高中数学 线性规划(一)
第1章 线性规划

1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)
江苏省泰兴市第一高级中学苏教版必修五数学《3.3.3 简单的线性规划问题(1)》教学设计

3.3。
3简单的线性规划问题(1)江苏省泰兴市第一高级中学陈燕教学目标:1.让学生了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.教学重点:用图解法求线性规划问题的最优解.教学难点:对用图解法求解简单线性规划问题的最优解这一方法的理解和掌握.教学方法:1.在学生的独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法—-图解法.2.渗透数形结合的思想,培养分析问题、解决问题的能力.教学过程:一、问题情境1.情境:我们先考察生产中遇到的一个问题:(投影)某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t 、B 种原料12t,产生的利润为2万元;生产1t 乙种产品需要A 种原料1t 、B 种原料9t ,产生的利润为1万元.现有库存A 种原料10t ,B 种原料60t ,问如何安排才能使利润最大?为理解题意,可以将已知数据整理成下表:(投影)x 、y ,根据题意,A 、B 两种原料分别不得超过10t 和60t ,即41012960x y x y +≤⎧⎨+≤⎩,,,即4104320x y x y +≤⎧⎨+≤⎩,..这是一个二元一次不等式组,此外,产量不可能是负数,所以0,0≥≥y x ③于是上述问题转化为如下的一个数学问题:在约束条件410432000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,.④下,求出x ,y ,使利润(万元)y x P +=2达到最大.2.问题:上述问题如何解决? 二、学生活动①①让学生探究解决这个问题分几个步骤;②让学生分组讨论:如何在不等式组确定的区域中找到y=2取P+x得最大值的数对(x,y);③由学生整理解决这个问题的思路.(投影)首先,作出约束条件所表示的区域.其次,考虑yP+=2变x=2的几何意义,将yxP+形为P=2,它表示斜率为-2,在y轴上截距为P-y+x的一条直线.平移直线P34=x与20+yx的-xy+=2,当它经过两直线104=+y交点A(1.25,5)时,直线在y轴上的截距P最大.因此,当5x=2取得最大值5.7x时,yP+=y25,.1=+⨯,即甲、乙两2=525.1种产品分别生产1.25t和5t时,可获得最大利润7。
高中线性规划

高中线性规划高中线性规划是高中数学课程中的一部分,是线性代数的重要内容之一。
线性规划是一种优化问题的数学建模方法,通过线性规划可以求解出一组满足一定约束条件的最优解。
线性规划的基本形式是在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
线性规划的目标函数和约束条件都是线性的,这使得线性规划问题能够用简洁的数学模型来描述。
线性规划的数学模型可以用如下的标准格式来表示:最大化(或最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁ ≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数项。
线性规划的求解过程一般分为以下几个步骤:1. 确定决策变量:根据实际问题确定需要优化的变量,将其表示为x₁、x₂、...、xₙ。
2. 建立目标函数:根据实际问题确定需要最大化或最小化的目标函数,并将其表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ。
3. 建立约束条件:根据实际问题确定约束条件,并将其表示为线性不等式的形式,即a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。
4. 确定非负约束条件:由于线性规划问题的解必须满足变量的非负性,即x₁≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0。
5. 求解最优解:将线性规划问题转化为数学模型后,可以利用线性规划的求解方法,如单纯形法、对偶理论等,求解出目标函数的最大值或最小值,以及相应的决策变量的取值。
高一数学复习学案:第6课时 简单的线性规划问题(1)

【学习目标】1. 巩固二元一次不等式和二元一次不等式组所表示的平面区域;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。
【学习重点】体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。
【学习难点】培养学生问题转化的能力。
【预习内容】1、判断下列求法是否正确若实数 x, y 满足 ① 求2x+y 的取值范围. ② 解:由①、②同向相加可得:6≤2x ≤10 ③由②得:-4≤y-x ≤-2将上式与①式同向相加得 0≤y ≤2 ④③+④得 6≤2x+y ≤12如果错误错在哪?如何来解决这个问题呢?【新知学习】 本题即求在满足 的前提下,求2x+y 的最大和最小值 问:求2x+y 的最大、最小值x 、y 要满足什么条件?问题1:在坐标系中代表哪部分平面区域?问题2:在这个区域中,如何取到2x+y 的最大最小值?令Z=2x+y ,得到y=-2x+Z,斜率是 ,纵坐标上截距是 要求Z 的最大(最小)值就是使直线y=-2x+Z 的 最大(最小)问题:3:如何作出这条直线?【新知深化】1.方法总结:在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为:2.概念剖析:⑴线性目标函数:关于 x 、y 的一次式 z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.⑵线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ⑶可行解、可行域和最优解:①满足线性约束条件的解(x , y ) 叫可行解.②由所有可行解组成的集合叫做可行域.③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.⎩⎨⎧≤-≤≤+≤.42,64y x y x ⎩⎨⎧≤-≤≤+≤.42,64y x y x练习 1.:求 z = 2 x + y 的最大值,其中x 、 y 满足约束条件11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩变式训练:已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,求2Z x y =-的取值范围【新知巩固】1、 已知x 、 y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩求z = 2x + 4 y 的最小值2、 已知31<+<-b a 且42<+<b a ,求b a 32+的取值范围。
高一数学线性规划试题答案及解析

高一数学线性规划试题答案及解析1.若实数、满足约束条件则的最大值是_________【答案】3【解析】画出可行域如下图所示,为目标函数在轴上的截距,画出的图像如图中虚线部分,平移直线过点时有最大值3.故答案为3.【考点】线性规划的应用.2.在直角坐标系中,已知点,,,点在三边围成的区域(含边界)上,且.(Ⅰ)若,求;(Ⅱ)用表示,并求的最小值.【答案】(1),(2)的最小值-1.【解析】(1)向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的的坐标,则应先求出向量的坐标,解题过程中要注意方程的思想的运用及运算法则的正确使用;(2)利用线性规划求目标函数的最值一般步骤:一画、二移、三求,其关键是准确的作出可行域,理解目标函数的意义;(3)在线性约束条件下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题和填空题时可以根据可行域的顶点直接进行检验.试题解析:解(Ⅰ),∴....................5分由,,,8分设,直线过点时,取得最小值-1,即的最小值-1【考点】(1)向量的坐标表示;(2)线性目标函数的最值.3.已知点(3,1)和(- 4,6)在直线3x-2y+a=0的两侧,则a的取值范围是()A.a<-7或 a>24B.a="7" 或 a=24C.-7<a<24D.-24<a<7【答案】C【解析】由线性规划相关知识:两点位于直线的两侧,则一侧使得直线方程大于零,一侧使得直线方程小于零.即有,故选C.【考点】线性规划.4.实数满足,如果目标函数的最小值为,则实数b的值为_____ .【答案】8【解析】绘制平面区域可得:要使由最小值-2,则直线,在轴上有最大截距为2,且经过点B,由,又因B也在上,故有.【考点】线性规划.5.已知变量满足约束条件,若的最大值为,则实数.【答案】-1或.【解析】作出约束条件所对应的可行域:,由于的最大值为,所以直线必过点A(-2,3)或点B(4,3),因此有解得或,故应填入:-1或.【考点】线性规划.6.设动点满足,则的最大值是.【答案】100【解析】先画出可行域,根据目标函数可知最优解为C(20,0),带入目标函数得最大者为100【考点】线性规划问题7.已知变量,满足约束条件,则的最小值为()A.B.C.D.【答案】B.【解析】依题意可画出不等式组所表示的的可行域,可知直线与的交点,作出直线:,平移直线,则可知当,时,的最小值为.【考点】线性规划.8.设变量、满足约束条件,则z=2x+3y的最大值为【答案】18【解析】变量x,y满足约束条件,表示的可行域为如图,所以z=2x+3y的最大值就是经过M即的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划的应用.9.不等式组表示的平面区域的面积为 .【答案】9【解析】由题意得:平面区域为一个三角形及其内部,其中因此面积为【考点】线性规划求面积10.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.【答案】该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元.【解析】设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得利润为z元/天,则由已知,得z=300x+400y.且画可行域如图所示,目标函数z=300x+400y可变形为解方程组得,即A(4,4).所以,Z=1200+1600=2800.所以,该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元. 9分【考点】简单线性规划的应用点评:中档题,作为应用问题,解简单线性规划问题,要遵循“审清题意,设出变量,布列不等式组,画,移,解,答”等步骤。
高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。
在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。
本文将详细介绍高中线性规划的概念、应用以及解题方法。
一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。
1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。
例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。
1.3 可行解和最优解:满足所有约束条件的解称为可行解。
在可行解中,使目标函数达到最大或者最小值的解称为最优解。
二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。
通过考虑资源约束和市场需求,可以确定每种产品的生产量。
2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。
例如,可以确定每一个部门的资源分配,以满足不同项目的需求。
2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。
三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。
通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。
3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。
该方法通过迭代计算,逐步接近最优解。
3.3 整数规划:在某些情况下,变量的值必须是整数。
这种情况下,可以使用整数规划方法来解决问题。
整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。
四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。
高中数学 必修5 26.简单的线性规划问题(一)

26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
高中线性规划

高中线性规划引言概述:高中线性规划是数学中的一个重要概念,它是一种用于解决最优化问题的数学方法。
线性规划可以应用于各种实际情况,如资源分配、生产计划和投资决策等。
本文将详细介绍高中线性规划的基本概念、解决方法和实际应用。
一、线性规划的基本概念1.1 目标函数:线性规划中的目标函数是需要最小化或最大化的线性表达式。
它通常表示为一系列变量的线性组合。
1.2 约束条件:线性规划中的约束条件是限制变量取值范围的条件。
这些条件可以是等式或不等式,用于限制解的可行域。
1.3 可行解:满足所有约束条件的解称为可行解。
线性规划的目标是找到一个最优可行解,使目标函数达到最小值或最大值。
二、线性规划的解决方法2.1 图形法:对于二维线性规划问题,可以通过绘制约束条件的图形来求解最优解。
最优解通常出现在可行域的顶点上。
2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
该方法通过迭代计算,逐步接近最优解。
单纯形法是一种高效且广泛使用的线性规划求解算法。
2.3 整数规划:当问题要求变量取整数值时,可以使用整数规划方法求解。
整数规划是线性规划的扩展,它在求解过程中限制变量取值为整数。
三、线性规划的实际应用3.1 资源分配:线性规划可以用于优化资源的分配,如生产线上的机器分配、员工排班和原材料采购等。
通过合理安排资源的使用,可以最大化效益并降低成本。
3.2 生产计划:线性规划可以应用于生产计划中,如确定产品的生产数量和生产时间。
通过最优化生产计划,可以提高生产效率和产品质量。
3.3 投资决策:线性规划可以帮助进行投资决策,如确定投资的资金分配和投资组合。
通过最优化投资决策,可以实现最大化回报和降低风险。
四、线性规划的局限性和发展方向4.1 非线性问题:线性规划只适用于目标函数和约束条件均为线性的问题。
对于非线性问题,需要采用其他数学方法进行求解。
4.2 多目标优化:线性规划只能处理单一目标的优化问题。
对于多目标优化问题,需要引入多目标规划方法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引例 例题1 例题2 课堂练习 课堂总结
课题引入
例:若实数x,y满足: 4≤x+y≤6 ① 2≤x-y≤4 ② 求2x+y的取值范围。 解:由①、②同向相加可求得:6≤2x≤10 由②得:-4≤y-x≤2 将上式与①同向相加,得:0≤y≤2 ③ + ④得 : 6≤2x+y≤12. 以上解法正确吗? 不正确,因为要使2x+y=12,必须 x=5,y=2,x+y=7 ③ ④
x-y=2 x+y=4
解得:
x=3
即E(3,1) y=1 Zmax=25+1=11
同理可求得G(5,1),
∴Zmin=23+1=7,
Z [7,11]
线性规划问题可以按照下列步骤求解:
画
移
求
答
返回ห้องสมุดไป่ตู้
例题分析 2
进入
返回
课堂练习
进入
返回
课堂总结
(1)线性规划问题的有关概念; ( 2 )线性规划问题的图解法及几个步骤; (3)注意事项。
不满足条件①
返回
例题分析 1
例1:设z=2x+y,且实数x,y满足: 4≤x+y≤6 ①
2≤x-y≤4 ②
求z的取值范围. 分析:通过上节课的学习我们知道,二元一次不等式表示平面
区域,上述不等式组表示一个平面区域,我们不妨先画出图形。
观察图形
返回
例1解答
解:画出以上不等式组表示的平面区域, 作直线l0:2x+y=0, 作直线2x+y=z (z∈R), 在经过不等式组 当直线向上平移时,z随之增大, 表示的平面区域内的点并且平行于l0的直线中, 经过G点的直线 经过E点的直线所对应的z最小, 所对应的z最大, 由方程组
作业:教材第65页第2题
返回
返回