仪器,由于采用微处理器控制及自动换档,所以,本仪器在使用时具有最简单的操作。
2. 技术要求2.1 量程:-180.00°~ +180.00°2.2 频率范围:10Hz ~ 250KHz2.3 相位测量误差:当被测两路同为正弦波信号失真低于0.17%且输入幅度有效值100Hz~50KHz为1V (不含50KHz)50KHz~100KHz为3V时,在基准条件下,不同频率的相位误差为: 100Hz~500Hz ±0.5°500Hz~5KHz ±0.1°±Φ/100 * 0.25°(当被测角度Φ≤1°时精度为 ±0.5°)5KHz~20KHz ±1°20KHz~100KHz ±1.2°2.4 影响误差(a) 温度附加误差:0.03°/℃(b)幅相误差: 500Hz~5KHz每变化20dB不大于1°。
当某一路输入幅度小于200mv时再附加1.5°。
2.5 分辨力:0.05°2.6 读数稳定度:100Hz~1KHz为±0.5° 1KHz~100KHz为±0.1°2.7 显示与极性四位半数字和小数点组成并自动显示正、负极性,显示数字的单位为度。
2.8 输入阻抗:10V以下为1MΩ,10V以上为10KΩ。
输入幅度:50mV~120V2.9 电源电压:220V±10% 频率 50Hz±5%3. 工作原理两路信号通过参考通道,信号通道各自的放大/衰减器,输出经检相后进行电压滤波,输入A/D转换器,经微处理器进行数据处理后送入显示器。
4. 使用说明4.1仪器通电前,应先进行外观检查,确认外观无损伤及控制开关正常后,在技术条件下,通电工作。
电参量测量技术

2.1.1 频率的测量
在工业生产领域中周期性现象十分普遍,如各
种周而复始的旋转、往复运动、各种传感器和测量
电路变换后的周期性脉冲等。周期与频率互为倒数
关系:
f1
T
(2-1)
频率测量方法:
1:计数法
2:模拟法
1. 频率(周期)的数字测量
由于T和TA两个量是不相关的,T不一定正好 是TA的整数N倍,即T与NTA之间有一定误差,如 图2-1(b)所示。处在T区间内计数脉冲个数(即计数 器计数结果)为N,则
TNTAt1
t2
Nt1TAt2
TA
(2-3)
(NN)TA
显然,脉冲计数的最大绝对误差△N=±1 。
脉冲计数最大相对误差为:
△N1 TA N NT
△ fx △ N△ fc 1△ fc fx N fc N fc
进一步推导可得测频最大相对误差为:
△fx fx
mfcxf
△fc fc
(2-8)
由上式可见,被测频率fx越高,分频系数m越大, 测频的相对误差△fx/fx越小,测频的精确度越高。
若采用K位十进制计数器,为使计数结果不超 过计数器最大允许计数值而发生溢出,要求:
图2-7 直流数字电压表框图
2. 交流电压的测量
⑴交流电压的表征:交流电压可以用峰值、平均值、 有效值、波形系数以及波峰系数来表征。
①峰值 周期性交流电压U(t)在一个周期内偏离零电平的
最大值称为峰值,用Up表示,正、负峰值不等时分 别用Up+和Up-表示,如图2-8(a)所示。
U(t)在一个周期内偏离直流分量U0的最大值称为幅 值或振幅,用Um表示,正、负幅值不等时分别用 Um+和Um-表示,如2-8(b)所示。图中U0=0,且正、 负幅值相等。
电工测量仪表分类

电工测量仪表分类依据电工与电子测量仪器的工作原理来分类,可分为模拟式电工与电子测量仪器和数字式电工与电子测量仪器两大类。
1.数字式电工与电子测量仪器数字式电工与电子测量仪器如:数字式电压表、数字存储示波器、规律分析仪等。
2.模拟式电工与电子测量仪器模拟式电工与电子测量仪器,如指针式万用表、通用示波器、晶体管毫伏表等。
电工常用测量仪表通常可分为4种类型。
1.直读指示仪表测量时,通过指针偏转,将要测量的电量直接读出,如电压表、电流表、功率表、万用表等。
2.比较仪表测量时,需要与相应的标准量进行比较读出两者的比值,如惠斯登电桥用来测量电阻值,万用表电桥用来测量电容量、电感量。
往往用做精确测量一些电学量及检验其他仪器或仪表。
3.图示仪表图示仪表特地用来显示两个相关量的变化关系,如示波器。
这种仪表直观效果好,但只能作为粗测。
4.数字仪表数字仪表将被测的模拟量转换成为数字量,直接读出,例如常用的数字式电压表、数字式万用表等。
电子测量仪器的品种繁多,其分类方法也较多。
依据功能来分,可分为专用和通用两大类。
1.通用电子测量仪器通用电子测量仪器是指应用面广、功能全面,可适用于对多种对象进行测量的仪器。
但这类仪器测量的精度不高,例如通用示波器等。
2.专用电子测量仪器专用电子测量仪器使用的面窄,但使用便利,精度高。
如晶体管特性图示仪,就是一种专用的示波器。
电子测量仪器按其工作原理可分为模拟与数字两大类。
例如:数字式电压表、数字存储示波器、规律分析仪等。
在日常工作中,较常用到的电子测量仪器的类型归纳说明如下。
1.电平测量仪器在电子测量中,较常用到的电平测量仪器有数字式万用表、数字式电压表、晶体管毫伏表、电子管电压表等。
2.波形显示与测量仪器在电子测量中,较常用到的波形显示测量仪器主要有通用示波器、双踪示波器、多踪多扫描示波器、取样示波器、高压示波器、数字存储示波器及记忆示波器等。
3,频率与时间及相位测量仪器在电子测量中,较常用到的频率、时间、相位测量仪器主要有频率计、波长计、数字式相位计等。
数字相位计介绍

数字相位计介绍数字相位计是利⽤数字信号处理技术显⽰频信号之间相位差,数字相位计具有具有读数⽅便、精度⾼、测量速度快,能有效地运⽤于信号参数的进⾏⾼精度测量,可实现复杂测量算法提供保证。
相位计是测量相位差的仪器,数字式相位测量仪就是专门测量低频信号的相位差,⼀般频率是100Hz以内的正弦频率信号,⾼精度相位计⼀般是指测量精度特别⾼,⼀般测量精度在0.2度以内,⽽相位差则是研究两个相同频率交流信号之间关系的重要指标,相位差的测量在⾃动控制以及通讯电⼦等领域有着⾮常⼴泛的应⽤。
随着科技的发展,各领域迫切的需要⾼精度⾼性能的相位测量系统,尤其在⼀些特殊⾏业或领域,必须依靠数字相位计进⾏测量,由此可见对⼈们对数字相位计的研究和相位测量系统的设计刻不容缓。
相位测量主要采⽤三种技术⽅法归纳如下:基于电路测相技术,基于数字信号处理测相技术和基于虚拟仪表侧向技术。
数字式相位测量仪⽅法是将输⼊的两路信号经过某种处理将其变成⽅波,再通过⽐较这2路⽅波计算出相位差脉宽,最后通过⽤⾼频脉冲填充相位差,这个过程就实现了相位差的测量。
⽬前数字相位计的发展研究已在多领域得到重视,并提出了很多⾼精度的测量算法。
现在就SYN5607型相位计⽽⾔其测量精度⾼,⼯作稳定,可以⽤于实际⼯程测量中。
SYN5607型相位计主要有下列技术指标:输⼊阻抗:1MΩ。
相位范围:0° to 360° or ±180°相位测量物模糊测相的范围。
频率范围:10Hz ~20KHz相位测量能够保证测量精确度的频率范围。
幅度范围:0.5Vrms ~100Vrms相位测量幅度范围。
相位测量精度:±0.1°相位测量的实际值与理论值的偏离程度。
相位分辨率:0.01°相位测量甭管分辨的最⼩相位单位。
频率测量精度:2E-6相位测量频率值的测量精度。
SYN5607型相位计,测量精度⾼稳定性好,可对对正弦/三⾓/梯形波/⽅波的相位差进⾏精密测量,主要应⽤于相控雷达阵、⽆线电导航系统、⾃动控制系统的测距和定位、⽔深测量、电磁波测量、电⼒系统的相位检测装置、激光测量等。
基于FPGA中8051核等精度频率计的设计

片 上 的 技 术 。 这 样 设 计 的 好 处 是 集 成 度 高 , 不变 ,而常规 的直 测法 (在低频 时用测周期
RAM类 型 : 自动
移 植 方 便 , 还 能 集 成 各 种 功 能 , 比 如A/D转 法 ,高频时用测频 率法 ),其精度 会随着被
时 钟 类 型 : 双 时 钟 (分 开 的 输 入 输 出
如 图 3所 示 , 锁 相 环 为 软 件 自带 部 件 ,
计是在FPGA广泛应用 前一个适合 工业 生产 的 关闭 。设在一次 门控时间T 中对被测信 号计 对 其 设 置 如 下 :
方案 。单片机性价 比较高 ,但 由于其 内部资 数值为N 。对标准 频率信 号 的计数值 为N 。
1.引言
计数 器 。标 准频率信 号 (F )从COUNT1的时钟
如 图2所示 ,本设计 的IP核 于51单片机
电 子 信 号 测 量 中 最 基 本 的 测 量 之 一 就 输 入端 输入 ;被测 信 号从 COUNT2的时 钟输 基 本类似 ,端 口和功能一样 ,差别在于51单
是频率测量 ,随着 电子通 讯技术越发发 达, 入端 输入 ,设其实 际频 率为F ,测量 频率为 片机的输入输 出 口是双 向口,本 IP核 的是单
(1)RAM256
各个 模块 ,比如计数器控 制模块 ,从而 实现 同而 被测信号频率 不同的情况下 ,等精度测
输 出总 线 :8位
将 整 个 单 片 机 以 及 其 他 部 件 仿 真 在 一 片 芯 量 法 的 测 量 精 度 在 整 个 测 量 范 围 内 保 持 恒 定
存 储 容 量 :256字 长
使 用 的 设 备 :CycloneII
数字相位计工作原理

数字相位计工作原理
数字相位计是一种用于测量信号相位差的仪器,它基于数字信号处理的原理工作。
它通常通过使用两个或多个传感器来捕捉要测量的信号,并使用计算机或专用芯片对所测得的信号进行数字化处理。
数字相位计的工作原理可以分为以下几个步骤:
1. 信号采集:使用传感器将要测量的信号转换为电信号并放大,然后将其送入模数转换器(ADC)。
ADC将模拟信号转换为数
字信号,并以一定的频率进行采样。
2. 数字信号处理:采样得到的数字信号经过一系列的数字信号处理算法,来提取信号的相关信息,包括幅度、频率和相位等。
这些算法可以包括傅里叶变换、相关函数或其他数学方法。
3. 相位差计算:通过对两个或多个信号进行相位计算,可以得到它们之间的相位差。
常见的方法是使用傅里叶变换来将信号从时间域转换到频率域,并找到主要频率成分的相位差。
4. 结果显示:最后,测得的相位差可以通过计算机界面或显示屏显示出来,以供用户查看和分析。
需要注意的是,数字相位计的精度和准确性受到多个因素的影响,包括传感器的质量、采样率、数字信号处理算法的选择以及后续的数据处理和校准方法。
因此,在使用数字相位计进行
测量时,需要进行适当的参数设置和校准工作,以确保得到准确而可靠的结果。
1、等精度频率测量解析
二、 等精度频率计的测量过程
1. 测量准备 P1.3发出复位信号,使计数器清零;同时P1.1也发复位信号,使同步D触 发器的Q 端为低电平,则主门Ⅰ和主门Ⅱ关闭。这时P1.0的初状态为“1”,使 D触发器的D 2. 测量开始 P1.0从高电平跳到低电平,使D触发器的D端为“0”,这时被测信号一旦 到达CK端,触发器Q立即由“0”→“1”,同步门被打开,被测信号和时间信号分 别进入相应的计数器进行计数。的P1.0从高电平跳到低电平的同时,也启动了
(3)中界频率
测频误差及测周 10- 1
误差与被测信号频率 的关系如图示,图中 10- 2 测频和测周两条误差 10- 3
曲线交点所对应的频 10- 4
率称中界频率fxm 。10- 5
N N
测频 量化 误差
闸门T=0.1 s 1 s 10 s
10- 6
测周 量化 误差
0.1 s 10 ns 时标 1 ns
等精度测量法的时序波形图
预置闸门时间产生电路产生预置的闸门时间TP,TP经同 步电路产生与被测信号(fx)同步的实际闸门时间T。
主门Ⅰ与主门Ⅱ在时间T内被同时打开,于是计数器Ⅰ 和计数器Ⅱ便分别对被测信号 (fx)和时钟信号(f0)的周 期数进行累计。
在T内,计数器Ⅰ的累计数NA=fx×T;计数器Ⅱ的累计数NB=f0×T。
2. 通道部分
主要由放大、整形和 一个十分频的预分频电路 组成。本机设计测频范围
20Hz~100MHz,当 被测频率大于10MHz时, 需先经预分频电路分频后 再送入计数器电路。
3. 同步电路
由主门Ⅰ、Ⅱ及同步控制电路组成。主门Ⅰ控制被测信号fx的通过,主门
Ⅱ
fO的通过,两门的启闭都由同步控制电路控制。
电子测量技术频率时间与相位测量
第7页
电子测量原理
6.1.3 频率(时间)测量方法
1.直读法 在工程中,工频信号的频率常用电动系频率表进行测 量,并用电动系相位表测量相位,因为这种指针式电工仪 表的操作简便、成本低,在工程测量中能满足其测量准确 度。这种电动系频率表和相位表,可见本书第二章。 2.电路参数测量法 通过测量电路参数达到测量频率目的的方法有两种。 首先是电桥法,把被测信号作为交流电桥的电源,调节桥 臂参数使电桥平衡,由平衡条件可得出被测频率的结果。
图6-4中各处信号的波形关系,可见图6-5 所示。图中 的被测信号为正弦波形,整形后只是在过零变正的瞬间产 生脉冲,而且一个周期只产生一个脉冲。
第23页
电子测量原理
6.2.4 误差分析
由式(6-6)可得:
dfx dNdTs fx N Ts
(6-7)
最大误差: d ffxx ma x(d NN d T ssT )(|N||T|) (6-8)
第19页
电子测量原理
6.2.2 电子计数器测频的组成框图
电子计数器的组成框图见图6-4所示
fx
放大
整形
闸门
十进制 计数器
译码 显示
门控
晶振
1ms
K
10S 1s
10ms 0.1s
时标
放大 整形
十进分频
图中各电路的作用如下: 放大整形:放大是对小信号而言,整形是将各种被测
波形整形成脉冲(如采用施密特电路)。 晶振:石英晶体振荡器,产生频率非常稳定的脉冲信
第4页
电子测量原理
6.1.2 频率或时间标准
人们早期根据在地球上看到太阳的“运动”较为均匀 这 一现象建立了计时标准,把太阳出现于天顶的平均周期( 即平均太阳日)的86400分之一定为一秒,称零类世界时 (记作UTo),其准确度在10-6量级。考虑到地球受极运 动(即极移引起的经度变化)的影响,可加以修正,修正 后称为第一世界时(记作UT1)。此外,地球的自转不稳 定,进行季节性、年度性变化校正,引出第二世界时(记 作UT2),其稳定度在3×10-8。而公转周期却相当稳定, 于是人们以1900回归年的31556925.9747分之一作为历书时 的秒(记作ET),其标准度可达±1×10-9。
53181安捷伦数字频率计(计数器)
安捷伦数字频率计(计数器)
Agilent 53131A/32A/81A 计频器可执行各种时域及频域量测,透过GPIB传输资料,速度可达每秒两百次量测。
这些计频器采用实时的数字信号处理来分析资料,同时读取新的数值,因此,当其它计频器仍陷于处理「死角时间」时,Agilent 计频器早已经开始进行下一个量测了。
自动化的限制测试、立即叫出测试设定、以及按一个键即可使用您最需要的功能等特性,可简化您的工作。
此外,您也可以统计所有量测的结果,以及同时量测和追踪平均、最小/最大值及标准差。
产品主要特点
解析度每秒10或12位数,频率范围最高到12.4GHz
多功能的测试和分析能力,协助您从量测资料中取得最多的信息
三种机型任您选择,完全符合您的需求和预算
Agilent 53131A万用计频器在两个频道高达225MHz(另有3、5或12.4GHz的第三频道选项),提供每秒10位数和500ps的时步分辨率。
量测功能包括频率、时步、脉冲参数、相位角及加总等。
工程振动名词术语大全(中英文),没见过这么全的
工程振动名词术语大全(中英文),没见过这么全的1 振动信号的时域、频域描述振动过程 (Vibration Process)简谐振动 (Harmonic Vibration)周期振动 (Periodic Vibration)准周期振动 (Ouasi-periodic Vibration)瞬态过程 (Transient Process)随机振动过程 (Random Vibration Process)各态历经过程 (Ergodic Process)确定性过程 (Deterministic Process)振幅 (Amplitude)相位 (Phase)初相位 (Initial Phase)频率 (Frequency)角频率 (Angular Frequency)周期 (Period)复数振动 (Complex Vibration)复数振幅 (Complex Amplitude)峰值 (Peak-value)平均绝对值 (Average Absolute Value)有效值 (Effective Value,RMS Value)均值 (Mean Value,Average Value)傅里叶级数 (FS,Fourier Series)傅里叶变换 (FT,Fourier Transform)傅里叶逆变换 (IFT,Inverse Fourier Transform)离散谱 (Discrete Spectrum)连续谱 (Continuous Spectrum)傅里叶谱 (Fourier Spectrum)线性谱 (Linear Spectrum)幅值谱 (Amplitude Spectrum)相位谱 (Phase Spectrum)均方值 (Mean Square Value)方差 (Variance)协方差 (Covariance)自协方差函数 (Auto-covariance Function)互协方差函数 (Cross-covariance Function)自相关函数 (Auto-correlation Function)互相关函数 (Cross-correlation Function)标准偏差 (Standard Deviation)相对标准偏差 (Relative Standard Deviation)概率 (Probability)概率分布 (Probability Distribution)高斯概率分布 (Gaussian Probability Distribution) 概率密度 (Probability Density)集合平均 (Ensemble Average)时间平均 (Time Average)功率谱密度 (PSD,Power Spectrum Density)自功率谱密度 (Auto-spectral Density)互功率谱密度 (Cross-spectral Density)均方根谱密度 (RMS Spectral Density)能量谱密度 (ESD,Energy Spectrum Density)相干函数 (Coherence Function)帕斯瓦尔定理 (Parseval''s Theorem)维纳,辛钦公式 (Wiener-Khinchin Formula)2 振动系统的固有特性、激励与响应振动系统 (Vibration System)激励 (Excitation)响应 (Response)单自由度系统 (Single Degree-Of-Freedom System) 多自由度系统 (Multi-Degree-Of- Freedom System) 离散化系统 (Discrete System)连续体系统 (Continuous System)刚度系数 (Stiffness Coefficient)自由振动 (Free Vibration)自由响应 (Free Response)强迫振动 (Forced Vibration)强迫响应 (Forced Response)初始条件 (Initial Condition)固有频率 (Natural Frequency)阻尼比 (Damping Ratio)衰减指数 (Damping Exponent)阻尼固有频率 (Damped Natural Frequency)对数减幅系数 (Logarithmic Decrement)主频率 (Principal Frequency)无阻尼模态频率 (Undamped Modal Frequency)模态 (Mode)主振动 (Principal Vibration)振型 (Mode Shape)振型矢量 (Vector Of Mode Shape)模态矢量 (Modal Vector)正交性 (Orthogonality)展开定理 (Expansion Theorem)主质量 (Principal Mass)模态质量 (Modal Mass)主刚度 (Principal Stiffness)模态刚度 (Modal Stiffness)正则化 (Normalization)振型矩阵 (Matrix Of Modal Shape)主坐标 (Principal Coordinates)模态坐标 (Modal Coordinates)模态分析 (Modal Analysis)模态阻尼比 (Modal Damping Ratio)频响函数 (Frequency Response Function)幅频特性 (Amplitude-frequency Characteristics)相频特性 (Phase frequency Characteristics)共振 (Resonance)半功率点 (Half power Points)波德图(Bodé Plot)动力放大系数 (Dynamical Magnification Factor)单位脉冲 (Unit Impulse)冲激响应函数 (Impulse Response Function)杜哈美积分(Duhamel’s Integral)卷积积分 (Convolution Integral)卷积定理 (Convolution Theorem)特征矩阵 (Characteristic Matrix)阻抗矩阵 (Impedance Matrix)频响函数矩阵 (Matrix Of Frequency Response Function) 导纳矩阵 (Mobility Matrix)冲击响应谱 (Shock Response Spectrum)冲击激励 (Shock Excitation)冲击响应 (Shock Response)冲击初始响应谱 (Initial Shock Response Spectrum)冲击剩余响应谱 (Residual Shock Response Spectrum) 冲击最大响应谱 (Maximum Shock Response Spectrum) 冲击响应谱分析 (Shock Response Spectrum Analysis)3 模态试验分析机械阻抗 (Mechanical Impedance)位移阻抗 (Displacement Impedance)速度阻抗 (Velocity Impedance)加速度阻抗 (Acceleration Impedance)机械导纳 (Mechanical Mobility)位移导纳 (Displacement Mobility)速度导纳 (Velocity Mobility)加速度导纳 (Acceleration Mobility)驱动点导纳 (Driving Point Mobility)跨点导纳 (Cross Mobility)传递函数 (Transfer Function)拉普拉斯变换 (Laplace Transform)传递函数矩阵 (Matrix Of Transfer Function)频响函数 (FRF,Frequency Response Function)频响函数矩阵 (Matrix Of FRF)实模态 (Normal Mode)复模态 (Complex Mode)模态参数 (Modal Parameter)模态频率 (Modal Frequency)模态阻尼比 (Modal Damping Ratio)模态振型 (Modal Shape)模态质量 (Modal Mass)模态刚度 (Modal Stiffness)模态阻力系数 (Modal Damping Coefficient)模态阻抗 (Modal Impedance)模态导纳 (Modal Mobility)模态损耗因子 (Modal Loss Factor)比例粘性阻尼 (Proportional Viscous Damping)非比例粘性阻尼 (Non-proportional Viscous Damping)结构阻尼 (Structural Damping,Hysteretic Damping)复频率 (Complex Frequency)复振型 (Complex Modal Shape)留数 (Residue)极点 (Pole)零点 (Zero)复留数 (Complex Residue)随机激励 (Random Excitation)伪随机激励 (Pseudo Random Excitation)猝发随机激励 (Burst Random Excitation)稳态正弦激励 (Steady State Sine Excitation)正弦扫描激励 (Sweeping Sine Excitation)锤击激励 (Impact Excitation)频响函数的H1 估计 (FRF Estimate by H1)频响函数的H2 估计 (FRF Estimate by H2)频响函数的H3 估计 (FRF Estimate by H3)单模态曲线拟合法 (Single-mode Curve Fitting Method)多模态曲线拟合法 (Multi-mode Curve Fitting Method)模态圆 (Mode Circle)剩余模态 (Residual Mode)幅频峰值法 (Peak Value Method)实频-虚频峰值法 (Peak Real/Imaginary Method)圆拟合法 (Circle Fitting Method)加权最小二乘拟合法 (Weighting Least Squares Fitting method) 复指数拟合法 (Complex Exponential Fitting method)4 传感器测量系统传感器测量系统 (Transducer Measuring System)传感器 (Transducer)振动传感器 (Vibration Transducer)机械接收 (Mechanical Reception)机电变换 (Electro-mechanical Conversion)测量电路 (Measuring Circuit)惯性式传感器 (Inertial Transducer,Seismic Transducer) 相对式传感器 (Relative Transducer)电感式传感器 (Inductive Transducer)应变式传感器 (Strain Gauge Transducer)电动力传感器 (Electro-dynamic Transducer)压电式传感器 (Piezoelectric Transducer)压阻式传感器 (Piezoresistive Transducer)电涡流式传感器 (Eddy Current Transducer)伺服式传感器 (Servo Transducer)灵敏度 (Sensitivity)复数灵敏度 (Complex Sensitivity)分辨率 (Resolution)频率范围 (Frequency Range)线性范围 (Linear Range)频率上限 (Upper Limit Frequency)频率下限 (Lower Limit Frequency)静态响应 (Static Response)零频率响应 (Zero Frequency Response)动态范围 (Dynamic Range)幅值上限 Upper Limit Amplitude)幅值下限 (Lower Limit Amplitude)最大可测振级 (Max.Detectable Vibration Level)最小可测振级 (Min.Detectable Vibration Level)信噪比 (S/N Ratio)振动诺模图 (Vibration Nomogram)相移 (Phase Shift)波形畸变 (Wave-shape Distortion)比例相移 (Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer)惯性传感器的稳击响应 (Shock Response Of Inertial Transducer) 位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer)幅频特性曲线 (Amplitude-frequency Curve)相频特性曲线 (Phase-frequency Curve)固定安装共振频率 (Mounted Resonance Frequency)安装刚度 (Mounted Stiffness)有限高频效应 (Effect Of Limited High Frequency)有限低频效应 (Effect Of Limited Low Frequency)电动式变换 (Electro-dynamic Conversion)磁感应强度 (Magnetic Induction, Magnetic Flux Density)磁通 (Magnetic Flux)磁隙 (Magnetic Gap)电磁力 (Electro-magnetic Force)相对式速度传 (Relative Velocity Transducer)惯性式速度传感器 (Inertial Velocity Transducer)速度灵敏度 (Velocity Sensitivity)电涡流阻尼 (Eddy-current Damping)无源微(积)分电路 (Passive Differential (Integrate) Circuit)有源微(积)分电路 (Active Differential (Integrate) Circuit)运算放大器 (Operational Amplifier)时间常数 (Time Constant)比例运算 (Scaling)积分运算 (Integration)微分运算 (Differentiation)高通滤波电路 (High-pass Filter Circuit)低通滤波电路 (Low-pass Filter Circuit)截止频率 (Cut-off Frequency)压电效应 (Piezoelectric Effect)压电陶瓷 (Piezoelectric Ceramic)压电常数 (Piezoelectric Constant)极化 (Polarization)压电式加速度传感器 (Piezoelectric Acceleration Transducer) 中心压缩式 (Center Compression Accelerometer)三角剪切式 (Delta Shear Accelerometer)压电方程 (Piezoelectric Equation)压电石英 (Piezoelectric Quartz)电荷等效电路 (Charge Equivalent Circuit)电压等效电路 (Voltage Equivalent Circuit)电荷灵敏度 (Charge Sensitivity)电压灵敏度 (Voltage Sensitivity)电荷放大器 (Charge Amplifier)适调放大环节 (Conditional Amplifier Section)归一化 (Uniformization)电荷放大器增益 (Gain Of Charge Amplifier)测量系统灵敏度 (Sensitivity Of Measuring System)底部应变灵敏度 (Base Strain Sensitivity)横向灵敏度 (Transverse Sensitivity)地回路 (Ground Loop)力传感器 (Force Transducer)力传感器灵敏度 (Sensitivity Of Force Transducer)电涡流 (Eddy Current)前置器 (Proximitor)间隙-电压曲线 (Voltage vs Gap Curve)间隙-电压灵敏度 (Voltage vs Gap Sensitivity)压阻效应 (Piezoresistive Effect)轴向压阻系数 (Axial Piezoresistive Coefficient)横向压阻系数 (Transverse Piezoresistive Coefficient)压阻常数 (Piezoresistive Constant)单晶硅 (Monocrystalline Silicon)应变灵敏度 (Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer)体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer)力平衡式传感器 (Force Balance Transducer)电动力常数 (Electro-dynamic Constant)机电耦合系统 (Electro-mechanical Coupling System)5 检测仪表、激励设备及校准装置时间基准信号 (Time Base Signal)李萨茹图 (Lissojous Curve)数字频率计 (Digital Frequency Meter)便携式测振表 (Portable Vibrometer)有效值电压表 (RMS Value Voltmeter)峰值电压表 (Peak-value Voltmeter)平均绝对值检波电路 (Average Absolute Value Detector)峰值检波电路 (Peak-value Detector)准有效值检波电路 (Quasi RMS Value Detector)真有效值检波电路 (True RMS Value Detector)直流数字电压表 (DVM,DC Digital Voltmeter)数字式测振表 (Digital Vibrometer)A/D 转换器 (A/D Converter)D/A 转换器 (D/A Converter)相位计 (Phase Meter)电子记录仪 (Lever Recorder)光线示波器 (Oscillograph)振子 (Galvonometer)磁带记录仪 (Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度 (Distortion)机械式激振器 (Mechanical Exciter)机械式振动台 (Mechanical Shaker)离心式激振器 (Centrifugal Exciter)电动力式振动台 (Electro-dynamic Shaker)电动力式激振器 (Electro-dynamic Exciter)液压式振动台 (Hydraulic Shaker)液压式激振器 (Hydraulic Exciter)电液放大器 (Electro-hydraulic Amplifier)磁吸式激振器 (Magnetic Pulling Exciter)涡流式激振器 (Eddy Current Exciter)压电激振片 (Piezoelectric Exciting Elements)冲击力锤 (Impact Hammer)冲击试验台 (Shock Testing Machine)激振控制技术 (Excitation Control Technique)波形再现 (Wave Reproduction)压缩技术 (Compression Technique)均衡技术 (Equalization Technique)交越频率 (Crossover Frequency)综合技术 (Synthesis Technique)校准 (Calibration)分部校准 (Calibration for Components in system) 系统校准 (Calibration for Over-all System)模拟传感器 (Simulated Transducer)静态校准 (Static Calibration)简谐激励校准 (Harmonic Excitation Calibration)绝对校准 (Absolute Calibration)相对校准 (Relative Calibration)比较校准 (Comparison Calibration)标准振动台 (Standard Vibration Exciter)读数显微镜法 (Microscope-streak Method)光栅板法 (Ronchi Ruling Method)光学干涉条纹计数法 (Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method)背靠背安装 (Back-to-back Mounting)互易校准法 (Reciprocity Calibration)共振梁 (Resonant Bar)冲击校准 (Impact Exciting Calibration)摆锤冲击校准 (Ballistic Pendulum Calibration)落锤冲击校准 (Drop Test Calibration)振动和冲击标准 (Vibration and Shock Standard)迈克尔逊干涉仪 (Michelson Interferometer)摩尔干涉图象 (Moire Fringe)参考传感器 (Reference Transducer)6 频率分析及数字信号处理带通滤波器 (Band-pass Filter)半功率带宽 (Half-power Bandwidth)3 dB 带宽 (3 dB Bandwidth)等效噪声带宽 (Effective Noise Bandwidth)恒带宽 (Constant Bandwidth)恒百分比带宽 (Constant Percentage Bandwidth)1/N 倍频程滤波器 (1/N Octave Filter)形状因子 (Shape Factor)截止频率 (Cut-off Frequency)中心频率 (Centre Frequency)模拟滤波器 (Analog Filter)数字滤波器 (Digital Filter)跟踪滤波器 (Tracking Filter)外差式频率分析仪 (Heterodyne Frequency Analyzer) 逐级式频率分析仪 (Stepped Frequency Analyzer)扫描式频率分析仪 (Sweeping Filter Analyzer)混频器 (Mixer)RC 平均 (RC Averaging)平均时间 (Averaging Time)扫描速度 (Sweeping Speed)滤波器响应时间 (Filter Response Time)离散傅里叶变换 (DFT,Discrete Fourier Transform) 快速傅里叶变换 (FFT,Fast Fourier Transform)抽样频率 (Sampling Frequency)抽样间隔 (Sampling Interval)抽样定理 (Sampling Theorem)抗混滤波 (Anti-aliasing Filter)泄漏 (Leakage)加窗 (Windowing)窗函数 (Window Function)截断 (Truncation)频率混淆 (Frequency Aliasing)乃奎斯特频率 (Nyquist Frequency)矩形窗 (Rectangular Window)汉宁窗 (Hanning Window)凯塞-贝塞尔窗 (Kaiser-Bessel Window)平顶窗 (Flat-top Window)平均 (Averaging)线性平均 (Linear Averaging)指数平均 (Exponential Averaging)峰值保持平均 (Peak-hold Averaging)时域平均 (Time-domain Averaging)谱平均 (Spectrum Averaging)重叠平均 (Overlap Averaging)栅栏效应 (Picket Fence Effect)吉卜斯效应 (Gibbs Effect)基带频谱分析 (Base-band Spectral Analysis)选带频谱分析 (Band Selectable Sp4ctralAnalysis)细化 (Zoom)数字移频 (Digital Frequency Shift)抽样率缩减 (Sampling Rate Reduction)功率谱估计 (Power Spectrum Estimate)相关函数估计 (Correlation Estimate)频响函数估计 (Frequency Response Function Estimate) 相干函数估计 (Coherence Function Estimate)冲激响应函数估计 (Impulse Response Function Estimate) 倒频谱 (Cepstrum)功率倒频谱 (Power Cepstrum)幅值倒频谱 (Amplitude Cepstrum)倒频率 (Quefrency)7 旋转机械的振动测试及状态监测状态监测 (Condition Monitoring)故障诊断 (Fault Diagnosis)转子 (Rotor)转手支承系统 (Rotor-Support System)振动故障 (Vibration Fault)轴振动 (Shaft Vibration)径向振动 (Radial Vibration)基频振动 (Fundamental Frequency Vibration)基频检测 (Fundamental Frequency Component Detecting) 键相信号 (Key-phase Signal)正峰相位 (+Peak Phase)高点 (High Spot)光电传感器 (Optical Transducer)同相分量 (In-phase Component)正交分量 (Quadrature Component)跟踪滤波 (Tracking Filter)波德图 (Bode Plot)极坐标图 (Polar Plot)临界转速 (Critical Speed)不平衡响应 (Unbalance Response)残余振幅 (Residual Amplitude)方位角 (Attitude Angle)轴心轨迹 (Shaft Centerline Orbit)正进动 (Forward Precession)同步正进动 (Synchronous Forward Precession)反进动 (Backward Precession)正向涡动 (Forward Whirl)反向涡动 (Backward Whirl)油膜涡动 (Oil Whirl)油膜振荡 (Oil Whip)轴心平均位置 (Average Shaft Centerline Position)复合探头 (Dual Probe)振摆信号 (Runout Signal)电学振摆 (Electrical Runout)机械振摆 (Mechanical Runout)慢滚动向量 (Slow Roll Vector)振摆补偿 (Runout Compensation)故障频率特征 (Frequency Characteristics Of Fault) 重力临界 (Gravity Critical)对中 (Alignment)双刚度转子 (Dual Stiffness Rotor)啮合频率 (Gear-mesh Frequency)间入简谐分量 (Interharmonic Component)边带振动 (Side-band Vibration)三维频谱图 (Three Dimensional Spectral Plot)瀑布图 (Waterfall Plot)级联图 (Cascade Plot)阶次跟踪 (Order Tracking)阶次跟踪倍乘器 (Order Tracking Multiplier)监测系统 (Monitoring System)适调放大器 (Conditional Amplifier)趋势分析 (Trend Analysis)倒频谱分析 (Cepstrum Analysis)直方图 (Histogram)确认矩阵 (Confirmation Matrix)通频幅值 (Over-all Amplitude)幅值谱 (Amplitude Spectrum)相位谱 (Phase Spectrum)报警限 (Alarm Level)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着科学技术突飞猛进的发展,电子技术广泛的应用于工业、农业、交通运输、航空航天、国防建设等国民经济的诸多领域中,而电子测量技术又是电子技术中进行信息检测的重要手段,在现代科学技术中占有举足轻重的作用和地位。
本系统为数字式频率相位计,由移相网络模块、相位差测量模块及频率测量模块三大部份构成,其系统功能主要是进行相位差测量及频率测量。
移相网络主要是由RC移相电路和LM324运放电路组成,将被测信号送入移相网络,经RC移相、LM324隔离放大,产生两路信号,一路为基准信号经过波形转换,另一路为移相后的信号。
分别经过波形转换、整形、二分频送给相位测量模块及频率测量模块。
相位差测量仪主要是由锁相环PLL(Phase Lock Loop)产生360倍频基准信号和移相网络的基准信号与待测信号进行异或后的信号作为显示器的闸门电路和控制信号。
频率测量模块主要是用计数法测量频率的,它是有某个已知标准时间间隔Ts内,测出被测信号重复出现的次数N,然后计算出频率f=N/Ts.显示电路模块主要是由计数器、锁存器、译码器和数码管组成。
整个装置具有原理简单,测量精度高,测量范围宽,测量结果显示直观的特点。
【关键词:数字频率相位计相位差测量】在电子系统非常广泛应用领域内,到处可见到处理离散信息的数字电路,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
2 设计方案概述根椐设计任务书的要求,我们参考了一些相关资料书,经过小组的讨论分析,提出了以下方案:相位测量仪是利用锁相环PLL(Phase Lock Loop)技术组成相位差测量仪。
基准信号与待测信号进行异或后的信号作为计数器的闸门控制信号来控制计数器,使计数器在待测信号与基准信号之间的相位差间计数,则计数器计出来的数值则为待测信号与基准信号间的相位差。
数字频率计实际上就是一个脉冲计数器,即在单位时间里(如1S)所统计的脉冲个数。
数字频率计主要由输入整形电路、晶体振荡器、分频器及量程选择开关、门控电路、闸门、计数译码显示电路等组成。
首先,把被测信号(以正弦波为例)通过放大、整形电路将其转换成同频率的脉冲信号,然后将它加到闸门的一个输入端。
闸门的别一个输入端是门控电路发出的标准脉冲,只有在门控电路的输入高电平的时间T是非常准确的,它由一个高稳定的石英振荡器和一个多级分频器及量程选择开关共同决定。
逻辑控制电路是控制计数器的工作顺序的,使计数器按照一定的工作程序进行有条理的工作(例如准备----计数----显示------清零----准备下一次测量)。
2.1 系统的组成(一)总体框图(见图2.1)图2.1 数字频率相位计的组成总框图3 移相网络部分图3.1 移相网络移相网络是由二节RC超前或滞后移相网络、集成运算放放大器组成的电压跟随器和运放组成的。
一节RC电路(如图3.1.1)所示。
由它的相量图可知超一个相角φ,当f →0时,φ→90°;f →∞时,φ→0。
这说明:一节RC电路最大相移不超过90°,不能满足相位平衡条件。
若两节RC电路最大相移虽可接近180°,但此时频率必须很低,从而容抗很大,致使输出电压接近于零,所以本电路又加了电压跟随器和放大器。
图3.1.1 RC 电路RC 移相器,具有电路简单,经济方便等优点,但选频作用较差,振幅不够稳定,频率调节不便,因此一般用于频率固定、稳定性要求不高的场合。
如图3.1.2所示移相网络的电路图3.1.2 移相网络电路由于不同的频率输入要达到准确的移相,电阻和电容的参数就要改变才能使RC 正常移相。
本电路电路调试了三组参数分别为100HZ 、500HZ 、1KHZ 。
其计数公式:,得。
本电路是通过拨码开关对相位计的量程的进行转换的,调整电位器R7即可对输入信号进行 45如上图所示,R7的下端电压为:,Vin 为输入信号,w为输入信号的角频率。
4 相位测量部分相位测量工作原理(如图4.1):基准信号(电压信号)fr经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N=3600的分频器,使锁相环的输出信号频率为3600fr,但相位与fr相同,这个输出信号被用作计数器的计数时钟。
电流信号fs与电压信号fR经放大整形再2分频后得到的fs/2与fR/2送入由异或门组成的相位比较电路,其输出脉冲A的脉宽tp反映了两列信号的相位差;利用这个信号作为计数器的闸门控制信号,使计数器仅在fR与fs的相位差tp内计数,这样计数器计得的数即为fR与fs之间的相位差。
由于计数时钟频率为3600fR,因此,一个计数脉冲对应0.1°。
计数的值经锁存译码后通过LED数码管显示。
这种测量方法可以从波形图图1-4得到理解和说明。
图中D触发器用于判断fR与fs的相位关系,D触发器的特性方程,当Q为1时,fR超前于fs,相位取正值,符号位数码管显示全黑;当Q 为0时,fR滞后于fs,相位取负值,符号位数码管显示“-”。
图4.1相位差测量框图图4.2测量波形图4.1放大整形电路的分析与实现放大整形电路:是通过2片LM324运放和1片7404来实现放大整形电路的。
在相位差测量过程中,不允许电压和电流两路信号在放大整形电路中发生相对相移。
为了使两路信号在测量电路中引起的附加相移是相同的,如图4.3中A1和A2安排了相同的电路。
如图2-1所示,第一级运放将输入信号放大K倍,其中k为放大倍数,K=1+R2/R1。
为了使信号能放大11倍,可以将R2设置为100K,将R1设置为10K。
C1为耦合电容,起作用为隔直流通交流。
第二级运放用作比较器,经3.3kΩ的限流电阻和DZ组成的限幅电路以及二极管D 和7404整形后,使其转换成TTL电平的信号。
图4.3 放大整形电路Multisim模拟图4.2 锁相环倍频电路的分析与实现锁相倍频电路:是通过锁相环和分频器两个环节实现的。
设电流信号的最高工作频率为250Hz,测量的分辨率取0.1°,3600倍频后信号的频率为900KHz,故可选择最高工作频率为40MHz的锁相环74HC4046。
为了使fr在0Hz~250Hz时锁相环工作稳定,线性良好,入锁时间快,电阻电容参数选择见附录1的元器件名细表所标的值。
其电路原路图如图4.4图4.4 锁相倍频电路设经过放大整形后的两路信号分别记为fr’和fs’。
信号fr’由锁相环的14脚输入,输出信号经由4片74LS90芯片组成的3600分频器反馈到锁相环的3脚输入,其中两片90芯片组成两个六进制计数器,另两片组成两个十进制计数器,一起组成3600的分频器。
整个模块实现3600倍频的效果,使得测量的精度能达到0.1°。
图2-3为4046的引脚图,图2-4(a)、2-4(b)为90芯片的引脚图和功能图。
图4.4.1 4046引脚图4.3 闸门电路闸门电路的作用是控制计数器的输入脉冲,使计数器仅在两信号的相位差之间计数。
4.4 控制门图4.5 控制电路控制电路的输入信号是异或门的输出信号A,由上图可知控制电路在信号A的下降沿时,要先将计数器的计数结果送入锁存器进行锁存,然后对计数器进行清零,以便计数器下一次能正常工作。
控制电路74LS386和74LS04组成。
4.5 计数器计数器部分的核心部件是由十六计数器74LS161,它是边沿处罚的同步加法计数器,CLR为异步清零端,LOAD为置数端,以低电平为有效电平。
用一块74LS161和一片与非门采用反馈清零法可制成十进制计数器,四片161达到计数锁存相位差数值的效果,其电路原理图如图2-5。
其最低位161片的脉冲由经过异或门和经过锁相倍频后的两列波经过一个与非门产生,这是为了保证计数器能在所求相位差的脉冲时间内计数。
其输出端接译码器的输入端A、B、C、D。
其LOAD端与异或门出来后的信号相连,当停止计数时将触发置数端产生清零的效果。
图2-5 计数器原理图4.6 锁存器在移相网络的两个相位差内计数器的计数结果(被测信号相位)必须经锁定后才能获得稳定显示值。
锁存器通过触发脉冲的控制,将测得的数据寄存起来,送显示译码器。
锁存器可能采用一般的8位并行输入寄存器。
为使数据稳定,最好采用边沿触发方式的器件。
4.7 显示译码器与数码管译码显示部分是由四片74HC4511与四个7段共阳数码管来共同达到译码显示相位差的效果,第5个数码管引脚的G端与D触发器相连,用来显示相位差的超前或滞后当Q为1时,fr超前于fs,相位取正值,符号位数码管显示全黑;当Q为0时,fr滞后于fs,相位取负值,符号位数码管显示“-”。
其电路原理图如图2-4。
芯片4511的LE 端与异或门出来后的非门相连,当计数器停止工作时,4511将锁存 LE由0跳变到1时的BCD码的输入。
图2-7 译码显示原理图5 频率测量部分在许多情况下,要对信号的频率进行测量。
利用示波器可能粗略测量被测信号的频率,精确测量则要用到数字频率计。
数字频率计用到的数字技术很多。
本节数字频率计的设计与制作项目可以进一步加深我们对数字电路应用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。
5.1 数字频率计的基本原理数字频率计的主要功能是测量周期信号的频率。
频率是在单位时间(1S)内信号周期性变化的次数。
如果我们能在给定的1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
其频率可表示为:fNT数字频率计首先必须获得相对稳定与准确时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
5.2 数字频率计系统框图从数字频率计的基本原理出发,根据设计要求,得到如图所示的电路框图5.2图5.2 数字频率计的框图把被测信号(以正弦波为例)通过放大`整形电路将其转换成同频率的脉冲信号,其频率与被测信号的频率相同。
时基电路提供标准的1s时间基准信号,其高电平持续时间,当1s信号来到时,闸门开通,被测信号通过闸门,计数器开始计数,直到1s信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率。
控制电路有两个输出信号:一个信号是产生上升沿的脉冲送入锁存器进行锁存,使送到译码器的数稳定,使得显示器上的数字稳定;另一个信号是产生一个下降沿的脉冲给计数器清零端清零,使计数器在每次1s过后清零从零开始新的一轮计数。
逻辑控制电路是控制计数器的工作顺序的,使计数器按照一定的工作程序进行有条理的工作(例如准备----计数----显示------清零----准备下一次测量.时序关系图如图5.2所示:图5.2 频率测量模块波形图下面介绍框图各部分的功能及实现方法:5.2.1 放大整形电路(1) 信号经过运放LM324波形转换把正弦波转换成方波,为了能测量不同电平值与波形的周期信号的频率,必须对被测信号进行放大与整形处理,使之成为能被计数器有效识别的脉冲信号。