高二数学必修5 线性规划(一)
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
高中数学新课标人教A版必修5课件线性规划

目录
01.
02.
03.
04.
05.
06.
线性规划是一种数学优化方法,用于求解线性目标函数在满足一组线性约束条件下的最优解。
线性规划的目标函数和约束条件都是线性的,即目标函数和约束条件中的变量和常数都是线 性的。
线性规划的目标是找到一组决策变量,使得目标函数达到最大值或最小值,同时满足所有的 约束条件。
线性规划在资源分 配中的应用
资源分配问题的定 义和分类
线性规划在资源分 配问题中的求解方 法
线性规划在资源分 配问题中的实际应 用案例
投资目标:最大化投资收 益
投资约束:资金有限、风 险控制等
投资策略:分散投资、风 险对冲等
投资效果评估:投资回报 率、风险调整后收益等
运输问题:在满足一定约束条件下,寻找最优的运输方案,以最小化运输成本或最大化运输 收益
确定约束条件的类 型,如等式约束、 不等式约束等
确定约束条件的 范围,如 x1+x2≤5等
确定约束条件的 数量,如 x1+x2+x3=5等
目标函数是线性规 划的核心,需要明 确表示出要优化的 目标
目标函数通常表示 为最大化或最小化 某个线性函数
目标函数中的变量 需要与约束条件中 的变量一致
目标函数中的系数 需要是常数,不能 含有变量
线性规划是研究线性约束条件下的优化问题的数学方法
线性规划的目标是找到一组决策变量,使得目标函数达到最大值或最小值
线性规划的几何意义在于,它可以将线性规划问题转化为几何问题,通过几何图形来 直观地表示和解决问题
线性规划的几何意义可以帮助我们更好地理解和解决线性规划问题,提高解决问题的 效率和准确性
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
人教版-高中数学必修5--简单的线性规划问题教案

简单的线性规划问题教学目标: 1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.教学重点和难点:求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y 轴上的截距的最值问题以及如何想到要这样转化存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点. 教学过程:>(一)引入(1)情景某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h.该产每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么请学生读题,引导阅读理解后,列表 →建立数学关系式 → 画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表 →建立数学关系式→ 画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大学生不难列出函数关系式y x z 32+=.师:这是关于变量y x 、的一次解析式,从函数的观点看y x 、的变化引起z 的变化,而y x 、是区域内的动点的坐标,对于每一组y x 、的值都有唯一的z 值与之对应,请算出几个z 的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现《学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.【在信息技术与课程整合过程中,为改变老师单机的演示学生被动观看的现状,让学生参与进来,老师(可以根据学生要求)操作,学生记录,共同提出猜想,在当前技术条件受限时不失为一个好方法】师:这有限次的实验得来的结论可靠吗我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办 因此,有必要寻找操作性强的可靠的求最优解的方法.【形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法】继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M (, )时方程是1032=+y x ,填写表中的第6—7列,引导学生先在点与直线之间建立起联系 ------点M 的坐标是方程1032=+y x 的解,那么点M 就应该在直线1032=+y x 上,反过来直线1032=+y x 经过点M ,当然也就经过平面区域,所以点M 的运动就可转化为直线的平移运动。
高中数学 必修5 26.简单的线性规划问题(一)

26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件

(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内
求
z 的最值 3
求
z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y
16, 12,
3
x
0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修5 线性规划(一)
教学目标:
1.解线性约束条件、线性目标函数、线性规划概念; 2.在线性约束条件下求线性目标函数的最优解; 3.了解线性规划问题的图解法。
教学重点:线性规划问题。
教学难点:线性规划在实际中的应用。
教学过程:
1.复习回顾:
上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略) 2.讲授新课:
例1:设z =2x +y ,式中变量满足下列条件:
⎩
⎪⎨⎪⎧x -4y ≤-3
3x +5y ≤25x ≥1 ,求z 的最大值和最小值. 解:变量x ,y 所满足的每个不等式都表示一个平面
区域,不等式组则表示这些平面区域的公共 区域.(如右图).
作一组与l 0:2x +y =0平行的直线l :2x +y =t .t ∈R可知:当l 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0,即t >0,而且,直线l 往右平移时,t 随之增大,在经过不等式组①所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小.所以
z max =2×5+2=12 z min =2×1+1=3 说明:例1目的在于给出下列线性规划的基本概念.
线性规划的有关概念:
①线性约束条件:
在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
Ex :P 841,2,3
例2:在x ≥0,y ≥0,3x +y ≤3及2x +3y ≤6的条件下,试求x -y 的最值。
解:画出不等式组⎩⎨⎧3x +y ≤32x +3y ≤6
x ≥0y ≥0
的图形
设x -y =t ,则y =x -t
由图知直线l :y =x -t 过A (1,0)时纵截距 最小,这时t =1;过B (0,2)时纵截距最大,
这时t =-2. 所以,x -y 的最大值为1,最小值为-2。
例3:某工厂生产甲、乙两种产品。
已知生产甲种产品1t 需耗A 种矿石10t 、B 种矿石5t 、煤
4t ;生产乙种产品1t 需耗A 种矿石4t 、B 种矿石4t 、煤9t 。
每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元。
工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300t 、B 种矿石不超过200t 、煤不超过360t 。
甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大? 分析:将已知数据列成下表
解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么
⎩⎪⎨⎪⎧10x +4y ≤3005x +4y ≤200
4x +9y ≤360x ≥0y ≥0
z =600x +1000y 作出以上不等式组所表示的平面区域,即可行域。
作直线l :600x +1000y =0,即直线l :3x +5y =0
把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大。
此时 z =600x +1000y 取最大值。
解方程组⎩⎨⎧5x +4y =200
4x +9y =360
得M 的坐标为 x =360
29 ≈12.4,
y =100029
≈34.4
答:应生产甲产品约12.4t ,乙产 品34.4t ,能使利润总额达到最大。
3.课堂练习:
课本P 84 1,2,3 4.课堂小结:
通过本节学习,要求大家掌握线性规划问题,并能解决简单的实际应用. 5.课后作业:
课本P 87习题 3,4
教学后记:
线性规划
例1:某工厂生产甲、乙两种产品。
已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t。
每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元。
工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。
甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?
例2:某工厂有甲、乙两种产品,按计划每天各生产不少于15t,已知生产甲产品1t需煤9t,电力4kw,劳动力3个(按工作日计算);生产乙产品l t需煤4t,电力5kw,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200 kw,劳动力只有300个,问每天各生产甲、乙两种产品多少吨,才能既保证完成生产任务,又能为国家创造最多的财富。
例3:一位农民有田2亩,根据他的经验:若种水稻,则每亩每期产量为400 kg;若种花生,则每亩每期产量为100 kg,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每kg可卖5元,稻米每kg只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?
例3:要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
今需要A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?。