现代分析测试方法概述
材料现代分析测试方法-rietveld

材料A的Rietveld分析
通过Rietveld分析确定了材料 A的晶格参数和晶体结构。对定量 分析,确定了多相材料的不 同相的含量。
应力分析中的Rietveld 分析
利用Rietveld分析和细致的晶 格参数测定,研究了材料内 部应力分布的变化。
材料现代分析测试方法rietveld
欢迎来到本次演讲,我们将介绍材料现代分析测试方法中的一种重要技术— —Rietveld分析。让我们一起探索这个引人入胜的领域。
什么是Rietveld分析
Rietveld分析是一种用于材料结构精确测定和相对定量分析的X射线衍射技术。它通过模拟实验光 谱与理论衍射谱之间的匹配,获得材料中的晶格参数、晶体结构和物相信息。
高分子材料
用于聚合物晶体结构、配位化合物和疏水 材料的分析。
Rietveld分析的优势和局限性
优势
• 高精度的结构测定 • 广泛适用于不同材料和结构类型 • 非破坏性分析
局限性
• 对样品质量和衍射数据的要求较高 • 无法解析非晶态或非结晶态样品 • 需要对实验结果进行仔细解释
Rietveld分析的实例和案例研究
总结和展望
Rietveld分析作为一种先进的材料现代分析测试方法,在材料科学和许多其他领域具有广泛应用前 景。希望本次演讲能为大家提供了对Rietveld分析的全面了解和启发。
3 模型优化
4 结构分析
通过最小二乘法将实验和计算的衍射谱 拟合。
从拟合结果中提取材料的晶格参数和晶 体结构信息。
Rietveld分析的应用领域
材料科学
用于研究材料的晶体结构、相变以及材料 表征。
地球科学
用于研究岩石、矿石和地质样品的晶体结 构和相组成。
药物化学
现代分析测试技术-SIMS

俄歇电子能谱(AES)—大本讲义
AES分析方法原理 AES谱仪基本构成 AES谱仪实验技术 AES谱图分析技术 SIMS基本结构及技术特点 XPS/AES/SIMS方法比较
离子溅射与二次 离子质谱
离子溅射过程:一定能量的离子打到固体表面→ 引起表面原子、分子或原子团的二次发射—溅射 离子;溅射的粒子一般以中性为主,有<1%的 带有正、负电荷—二次离子;
质量分析器
添加标题
检测器
添加标题
二次离子深度分析
添加标题
二次离子分布图像
添加标题
二次离子质谱系统 结构示意图
添加标题
二次离子质谱
二次离子质谱仪基本部件
• 初级离子枪:热阴极电离型离子源,双等离子体离子源,液态金属场离子源;离子束的纯度、电 流密度直接影响分析结果;
• 二次离子分析器:分析质荷比→磁偏式、四极式(静态SIMS )、飞行时间式(流通率高,测量 高质量数离子)质度剖面分析 微区分析 软电离分析
动态SIMS—深度剖面分析
分析特点:不断剥离下进行SIMS分析—获得 各种成分的深度分布信息;
深度分辨率:实测的深度剖面分布与样品中真 实浓度分布的关系—入射离子与靶的相互作用、 二次离子的平均逸出深度、入射离子的原子混 合效应、入射离子的类型,入射角,晶格效应 都对深度分辨有一定影响。
可以在超高真空条件下得到表层信息;
可检测正、负离子;
可检测化合物,并能给出原子团、分 子性离子、碎片离子等多方面信息; 对很多元素和成分具有ppm甚至ppb 量级的高灵敏度;
可检测包括H在内的全部元素; 可检测同位素; 可进行面分析和深度剖面分析;
二次离子质谱 分析技术
表面元素定性分析 表面元素定量分析
现代分析测试方法复习总结

第一章X射线衍射分析激发:1.较高能级是空的或未填满,由泡利不相容原理决定。
2.吸收能量是两能级能量之差。
辐射的吸收:辐射通过物质时,某些频率的辐射被组成物质的粒子选择性吸收而使辐射强度减弱的现象,实质为吸收辐射光子能量发生粒子的能级跃迁。
辐射的发射:1.光电效应:以光子激发原子所发生的激发和辐射过程。
被击出的电子称为光电子。
2.俄歇效应:高能级电子向低能级跃迁时,除以辐射X射线的形式释放能量外,这些能量可能被周围某个壳层上的电子所吸引,并促使该电子受激溢出原子成为二次电子,该二次电子具有特定的能量值,可以用来表征这些原子。
所产生的二次电子即为俄歇电子。
原子内层电子受激吸收能量发生跃迁,形成X射线的吸收光谱。
光子激出内层电子,外层电子向空位跃迁产生光激发,形成二次X射线,构成X射线的荧光光谱。
X射线产生条件:1.产生自由电子。
2.使电子做定向高速运动。
3.在运动路径设置使其突然减速的阻碍物。
X射线属于横波,波长为0.01~10nm能使某些荧光物质发光,使照相底片感光,使部分气体电离。
X射线谱是X射线强度与波长的关系曲线。
特征X射线:强度峰的波长反映物质的原子序数特征。
,产生特征X射线的最低电压为激发电压,也叫临界电压。
阳极靶材原子序数越大,所需临界电压值越高。
K层电子被击出的过程定义为K系激发,随之的电子跃迁叫K系辐射。
相干散射:X射线通过物质时,在入射束电场的作用下,物质原子中的电子受迫振动,同时向四周辐射出与入射X射线相同频率的散射X射线,同一方向上各散射波可以互相干涉。
非相干散射:X射线光子冲击束缚力较小的电子或自由电子时,会产生一种反冲电子,而入射X射线光子则偏离入射方向,散射X射线光子波长增大,因能量减小程度不同,故不可干涉。
入射X射线光子能量到达一定阀值,可击出物质原子内层电子,同时外层高能态电子向内层的空位跃迁时辐射出波长一定的特征X射线。
该阀值对应的波长为吸收限或K系特征辐射激发限。
现代分析测试方法

现代分析测试方法
现代分析测试方法是指利用现代仪器和设备进行物质分析和质量检测的方法。
这些方法通常基于物质的化学、物理和光谱特性,利用现代技术手段进行精确的定量分析和质量测试。
现代分析测试方法可以包括以下几个方面:
1. 化学分析方法:包括常见的化学分析方法,如滴定法、比色法、离子色谱法、气相色谱法、液相色谱法等。
这些方法通过测量物质的化学性质,如反应速率、光谱特性、电性等,来定量分析物质的成分和浓度。
2. 质谱分析方法:通过质谱仪,分析物质的质量和结构。
质谱分析方法可以用于确定物质的分子量、分子结构、同位素含量等信息。
3. 光谱分析方法:包括紫外可见光谱,红外光谱,核磁共振光谱,质子磁共振光谱等。
光谱分析方法通过测量物质吸收、发射或散射光的特性来推断物质的组成、结构和性质。
4. 表面分析方法:包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)等。
表面分析方法可以用于研究物质的表面形貌、组成和结构特性。
5. 生物分析方法:包括酶活性测定、细胞计数、PCR技术、基因测序等。
生物分析方法主要用于生物样品的分析和研究,如生物体内的代谢产物测定、基因组分析等。
现代分析测试方法在各个领域中都有广泛的应用,包括化学、医药、环境、食品、农业等。
这些方法具有高灵敏度、高速度、高精度的特点,能够为科学研究、工业生产以及环境保护等提供准确可靠的数据支持。
材料现代分析测试方法教学设计

材料现代分析测试方法教学设计1. 引言材料现代分析测试方法是材料科学中的重要领域,它不仅关系到材料的性能评估、质量控制、过程优化等方面,也与材料基础研究密切相关。
本文旨在探讨如何针对材料现代分析测试方法的教学设计,提高学生的实验技能、科学素养和综合素质。
2. 教学目标1.了解材料现代分析测试方法的技术基础、原理和应用;2.掌握现代分析测试方法的基本技能,包括样品制备、测试操作、数据处理等;3.培养学生的实验思维、实验技能和科学态度;4.提高学生的综合素质,包括团队协作、口头表达、写作能力等。
3. 教学内容3.1 材料现代分析测试方法概述介绍材料现代分析测试方法的发展历程、技术分类、应用领域等,使学生了解不同的现代测试方法的特点和优势。
3.2 样品制备与仪器调试掌握样品制备的基本方法和实验技巧,包括样品收集、样品制备、样品保存等方面内容。
同时,对仪器操作、仪器调试等方面进行详细介绍和演示,以保证实验数据的准确性和稳定性。
3.3 现代分析测试方法基础实验介绍常见的材料现代分析测试方法,包括SEM、TEM、XRD、XRF等方法,通过实验演示的方式来掌握分析测试方法的基本操作技能。
3.4 分析测试方法的综合应用选取一些案例,通过现代分析测试方法对材料进行分析测试,提高学生对分析测试方法的综合应用能力。
4. 教学方法与手段该课程以理论与实践相结合的方式进行,顺序讲解每个部分内容,进行示范,引导学生进行操作练习。
同时,结合课程设计,设计习题,让学生进行思考、探讨和解决问题。
5. 教学评价本课程的教学评价是单项评估和综合评估相结合的方式,主要由实验操作能力、实验报告写作和课堂表现三个方面来综合考察学生的综合素质。
6. 教学效果预期通过本次课程的学习,学生将对材料现代分析测试方法有了新的认识和理解,掌握了相关的基本技能和知识。
这将为他们未来的学习学术研究和实践应用打下基础,并有助于提高他们实验技能、科学素养和综合素质。
材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。
通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。
下面将介绍几种常用的材料现代分析测试方法。
一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。
质谱分析法适用于分析有机物和无机物。
其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。
二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。
不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。
核磁共振谱学适用于有机物和无机物的分析。
由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。
三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。
不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。
红外光谱学适用于有机物和无机物的分析。
它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。
四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。
不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。
X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。
它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。
五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。
扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。
透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。
SEM和EDS的现代分析测试方法

SEM和EDS的现代分析测试方法SEM(扫描电子显微镜)和EDS(能量散射X射线分析)是一对常用于材料科学和地质学等领域的现代分析测试方法。
SEM利用电子束扫描样品表面,通过获取样品表面的电子信号来生成高分辨率的图像;EDS则通过分析样品表面散射的X射线能谱来确定样品元素的组成。
这两种技术的结合能够提供精确的显微结构和化学成分信息,为材料研究和质量控制提供了有力的分析手段。
SEM主要通过扫描电子束在样品表面的不同位置进行扫描,利用激发的次级电子、反射电子和主束电子回散射的电子等不同信号来获得样品表面的形貌信息。
相对于光学显微镜,SEM具有更高的分辨率和放大倍数,能够观察到更小尺寸的细节结构。
此外,SEM还可以通过选择不同的操作模式(如反射电子显微镜模式和透射电子显微镜模式)来观察不同类型的样品,如金属、陶瓷、生物样品等。
在材料科学领域,SEM常用于观察样品中的晶体结构、颗粒形貌、纤维组织等微观结构。
EDS是SEM的一个重要附属技术,它通过分析样品表面散射的X射线能谱来确定样品元素的组成。
当电子束轰击样品表面时,样品中的原子会激发出一系列特征X射线。
这些X射线的能量和强度与样品中元素的种类和含量有关。
EDS系统可以通过收集散射的X射线并对其进行能量谱分析,从而确定样品中存在的元素及其相对含量。
EDS不仅能够提供定性分析结果,还可以通过比对与标准参考谱库进行定量分析,得到精确的元素含量。
SEM-EDS组合技术具有广泛的应用范围。
在材料科学中,它可以用于研究材料的显微结构、相变、晶粒生长等问题。
例如,可以通过SEM观察金属材料中的晶粒尺寸和分布,进而对材料的力学性能和导电性能进行评估。
同时,通过使用EDS技术,还可以分析材料中微量元素的含量,进一步揭示材料的化学成分和微观特征。
总之,SEM和EDS是一对功能强大的现代分析测试方法。
它们可以提供高分辨率的显微结构和准确的化学组分信息,而且应用范围广泛,适用于材料科学、地质学、生物学和环境科学等领域的研究和应用。
现代分析测试方法概述

Bragg的衍射条件 2d sinθ = nλ
基于光衍射的分析方法
•多晶X射线衍射仪(分析材料的晶体结构, 测量结晶度和晶粒取向度等) •单晶X射线衍射仪(通过测定单晶的晶体 结构,了解晶体中原子的三维空间排列, 获得有关键长、键角、分子构型等结构信 息)
光的波动性——光的偏振
平面偏振光 振动方向保持不变 振幅发生周期性变化
吸收光谱对应的能量跃迁
光的微粒性——光的发射
处于高能态(激发态)的物质不稳定,通 过约10-8s释放能量返回基态,若以发射光子的 形式放出能量,则得到发射光谱。
吸收或发射产生的条件是:
①物质与光子发生碰撞;
②E光子=△EM*/M; ③E光子 与物质的△EM*/M是量子化
的;
④吸收与发射分别产生吸收或发
光学分析法
散射光谱法 (拉曼光谱法,浊度法)
折射法
旋光法(偏振,旋光,圆二色性)
非光谱分析法 干涉分析法
(辐射性质)
x—射线分析法
衍射分析法
电子衍射分析法
光信号源 光信号源
Hale Waihona Puke 3.6 光谱分析仪器的构成
试样 系统
波长选择
能源 试样系统
试样 系统
波长选择
分析信号 转换
原子吸收分光光度计
试样 系统
分析信号 转换
有机混合物成分定性及定量分析
•气相色谱法 •液相色谱法 •气相色谱-质谱联用法 •液相色谱-质谱联用法 •紫外-可见光谱法
聚集态结构分析
•透射电子显微镜法 •X射线衍射法 •小角X射线散射法 •固体核磁共振波谱法 •红外光谱法 •拉曼光谱法
表面结构分析
•扫描电镜法 •扫描探针显微镜法 •电子探针法 •能谱分析法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析化学是研究获 得物质化学组成,结构 信息,分析方法及相关 理论的科学。
1.2 分析化学的发展
分析化学的发展经历了三个发展阶段,发生了三次变革。
阶段一: 16世纪~ 20世纪40年代前,化学分析占主导地
h
Bragg的衍射条件 2d sinθ = nλ
基于光衍射的分析方法
•多晶X射线衍射仪(分析材料的晶体结构, 测量结晶度和晶粒取向度等) •单晶X射线衍射仪(通过测定单晶的晶体 结构,了解晶体中原子的三维空间排列, 获得有关键长、键角、分子构型等结构信 息)
电化学分析 光谱分析 色谱分析 波谱分析
沉淀滴定
电导、电位、电解、库仑 极谱、伏安
发射、吸收,荧光、光度
气相、液相、离子、超临 界、薄层、毛细管电泳 红外、核磁、质谱
1.由分析对象来看
无机物分析
有机物 分析
2.由分析对象的数量级来看
常量
微量
痕量
生物活性物质
3.由分析对象的结构尺度来看
微米尺度
纳米尺度
瑞利散射:当样品分子比光波长小很多时,发生 Rayleigh 散射。光子与样品分子产生弹性碰撞,只改变传 播方向而没有能量交换。散射光强与波长的四次方成反比 I ∝λ-4。
拉曼散射:光子与样品分子产生非弹性碰撞,有能量 交换,产生与入射光不同波长的散射光( Raman散射)。 这种散射与物质分子的振动和转动能级有关,故可以表征 分子结构。
第二次变革:
物理学和化学的许多重大发现,推动了仪器分析的发展, 成为分析化学的第二次变革。
阶段三:
八十年代初至今 (1)计算机控制的分析数据采集与处理: 实现分析过程的连续、快速、实时、智能; (2)化学计量学:利用数学、统计学的方法设计选择最 佳分析条件,获得最大程度的化学信息。 (3)各种联用技术得到快速发展。
位,仪器分析种类少和精度低。
第一次变革: 20世纪初,溶液中四大反应平衡理论的形成,
为化学分析的发展奠定了理论基础。标志着分析化 学由一门操作技术变成一门科学。
阶段二:
20世纪40年代~80年代,仪器分析获得大发展。 为什么出现在这一时期?一系列重大科学发现,为仪器 分析的建立和发展奠定了理论基础。 (1)Bloch F 和Purcell E M;建立了核磁共振测定方法 ;诺贝尔化学奖1952年; (2)Martin A J P 和Synge R L M;建立了气相色谱分 析法;诺贝尔化学奖1952年; (3)Heyrovsky J,建立极谱分析法,诺贝尔化学奖1959 年
材料近代测试技术 (材料学科硕士研究生学位课程)
高分子结构分析方法
第一章 现代分析测试方法概述
主要内容
1. 分析科学与测试技术的发展 2. 分析测试方法的分类 3. 光谱分析的基本原理 4. 分析测试方法的选择 5.分析测试在材料科学研究中的作用
1. 分析科学与测试技术的发展
1.1 分析化学的诞生
c
频率的另一种表示方法是用波数(σ,单位:cm-1),
即在1cm长度内波的数目:
(cm1)
1
107
(nm107cm/nm )
光的波动性——光的散射
粒子散射:当介质粒子(如在乳浊液、悬浮液、胶体溶液 中)的大小与光的波长差不多时,在偏离入射角的方向能 探测到散射光,对可见光甚至用肉眼也能看到。散射光的 强度与入射光波长的平方成反比。 分子散射:
第三次变革:分析化学开始突破原来化学的范畴, 发展成为一门新兴学科——分析科学。
1.3 分析科学的形成
微电子技术
ቤተ መጻሕፍቲ ባይዱ
计算机技术
芯片技术
生命科学
纳米技术
分
环境科学
分析化学
综合性学科
析 科
材料科学
学
生物技术
激光技术
仿生技术
光纤技术
化 学 分 析
分 析 科 学
仪 器 分 析
重量分析 滴定分析
酸碱滴定 配位滴定 氧化还原滴定
分子水平
4.由分析自动化程度来看
手工操作 仪器 自动
全自动
智能化仪器
与 分 析 科 学 有 关 的 诺 贝 尔 奖 项
分析科学研究 的主要内容
分析科学未来的发展方向和面临的任务
•发展高精密度、高灵敏度、高空间分辨率的高效仪 器和测试方法; •提高选择性; •扩展时空多维信息,建立包括信息学和数学在内的 解释大量数据流的高通量测量方法; •微型化及微环境的表征与测定; •形态分析及表征; •生物大分子及生物活性物质的表征与测定; •非破坏性检测技术; •发展有毒物质的非接触分析方法和遥测技术; •发展具有极端复杂性和异质性的化学和生物混合物 的高效分离分析方法。
2. 分析测试方法的分类
质谱分析法
电化学分析法
分析测试方法
色谱分析法
显微分析法
光谱分析法 热分析法
电化学分析法的分类
电导分析法
电位分析法 电泳分析法
电化学 分析法
极谱与伏安分析法
电解分析法 库仑分析法
色谱分析方法的分类
气相色谱法
超临界色谱法
色谱分析法
液相色谱法
离子色谱法
薄层色谱法
凝胶渗透 色谱法
基于光散射的分析方法
•激光光散射法(测胶体粒子大小及其分布,分析 聚合物的绝对分子量,研究高分子与溶剂之间的 相互作用情况) •小角X射线散射法(表征材料的形态结构) •激光拉曼光谱法(研究物质分子结构和材料微结 构,可进行未知物的无损鉴定。 )
光的波动性——光的衍射
a
A
b’
1 d
2 d
3
BC
D
光谱分析法的分类
光折射法 光发射法
光吸收法
光谱分析法
光偏转法
光衍射法 光散射法
质谱分析法的分类
有机质谱 同位素质谱
质谱分析
无机质谱 生物质谱
热分析法分类
热重分析
差示扫描 量热分析
热分析
热机械分析 差热分析
显微分析法分类
扫描电镜 透射电镜
显微分析
扫描探针 显微镜
电子探针
分析方法的联用技术
•气相色谱-质谱联用 •液相色谱-质谱联用 •液相色谱-核磁联用 •热重-红外联用 •原子发射光谱-质谱联用
3. 光谱分析概述
3.1 光的基本性质
光是一种电、磁场相互垂直,并垂直于传播方向作周期变化的电 磁波。同时是一种以极大的速度(真空中为 2.99792×1010cm·s1)通过空间,而不需要以任何物质作为传播媒介的能量形式。光 具有波粒二象性。
3.2 光的波动性
光是一种电磁波,描述光波的参数主要有:波长 ( λ,单位:nm、μm、cm)、频率( υ,单位: Hz,s-1),传播速度(c,单位:cm/s):