初中数学竞赛专题辅导:对称式
八年级数学竞赛例题专题讲解:相对相称—对称分析法

八年级数学竞赛例题专题讲解:相对相称—对称分析法阅读与思考当代美国数学家赫尔曼·韦尔指出:对称尽管你可以规定其含义或宽或窄,然而从古到今都是人们用来理解和创造秩序、美妙以及尽善尽美的一种思想. 许多数学问题所涉及的对象具有对称性(不仅包括几何图形中的对称,而且泛指某些对象在某些方面如图形、关系、地位等彼此相对又相称).对称分析法就是在解题时,充分利用自身条件的某些对称性辅助解题的一种分析方法,初中阶段主要研究下面两种类型的对称:1.代数中的对称式如果把一个多项式的任意两个字母互换后,所得的多项式不变就称这个多项式为对称式,对称式的本质反应的是多元多项式中字母地位相同,任何一个复杂的二元对称式,都可以用最简单对称多项式b a +,ab 表示,一些对称式的代数问题,常用最简对称式表示将问题解决. 2.几何图形的对称几何图形的对称指的是轴对称和中心对称,一些几何问题,如果我们作出图形的对称轴,或者作出已知点关于某线(某点)的对称点,构造出轴对称图形、中心对称图形,那么就能将分散的条件集中起来,容易找到解题途径. 例题与求解【例l 】如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB ,BC 的中点,则PM +PN 的最小值是 . (荆门市中考试题)解题思路:作M 关于AC 的对称点M ',连MN 交AC 于点P ,则PM +PN 的值最小.BC【例2】已知a ,b 均为正数,且2=+b a ,求W =1422+++b a 的最小值.(北京市竞赛试题)解题思路:用代数的方法求W 的最小值较繁,22b a +的几何意义是以a ,b 为边的直角三角形的斜边长,构造图形,运用对称分析法求出W 的最小值.【例3】已知11122=-+-a b b a ,求证:122=+b a (四川省竞赛试题)解题思路:解决根式问题的基本思路是有理化,有理化的主要途径是:乘方、配方、换元和引入有理化因式,引入与已知等式地位相对相称的有理化因式,本例可获得简证.【例4】 如图,凸四边形ABCD 的对角线AC ,BD 相交于O ,且AC ⊥BD ,已知OA >OC ,OB >OD ,求证:BC +AD >AB +CD .(“祖冲之杯”邀请赛试题)解题思路:解题的关键是将有关线段集中到同一三角形中去,以便运用三角形三边关系定理,以AC 为对称轴,将部分图形翻折.DBC【例5】如图,矩形ABCD 中,AB =20厘米,BC =10厘米,若在AC 、AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值. (北京市竞赛试题)解题思路:要使BM +MN 的值最小,应该设法将折线BM +MN 拉直,不妨从作出B 点关于AC 的对称点入手.A N能力训练1.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴. 若∠AFC +∠BCF =0150,则∠AFE +∠BCD 的大小是 . (武汉市中考试题)A BO(第1题图) (第2题图) (第3题图) 2.如图,矩形纸片ABCD 中,AB =2,点E 在BC 上,且AE =EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .(济南市中考试题)3. 如图,∠AOB =045,P 是∠AOB 内一点,PO =10,Q ,P 分别是OA 、OB 上的动点,则△PQR 周长最小值是 .4. 比6)56( 大的最小整数是 . (西安交通大学少年班入学试题)5.如图,已知正方形ABCD 的边长为3,E 在BC 上,且BE =2,P 在BD 上,则PE +PC 的最小值为( ).A .32B .13C .14D .15 6. 观察下列平面图形,其中是轴对称图形的有( ) .A .1个B .2个C .3个D .4个(南京市中考试题)7.如图,一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事情所走的最短距离是( ).A .)1854(+英里B .16英里C .17英里D .18英里(美国中学生竞赛试题)BCADPEMP(第5题图) (第7题图) (第8题图) 8.如图,等边△ABC 的边长为2,M 为AB 中点,P 为BC 上的点,设P A +PM 的最大值和最小值分别为S 和L ,则22L S -等于( )A .24B .34C .23D .339.一束光线经三块平面镜反射,反射的路线如图所示,图中字母表示相应的度数,已知c =060,求e d +与x 的值. (江苏省竞赛试题)10. 求代数式9)12(422+-++x x 的最小值.(“希望杯”邀请赛试题)11. 在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水. 方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学图1 图2图3的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)① 当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ② 当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)对a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?(河北省中考试题)12.如图,已知平面直角坐标系中,A ,B 两点的坐标分别为A (2,-3),B (4,-1) (1)若P (x ,0)是x 轴上的一个动点,当△P AB 的周长最短时,求x 的值;(2)若C (a ,0),D (3+a ,0)是x 轴上的两个动点,当四边形ABDC 的周长最短时,求a 的值;(3)设M ,N 分别为x 轴和y 轴上的动点,问:是否存在这样的点M (m ,0)、N (0,n ),使四边形ABMN 的周长最短?若存在,求出m ,n 的值;若不存在,请说明理由.x13.在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M .(1)判断四边形AEMF的形状,并给予证明;(2)若BD=1,CD=2,试求四边形AEMF的面积.CB DA(宁夏中考试题)14. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm,现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45︒的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45︒的方向作直线运动…如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路线的总长是多少?小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.请你参考小贝的思路解决下列问题:(1) P点第一次与D点重合前与边相碰次,P点从A点出发到第一次与D点重合时所经过的路径的总长是cm.(2) 进一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD的值为.。
初中数学竞赛专题选讲 对称式(含答案)

初中数学竞赛专题选讲(初三.5)对称式一、内容提要一.定义1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, yx 11+, xyzx z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1.含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含x, y, z 的齐二次对称多项式中,如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式). 例如:∵x+y, xy 都是对称式,∴x+y +xy , (x+y )xy , xyy x +等也都是对称式. ∵xy+yz+zx 和zy x 111++都是轮换式, ∴z y x 111+++xy+yz+z , (zy x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222zy x ++. 分析:∵(xy+yz+zx )()111zy x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(zxy y zx x yz ++) =2x+2y+2z.例2. 已知:a+b+c=0, abc ≠0.求代数式 222222222111ba c a cbc b a -++-++-+的值 分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab 21-, ∴222222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc b a c 2++=0. 例3. 计算:(a+b+c )3分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用待定系数法.例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.(m, n, p 是待定系数)令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩⎪⎨⎧===631p n m∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.例5. 因式分解:① a 3(b -c)+b 3(c -a)+c 3(a -b);② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.∴有因式a -b 及其同型式b -c, c -a.∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得 一次齐次的轮换式a+b+c.用待定系数法:得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)比较左右两边a 3b 的系数,得m=-1.∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0∴有因式x ,以及它的同型式y 和z.∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.∴用待定系数法:可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=xyz [m(x+y+z)+n(xy+yz+zx)].令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.解方程组⎩⎨⎧=+=+480680n m n m得⎩⎨⎧==080n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).三、练习1.已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式______ 2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式_________________________________.3. 利用对称式性质做乘法,直接写出结果:① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.4. 计算:(x+y )5.5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.6. 因式分解:① ab(a -b)+bc(b -c)+ca(c -a);② (x+y+z)3-(x 3+y 3+z 3);③ (ab+bc+ca )(a+b+c)-abc ;④ a(b -c)3+b(c -a)3+c(a -b)3.7. 已知:abcc b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+abcb ca c c +--22. 9. 已知:S =21(a+b+c ). 求证:16)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).10. 若x,y 满足等式 x=1+y 1和y=1+x1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.参考答案1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)3. ②x 3+y 3+z 3-3xyz4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=17. 由已知等式去分母后,使右边为0, 因式分解8. 19. 一个分式化为S (S -a )(S -b)(S -c)10. 选 C。
初中数学竞赛精品标准教程及练习35两种对称

初中数学竞赛精品标准教程及练习35两种对称数学竞赛是一项重要的学科竞赛活动,对于学生的数学素养和思维能力的培养非常有帮助。
而数学竞赛的核心内容之一就是对称性的研究和运用。
下面是一本初中数学竞赛精品标准教程及练习,主要讲解了两种对称以及相关的题目训练。
一、点、线和面的对称1.点的对称:对称轴是指平面上的一条直线,将平面上的点分成两个互相重合的部分。
点关于对称轴的对称点与原点关于对称轴的垂直距离在对称轴两侧相等。
对称轴上的点是自身的对称点。
2.线的对称:对称轴是指平面上的一条直线,对称轴把平面分成两个互为镜像的区域。
线上的两点关于对称轴对称,线上的每一个点的对称点也在对称轴上。
3.面的对称:对称面是指一般三维空间的平面,平面将空间分为两个完全对称的部分。
平面上的每一个点的对称点都在对称面上。
二、图形的对称1.点的对称性:一个图形关于一个点对称,就是存在于这个图形的每一点关于这个点的对称点也在这个图形中。
2.线的对称性:一个图形关于一条线对称,就是存在于这个图形的每一点关于这条线的对称点也在这个图形中。
3.面的对称性:一个图形关于一个平面对称,就是存在于这个图形的每一点关于这个平面的对称点也在这个图形中。
三、对称性的运用1.利用对称性求解问题:利用对称性质可以简化问题,例如通过将一个点关于对称轴的对应点找出来,从而简化计算。
2.证明问题:对称性是证明问题的重要工具。
可以通过找到问题中的对称性质,从而推导出问题的结论。
四、题目训练以下是一些与对称性相关的常见题目,帮助学生进一步理解和运用对称性:1.镜面反射:一个角度为80度的光线在一面完全光滑的镜子上反射,求它的反射角度。
2.对称点坐标:平面上有点A(2,-3),求点A关于直线y=2的对称点的坐标。
3.图形对称性:有一组数字:1,2,3,4,5,6,7,8,9、将这组数字按如下规则排列,使排列后的数字具有对称性:1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,14.证明对称性:证明一个多边形的内角和等于180度。
初中数学竞赛__轮换式和对称式

第2讲 轮换式和对称式知识总结归纳一.基本轮换式:(1)x y z ++(2)222x y z ++(3)xy yz zx ++(4)333x y z ++(5)222x y y z z x ++(6)222xy yz zx ++(7)xyz二.齐次轮换式:(1)一次齐次轮换式:()l x y z ++(2)二次齐次轮换式:222()()l x y z m xy yz zx +++++(3)三次齐次轮换式:333222222()()()l x y z m x y y z z x n xy yz zx kxyz +++++++++以上l m n k 、、、都是待定的常数二.轮换式与对称式的分解的一般方法:首先,把它看成一个字母的多项式,用试根法,找出一些因式;然后,根据轮换式的特点,导出更多的因式;最后,用待定系数法求出其余的因式.非齐次轮换式可以先按照次数分为几个齐次轮换式的和,对每个齐次轮换式进行分解,再相加进行分解。
特殊的轮换式可能有更简单的方法,不一定非用一般的方法去分解.对于x y 、的多项式223322,,,,,x y xy x y x y x y xy ++++在字母x 与y 互换时,保持不变,这样的多项式称为x y 、的对称式。
类似的,关于x y z 、、的多项式 222333222222,,,,,,,x y z xy x y z xy yz zx x y z xyz x y x z y z y x z x z y +++++++++++++在字母x y z 、、中任意两字互换时,保持不变.这样的多项式称为x y z 、、的对称式.关于x y z 、、的多项式222333222,,,,,,,x y z xy x y z xy yz zx x y z xyz x y y z z x ++++++++++在将字母x y z 、、轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变.这样的多项式称为x y z 、、的轮换式。
初中数学竞赛精品标准教程及练习50基本对称式

初中数学竞赛精品标准教程及练习50基本对称式初中数学竞赛是学生在学习数学的过程中,通过参与竞赛提高数学解题能力和思维能力的一种途径。
数学竞赛涉及的内容广泛,其中包括了对称式的研究和应用。
下面是一份关于初中数学竞赛精品标准教程及练习,主要包括了50个基本对称式的内容,希望能够对大家的学习有所帮助。
一、基本概念在初中数学竞赛中,对称式是经常出现的问题类型之一、对称式指的是多项式在变量的置换下保持不变的表达式。
对称式在解题过程中具有简洁性和易于分析的特点,因此对称式在数学竞赛中有着重要的应用价值。
二、基本性质1.对称式具有对称性,即在变量的置换下保持不变。
2.对称式的系数可以是实数也可以是复数。
3.对称式可以通过系数相乘、相加等运算进行组合,得到新的对称式。
4.对称式的次数等于它所包含变量的最高次数。
三、基本类型1.对称多项式:这是最常见的对称式形式,指的是多项式在变量的置换下保持不变。
例如:* $xy+yz+zx$*$x^2+y^2+z^2$2.对称和与对称积:对称和指的是对称多项式相加得到的新的对称多项式,对称积指的是对称多项式相乘得到的新的对称多项式。
例如:*$a_1+a_2+a_3+...+a_n$*$a_1a_2+a_1a_3+a_2a_3+...+a_{n-1}a_n$*$(x+y+z)(y+z+w)$3.对称因子与轮换对称因子:对称因子指的是对称多项式中每一项的因子都是对称的,而轮换对称因子指的是对称多项式中每一项的因子经过变量的置换后仍然是对称的。
4.对称和与对称积的运算法则:对称多项式的和与积都具有交换律和结合律。
四、基本性质与定理1.对称多项式可以通过对称元素的传递性进行分解和合并。
2.对称多项式中可以把含有部分变量的项提取出来,形成新的对称多项式。
3.如果一个对称多项式的每一项次数都是k的倍数,那么这个对称多项式可以表示为若干个对称和乘以小项。
五、基本方法与技巧1.利用对称和与对称积的运算法则简化多项式。
对称式与轮换对称式

竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。
例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。
如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。
由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有1212()()r n n f tx tx tx t f x x x =,,,,,,。
例如,含三个字母的三元三次齐对称式为:333222222()()a x y z bx y x zy xy zz x z y c x y z+++++++++。
【定义3】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式均改变符号,即对于任意的i j ,()1i j n ≤<≤,都有11()()i j n j i n f x x x x f x x x x =-,,,,,,,,,,,,那么就称这个代数式为n 元交代式。
数学竞赛辅导系列专题一利用轴对称变换求最小值在初中数学竞赛中的应用举例[1]
![数学竞赛辅导系列专题一利用轴对称变换求最小值在初中数学竞赛中的应用举例[1]](https://img.taocdn.com/s3/m/a03dc98432d4b14e852458fb770bf78a64293a5a.png)
数学竞赛辅导系列专题(一)利用轴对称变换求最小值在初中数学竞赛中的应用举例新课改下的数学教学要求教师“要创造性地使用教材,积极开发、利用各种教育资源为学生提供丰富多彩的学习素材;关注学生的个性差异,有效地实施差异教学,使每个学生都得到发展”。
“对于学有余力并对数学有浓厚兴趣的学生,教师要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。
”纵观近几年的全国各级数学竞赛,首先是紧扣教材和竞赛大纲,许多试题虽有一定难度,但难而不怪,灵活性强,高而可攀。
其次是精心设计,题目新型。
而且注重知识的典型性和迁移性,积极引导学生实现由知识到能力的过渡。
因此,教师在教学过程中要努力帮助学生挖掘课本的教育资源,注重知识的延伸和迁移,通过一题多问、一题多解、多题一解等有效手段,培养学生的创新思维能力。
让学生在学与练的过程中去体味奇妙的数学、学习和领略奥妙的数学;从而提高学习数学的兴趣、勤奋地去开垦数学。
本文试图从“利用轴对称性质求最小值”问题入手,在挖掘课本教育资源、注重多题一解、培养学生知识迁移能力方面作一些尝试与探索,与数学同行们交流,抛砖引玉。
(一)、课本原型:(七年级下册第196页)如图(1)所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距离之和最短?解:如图(2)○1,只要画出A点关于直线L的对称点C,连结BC交直线L于P,则P点就是所求。
这时PA+PB=PC+PB为最小,(因为两点之间线段最短)。
(证明:如图(2)○2,在L上任取一点P1,连结P1A,P1B,P1C,因为P 1A+P 1B=P 1C+P 1B>BC=PA+PB 。
这是根据三角形两边之和大于第三边,所以结论成立。
)l街道图(1)BAl街道图(2)DP BAC(二)应用和延伸:例1、(七年级作业本题)如图(3),∠AOB 内有一点P ,在OA 和OB 边上分别找出M 、N ,使ΔPMN 的周长最小。
七年级数学尖子生培优竞赛专题辅导第二讲讲对称式和轮换对称式(含答案)

第二讲讲对称式和轮换对称式趣题引路】若正数召,心“,“书入.同时满足= 空込泊=2, 沁色=3,X] 吃“兀泊空£ = 6, 土込竺=9,则X,+X,+X3+X4+X5+A-6的值是多少?若将六式左右分别相乘得(X1W4X5A6)4 =64 ,因此XMP)兀乓兀=6,将已知式分别代入上式可得X| = "\/6 , = \/^» A"j = 5/2" , X4 = , X5 =1 ------- ,兀6 = • Ml" 以2 3X, +A-2+x3+A-4+x5+x6=l + V2 + V3 + lb^视六数之积为整体,可巧妙地消元求解!对于具备特殊结6构的代数式或方程,我们也要学会运用特殊的解题策略.知识拓展】1.对称多项式观察"+ /? + c , ah + be + ca » 1/ + b' + c' —3ab — 3/>c —3ca » a'h + b z c + c2a + ab~ + be2 + ca z等多项式,如果任意互换两个元的位置,所得的多项式与原式恒等,像这样的多项式叫做对称多项式(简称对称式)• 上述四个式子也可分別称为三元对称多项式,又如A-4+(X+>-)4+/是二元对称多项式.2.轮换对称多项式一个关于儿八z…、w的多元多项式,若依某种顺序把字母进行轮换(如把x换成y, y换成z, w换成X),多项式不变,这种多项式叫做轮换对称多项式(简称轮换式)•例如x'y + y'z + Fx , (“一b+c)( b—c+")( c—a+b)都是三元轮换对称式.显然,对称多项式都是轮换对称多项式,而轮换对称多项式则不一上是对称多项式,如:+ + 是轮换式,但因互换儿y得到的是bx + Fz + Fy已不是原式,所以原式不是对称式.同样对(b-c)(c-a)(a-b)^是如此,即该式是轮换对称式而不是对称式.但只含有两个字母的轮换对称式都是对称式.3.对称式的性质(1)关于小y的对称式总可以用x+y和小来表示.(2)两个对称式的和、差、积、商也是对称式(3)齐次对称多项式的积、幕仍是齐次对称多项式.4.对称多项式和轮换多项式的因式分解:运用因式分解定理和待立系数法.一、对称式、轮换对称式的求值技巧例1已知卩一尤一),=4,贝|J(Q —1)2_2疋〉,一2心2+十+〉,2+6卩—2x —2y的值等于____ .解析可引导学生观察已知等式和所求式的特点,易见,它们都是关于x、y的对称式,根据对称式的性质,所求式可用x+y和卩来表示,先化简后再求值.解设x+y=“,AJ=V,由题设得vr=4,贝IJ原式=(Ay-1)2 - 2AJ(X +y) + [(牙 + y)2 - Zyy] + 6xy- 2(x + y)=(v—If—2vz/+if—2v+6v~2w=v2-2 vu+/+2 ” 一2 u +1=(v—w+l)==25 ・点评:对称换元有利于简化解题过程.例2 计算:(x+y-iz)(xy+yz+zx).解析因为x+y+z和xy+w+旷都是轮换对称式,所以它们的积也是轮换对称式.因此,做这种乘法运算时可只把第一个因式的第一个字母乘以第二个因式各项,然后根据轮换对称性写岀其余各项.解:T x(xy-\-yz+vc)=+y+xyz+vC,原式+yz+yzx+xy^+厶+砂+yf=x:y+y:z+zH+亍+yz"+zx' + 3QZ ■点评:由已知代数式的对称性,可知其展开式亦是对称的,从而可由一项写出对称的英他,这样解题就会既简明又准确.二、对称式的因式分解例3 分解因式:z)+y'(z—x)+z'(x—刃.解析这是一个关于八y. 2的四次齐次轮换对称式,当x=y时,原式的值为零,根据余式泄理知x —y是它的一个因式.由轮换对称的性质知y—z和z—x也是它的因式.因为(x—y)(y—z)(z—x)是三次轮换对称式,所以原式还应有一个一次齐次轮换对称的因式,不妨设为Hr+y+z),从而有x(y—z)+yXz~x)+z(x—y)=k(x+y+z)(x—y)(y~x)(z—x)・取x=2t y=l, z=0,得k= — l.:.x(y—z)+y(z—x)+z z(x—y)= —(x+y+z)(x—y)(y—z)(z—x)・点评:由对称性来探究可能分解出的因式,这是因式分解的一种十分有趣的方法.例4把2+U+)A+y分解因式.解析这是一个二元对称多项式,分解因式时一般将原式用x+y> xy表示出来再进行分解.解:£+(x+y)'+h=(r+)」)+(x+)A=(F+『亍一2汐+(x+)A=[(x+y)'—2xyf一2xy+(A4-y):=2(x+y)1- 4x)<x+y)3+ 2xy=2[(x+yY-xy]2=2(卫+小+护)2・点评:实际上任何一个二元对称式都可以用x+y、小表示出来,对于给泄的对称式,往往是寻求这种具体表示方法.在解决本题时;实际可以直接由(x+)y的展开形式,宜接将屮+讯用x+y、心来表示,即x4+y* = (x+)y — 4・py — 6xV — 4巧3 = (x+y)4-4xy(x+y)2 + 2(Q)2.例5 分解因式:(X->')5+(.V-X)5+(Z-A)5.解析这是一个5次轮换对称多项式,只要找到它的一个因式就能找到与它同类型的期两个因式,若在原多项式中令x=y,则原式= (x-zP+(z-x)5=0.根据因式泄理,则x-y是原式的一个因式,于是y 一z、z-x也是它的因式.解:因为当x=y时,(x—yp+(y—xp+(z—xp=O,所以原多项式有因式(x~y)Cv—z)(z—x).由于原多项式是5次轮换对称式,根据其特点可设(x—y)5+(v—z)5+(z—X)5=(x—y)(y—z)(z—x)[“("+尸+z2)+b(Ay+yx+zx)]①其中“、〃是待立系数.取x=lt y= — L z=0代入①式得2d—b=\5・②取x=2, y=l, z=0代人①式得5a+2b=15・③将②、③两式联立解得“=5, b=-5.所以(x-y)5+(y-z)5 + (z-x)5=5 (x—y)(y—z)(z—x)(x2+y2+z?—xy—yx—zx)・点评:在解本题的过程中,设了一个因式为“(界+尸+刊+风巧+严+旳,若不是这种形式,不妨设为0_y2 + z2,由轮换式,就会有另两个因式严一Q+W及艺一川+尸,这样原式就至少为9次,从而由对称式的特点只能设另一个因式为“(工+护+刃+反巧+皿+旷).也就是说三个字母的轮换对称多项式若次数<3,则也一立为对称多项式.三、综合应用例6 已知“+b>c b+c>a> u+c>b,求证:c)2—b(c—6/)2—c(t/—b)2—4</Z?c<0.解析要证明多项式的值小于0,可先将它分解因式,只要判左各个因式的符号就能对原多项式的符号作出判定.证明:设T= a3+Z?3+c3—1/(/?—c)2—h(c~a)2—c(a~b)2—4cibc・把该多项式看作是关于“的3次多项式,令"=b+c,则T= (b+cP+沪+R—(b+c)(b—c)2—沪一R—4(b+c)bc=2(,+")+32c+3bc2— 2(夕+c3)+Qc+be2—4b2c—4bc2=0.由因式泄理知,"一(b+c)是T的一个因式.又由于丁是一个轮换对称式,于是b —(c+“),c-(a+b)也是7的因式,因为T是关于"、b、c的3 次式,所以可设T— k(a—b—c)(b—c—a)(c—a~b)・比较两边/的系数可得k=\.故T= (a—b—c)(b—c—a)(c—a—b)・根据题意"+b>c, d +则有c—a—b<0, a—b—c<0, b—a—c<0.所以TVO.即原不等式成立.例7设△ABC的三边长分别为心b、c,且上二L+ —+上二£=0,试判断ZBC的形状.1 + ah \+bc 1 + ca解析已知等式去分母,得(t/—Z?)( 14- bc)( 1 + ca) 4- (/?—c)( 1 +c“)(l +")+(c—")(1 +")(1 +处)=0・上式的左边是关于a、b、c的轮换对称式,把,(a—b)(l+bc)(l+ca)展开、整理,得a-b—b2c-}-ca2+ "2力一於C2•根据轮换对称式的性质,可直接写出其余各项.由此,上式可写为a~b~ b2c+"+a2bc2—al^c2+b—c—c2a+ah2+b2ca2—berer+c—a —a2b+be2+crab1— ca2b2=0 ・整理,得ab2+be2+ca2—a2b—b2c—c2a=0.设M=ab2 -b be2+ca2—a2b—b2c—c2a ・当"=b时,A/=0,由因式泄理知"一b是M的一个因式.而M是关于“、b、c的三次齐次轮换对称式,故M含有因式(a—b)(h—c)(c—u).又(“一b)(b—c)(c—a)也是三次齐次轮换对称式,则M还应有一个常因子,于是可设ab2+be2+ca2—erb — b2c•—(rci=k(a~b)(b—c)(c ~a).取a=2, h=\9 c=0,得k=\.M=(a — b)(b—c*)(c—a)=0 ・:・u=b或b=e或c=a,即"、b、c中至少有两个相等.故△ABC必为等腰三角形.好题妙解】佳题新题品味例分解因式l)(y-z)+Ay+ l)(z-x)+z3(z+ l)(x~y)・解析由于原式是X, y, z的轮换式但不是齐次式,所以当求得©—2)(z-x)仗一刃的因式后,剩下的因式是A(x2+y2+z2)+B(yz+zx+xy)+CC¥+y+z)+£)・解:当时,原式=0..・・y-z是原式的一个因式.设原式=(y~z)(z—x)(x—y)[ A("+y2+z2)+B(yz+乙t+xy)+C(x+y+z)+D]・由于原式最低为四次项,.・.D=0.•••原式=(y—z)(z—x)(x—y)[ A(x2 -+-y24-z2)+B(yz++C(x+y+z)].令x=h y= —L z=0 得2A—B= —1;①令x=-h y=0, z=2 得5A-2B+C=-4;②令x=l; y=-L z=2 得6A-B+2C=-7・③解①,②,③组成的方程组,得A=B=C=-1.故原^=—(y—z)(z—x)(x—y)(x2+y1+z1+yz+zx+xy+x+y+z)・中考真题欣赏例(陕西省中考题)分解因式:6兀一6),—9W+18•巧一9屮一1.解析关于X, y的对称式可用含x+y, x-y,小的式子表示,考虑分组.解:6x—6y—9W+ 18小一9)卫一1 = — (9X2— 18xy+9)^)+(6x—6y) — 1=—[9(工一Zxy+〉') _ 6(x _ y) + 1 ]=一[9(A—y)2-2X 3(x-y) +1]= -[3(xp)— IF= _(3x_3y_ 1)2.竞赛样题展示例分解因式(a-\-b+c)5—a5—b5—c5・解析这是一个五次对称多项式,只要找到它的一个因式,就能找岀与它同类型的另两个因式.如果在多项式中令a = -b,则原式=c5-c5=O,根据因式上理,则“+b是原式的一个因式,于是(b+c)、(c +")也是它的因式.解:因为当"=—b时,(a+b+cp—cP—“5—芒=0,所以原式有因式(a+b)(b+c)(c+a)・由于原式是5次对称多项式,根据英特点,可设(“ + b + c)5 — "5—/一小=(“+b)(b+c)(c+a)[k(cr+b?+c?)+m(ab+bc+ca)]・①其中£、加是有待确左的系数.令么=1, b=l, c=0,代人①式得30=2("+〃?),即2k+m=15・又令“=0, b=\, c=2,代人①式得210=6(5£+加),即5«+加= 35.由此解得k=5t m=5.所以(a+b-^c)s—a5—b5—c5=5(a+b)(h+c)(c+a)(a2-^b2+c2+ab-\-bc-^ca)点评:先找出一个因式,再利用对称式的性质得出同型的另外一些因式,再运用待立系数法确定剩下的其他因式.过关检测】A级1.在下列四个式子中,是轮换多项式的有( )① 3x+2y+z ②+y 彳+z4 + 巧』z?③jty2 + y2^+④卫+y3+z3—x2—y2—z2A. 0个B・1个C・2个D・3个2.x2y+xy2+y2z+yz2+z2x+zx24-3xy f z=y+z)(xy'-\-yz+zx),则k 的值是( )A. 1 B・ 1 C・ 3 D・一123•设Of=xi+X2+X3, 0 =X1X2+X2X3+X3AS / =A1X2X3> 用Q、卩、丫表示岀X)3+x23+x33的结果是( )A. a'— 3a卩+3?B・0‘一3矽+3卩C・ a'+3a0—3/ D・ 0'—3a0+3y4 ・分解因式:xy^x2一y2) +yz(y2—z2)+zx(z2—x2)・5.分解因式:Ty+^+Wz+^+FCv+y)—W+h+R-Zryz.6.化简:“(b+c—“)2+b(c+“一Z?)2+d"+/?—c)2+(b+c—")(©+" —b)(“+b—c)・7.已知"+b+c+〃=O, R+b3+c3+〃3=3.(1)求证:(a+b)34-(c+J)3=0:(2)求证:ab(c+J)+cd(a+Z?) = 1 ・1.若——-—— + ——-—— + ——-——=1,则儿八x的取值情况是()(X + z)(y + z) (>■ + x)(z + A) (z + y)(x + y)A.全为零B.只有两个为零C.只有一个为零D.全不为零2.已知⑴b、c均为正数,设p=“+b+c 尸竺+竺+竺,则“与g的大小关系是( )a h cA・P>q B・ p<q C・ pPq D・pWq3.已知x+y=3,戏+尸_小=4,则十+屮+兀3$+与,3的值等于 _____________ ・4.如图2-1,正方体的每一个面上都有一个正整数,已知相对的两个而上二数之和都相等.如果13、9、3的对面的数分别是"、b、c9试求a1+b2+c1—ab—bc—ca的值,5・分解因式:(x+y)(y+z)(z+x)+xyz.6.分解因式:G(a+ l)(b—c)+b'(b+ l)(c—”)+c3(c+ \)(a~b).第二讲对称式和轮换对称式A级1. B2. B3. A4.-(x+/H-z)(x-y)(y-z)5.- (x-y-z)(/-z-a)(z - x - y).提示:令丁= y原式为0;同理7 =x十乙时,原式为0;z” ”时,原式为0・设原式-A(x- -y)-6.4a6c提示:当a=0时,原式=0;故设原式= kabj取a = 6=c=U.得&=4・7・ a,46’+c?+d'=(a+6)'-3a6(a・6) + (c • -3cJ(c+d).又a 十6 = 一(c + d),所以(a *b)‘ + (c+/)‘ =0•故3 =3a6(c + d) +3cd(a +6),即a6(c +d) +cd(c+6) = 1B级L・C提示:化简已知等式得xyz=0.2.D提示:运用作差比较.3・ 36 ^4.76 提示:原式=y[(a-6)2 + (6-c)2 + (c-a)2]5.(x+y+«) (xy+-yz+a)6・一(a - 6)(6*-c)(c-a)(a2+c2十 ab + be +co + a+ 6 +c)提示:原:式为非齐次轮换式,可视作以a为主元的多项式.当a M时,原式=0.所以a・6是原式的一个因式.由对称性知也是原式的因式.剰下的因式应是非齐次对称性•设原式=(a-6)(6-c)(c-a)(A:(a2 + + c2) +2( a6 + 6c 4-ca) +m(a+6 + c) +a]・取恃值求得A = - 1 fI = -l,m = =1』=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题选讲
对称式
一、内容提要
一.定义
1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值
不变,则称这个代数式为绝对对称式,简称对称式.
例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y
x 11+, xyz
x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.
2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,
则称这个代数式为轮换对称式,简称轮换式.
例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc
c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b
a c a c
b
c b a -++-++-+. 都是轮换式.
显然,对称式一定是轮换式,而轮换式不一定是对称式.
二.性质
1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.
2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,
且系数相等.
例如:在含x, y, z 的齐二次对称多项式中,
如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:
m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.
3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的
一切同型式,且系数相等.
例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.
4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式).
例如:∵x+y, xy 都是对称式,
∴x+y +xy , (x+y )xy , xy
y x +等也都是对称式. ∵xy+yz+zx 和z
y x 111++都是轮换式,
∴
z y x 111+++xy+yz+z , (z
y x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题 例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222z
y x ++. 分析:∵(xy+yz+zx )()111z
y x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z
1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(z
xy y zx x yz ++) =2x+2y+2z.
例2. 已知:a+b+c=0, abc ≠0.
求代数式 222222222111b
a c a c
b
c b a -++-++-+的值 (1989年泉州市初二数学双基赛题)
分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的
同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab
21-, ∴2
22222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc
b a
c 2++=0. 例3. 计算:(a+b+c )3
分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用
待定系数法.
例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.
(m, n, p 是待定系数)
令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;
令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;
令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.
解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩
⎪⎨⎧===631p n m
∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.
例5. 因式分解:
① a 3(b -c)+b 3(c -a)+c 3(a -b);
② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.
解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.
∴有因式a -b 及其同型式b -c, c -a.
∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得
一次齐次的轮换式a+b+c.
用待定系数法:
得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)
比较左右两边a 3b 的系数,得m=-1.
∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).
② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0
∴有因式x ,以及它的同型式y 和z.
∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.
∴用待定系数法:
可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5
=xyz [m(x+y+z)+n(xy+yz+zx)].
令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;
令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.
解方程组⎩
⎨⎧=+=+480680n m n m 得⎩⎨⎧==0
80n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).
三、练习
1. 已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式________
________.
2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式
_________________________________.
3. 利用对称式性质做乘法,直接写出结果:
① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.
4. 计算:(x+y )
5.
5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.
6. 因式分解:
① ab(a -b)+bc(b -c)+ca(c -a);
② (x+y+z)3-(x 3+y 3+z 3);
③ (ab+bc+ca )(a+b+c)-abc ;
④ a(b -c)3+b(c -a)3+c(a -b)3.
7. 已知:abc
c b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.
8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+ab
cb ca c c +--22
. 9. 已知:S =2
1(a+b+c ). 求证:16
)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).
10. 若x,y 满足等式 x=1+y 1和y=1+x
1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.
练习题参考答案
1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x
2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)
3. ②x 3+y 3+z 3-3xyz
4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.
5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.
6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=1
7. 由已知等式去分母后,使右边为0, 因式分解
8. 1
9. 一个分式化为S (S -a )(S -b)(S -c)
10. 选 C。