高二数学简单的线性规划 曲线和方程
高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)

《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
线性规划问题(Linear Programming)

3.解:设每周播放连续剧甲x次,播放连续剧乙y次,收视率为z,则 约束条件为 80 x 40 y 320 x y 6 x 0 y 0
目标函数为
z=60x+20y
做出可行域如图所示: 作
l0 :3x y 0
将l向上平移,当l过M点时,z取得最大 值。
由于直线同侧的点的坐标代入Ax+By+C中,所得 2、 2、点定域(代入特殊点验证) 实数符号相同,所以只需在直线的某一侧取一个 特别地,当C≠0时常把原点作为特殊点。 特殊点代入Ax+By+C中,从所得结果的正负即可 判断Ax+By+C>0表示哪一侧的区域。
练习
1:画出下列不等式所表示的平面区域:
解:设x,y分别是计划生产甲、乙两种
混合肥料的车皮数,则x,y所满足的数
学关系式为
4 x y ≤ 10 18 x 15 y ≤ 66 x≥0 y≥0
分别画出不等式组中, 各不等式所表示的区域.
y
然后取交集,就是不等 式组所表示的区域。
10 9 8 7 6 5 4 3 2 1 O
关于x,y一次不等 式组的约束条件
2 x y 50 x 10 y 20
时,求z的最大值和最小值. 线性规 划问题
所有的
任何一个满足 不等式组的 (x,y)
可行解
可行域
解线性规划问题的步骤:
1.找: 找出线性约束条件、目标函数; 2.画:画出线性约束条件所表示的可行域; 3.移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线; 4.求:通过解方程组求出最优解; 5.答:作出答案。
(完整版)高中数学解析几何知识点总结大全

③对于 A1A2 B1B2 0 来说,无论直线的斜率存在与否,该式都成立。因此,此公式使用
起来更方便. ④斜率相等时,两直线平行(或重合);但两直线平行(或重合)时,斜率不一定相等,因为斜 率有可能不存在。 四、两直线的交角
注意:当直线斜率不存在时,不能用点斜式表示,此时方程为 x x0 ;
2.斜截式:若已知直线在 y 轴上的截距(直线与 y 轴焦点的纵坐标)为 b ,斜率为 k ,则直
线方程: y kx b ;特别地,斜率存在且经过坐标原点的直线方程为: y kx
注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
b a
;|
PPo
|
|t|
;
a2 b2
点 P1 , P2 对应的参数为 t1 , t2 ,则| P1P2 |
| t1 t2 | ; a2 b2
x
y
x0 y0
t t
cos sin
(
t
为参数)其中方向向量为
(c
os
,
sin
)
,
t 的几何意义为| PPo
| ;斜
率为 tan ;倾斜角为 (0 ) 。
产实际中有许多问题都可以归结为线性规划问题。
注意:①当 B 0 时,将直线 Ax By 0 向上平移,则 z Ax By 的值越来越大; 直线 Ax By 0 向下平移,则 z Ax By 的值越来越小;
②当 B 0 时,将直线 Ax By 0 向上平移,则 z Ax By 的值越来越小; 直线 Ax By 0 向下平移,则 z Ax By 的值越来越大;
高三数学 直线中的最值问题及简单的线性规划 知识精讲 通用版

高三数学直线中的最值问题及简单的线性规划 知识精讲 通用版【本讲主要内容】直线中的最值问题及简单的线性规划二元一次不等式(组)表示平面区域、线性规划的意义及应用。
【知识掌握】 【知识点精析】1. 二元一次不等式表示的平面区域:(1)在平面直角坐标系中,已知直线0Ax By C ++=,坐标平面内的点()00,P x y 。
①若0,000>++>C By Ax B ,则点()00,P x y 在直线的上方; ②若0,000<++>C By Ax B ,则点()00,P x y 在直线的下方。
(2)对于任意的二元一次不等式)0(0<>++或C By Ax ,无论B 为正值还是负值,我们都可以把y 项的系数变形为正数。
当B>0时,①Ax+By+C>0表示直线0Ax By C ++=上方的区域; ②Ax+By+C<0表示直线0Ax By C ++=下方的区域。
(3)判断二元一次不等式表示的平面区域的方法:①点定域法:画二元一次不等式表示的平面区域常采用直线定界,点定域(原点不在边界上时,用原点定域最简单);不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。
例如:画不等式x-2y+4>0表示的平面区域时,可先画直线240x y -+=(虚线),取原点()00,代入原不等式成立,所以不等式x-2y+4>0表示的区域如图所示。
②符号判断法:当B>0时,Ax+By+C>0表示直线0Ax By C ++=上方的区域,Ax+By+C<0表示直线0Ax By C ++=下方的区域;一般的若B<0时,可先把y 项系数变为正数再判断。
例如:3x-2y+6>0表示直线3260x y -+=下方区域;-3x+y+3<0表示直线330x y --=下方区域。
2. 线性规划:(1)有关概念:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n 项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学教学内容:简单的线性规划曲线和方程【基础知识精讲】1.知识的学习应遵循人类的认识规律和知识本身的渐近性;逻辑性.因此;建议同学们在学习本节时;应复习二元一次方程和平面直角坐标系中的直线的一种对应关系;在此基础上结合课本内容;理解二元一次不等式的解集在平面直角坐标系中对应的点(x;y)表示的区域.2.用二元一次不等式表示平面区域的主要应用;就是线性规划;线性规划问题主要解决的是在生产实际中的资源配置和降低资源消耗等方面的问题.因此;建议同学们在研究线性规划问题时;首先应掌握线性规划的理论方法;其次应培养自己建立数学模型的能力;在解决与线性规划有关的实际问题时;能抽象出数学本质;解决实际问题.3.教材开设简单的线性规划课程;是现代社会发展的需要;是纯理论性研究数学向应用数学知识解决实际问题发展的社会需要.所涉及的知识主要是平面线性区域的确定;建议同学们在学习本节时;要培养善于从实际问题抽象出数学模型的能力.平面区域二元一次不等式Ax+By+C≥0(A>0;B>0)Ax+By+C≤0(A>0;B>0)Ax+By+C≥0(A>0;B<0)Ax+By+C≤0(A>0;B<0=说明对于二元一次不等式不带等号时;其表示的平面区域;应把边界直线画成虚线5.处理简单的线性规划的实际问题;关键之处在于从题意中建立目标函数;和相应的约束条件;实际上就是建立数学模型.这样解题时;将所有的约束条件罗列出来;弄清目标函数与约束条件的区别;得到目标函数的最优解;以理论指导实际生产需要.6.线性规划的理论和方法主要在两类问题中得到应用;一是在人力、物力、资金等资源一定的条件下;如何使用它们来完成最多的任务;二是给定一项任务;如何合理安排和规划;能以最少的人力、物力、资金等资源来完成该项任务.常见类型有:(1)物资调运问题例如已知A1、A2两煤矿每年的产量;煤需经B1、B2两个车站运往外地;B1、B2两车站的运输能力是有限的;且已知A1、A2两煤矿运往B1、B2两上车站的运输价格;煤矿应怎样编制调运方案;能使总运费最少?(2)产品安排问题例如某工厂生产甲、乙两产品;每生产一个单位的甲种或乙种产品所需A、B、C三种材料的数量、此厂每月所能提供的三种材料的限额、每生产一个单位甲种或乙种产品所获利润额都是已知的;这个厂每月应如何安排产品的生产;才能每月获得的总利润最大?(3)下料问题例如要把一批长钢管截成两种规格的短钢管;怎样下料能使损耗最小?本节学习要求:(1)画二元一次不等式表示平面区域是本节的重点;在学习思路上;应抓住“以线定界、以点(原点)定域”的思想;以Ax+By+C ≥0(A >0;B >0)为例.“以线定界”;即画二元一次方程Ax+By+c=0表示的直线定边界;其中;还要注意实线、虚线的画法.“以点定域”;由于对在直线Ax+By+C=0同侧的点;实数Ax+By+C 的值的符号都相同;故为了确定Ax+By+C 的值的符号;可采用取特殊点法;如取原点等.(2)在线性规划的实际应用中;由二元一次不等式组构成了约束条件;确定线性约束条件的可行域的方法;与由二元一次不等式表示平面区域方法相同;即由不等式组表示这些平面区域的公共区域.(3)线性规划研究的是线性目标函数在线性约束条件下取最大值或最小值问题.在线性规划的实际应用中;建立数学模型是解决问题的关键.一般地;线性规划的数学模型是:⎪⎪⎩⎪⎪⎨⎧=+++≤+++≤+++nm nm 22n 11n 1m m 22221211m m 1212111b x a x a x a b x a x a x a b x a x a x a (这里“≤”也可以是“≥”或“=”;以下同) 其中a ij (i=1;2;…;n ;j=1;2;…;m);b i (i=1;2;…;n)都是常量;x j (j=1;2;…;m)是非负变量;求Z=c 1x 1+c 2x 2+…+c m x m的最大值或最小值;这里C j (j=1;2;…;m)是常量 教科书讨论的是m=1;2的两个变量;即直角坐标系里的x ;y 两个变量的线性规划问题;这类问题常用图解法来求最优.涉及更多变量的线性规划问题不能用图解法求解.(4)建立线性规划问题的数学模型一般按以下步骤: ①明确问题中有待确定的未知量;并用数学符号表示②明确问题中所有的限制条件(约束条件);并用线性方程或线性不等式表示 ③明确目标函数;按问题的不同;求其最大值或最小值.培养学生研究、探索问题的积极态度;并运用所学知识解决实际问题的能力.线性规划问题;是运筹学中基础内容.线性规划的应用;主要有运输问题;生产组织问题;分配问题;合理下料等;此外;在经济领域中的布局问题、计划问题等;它们的数学家模型都是线性函数;因此;仍为线性规划问题.【重点难点解析】1.理解用二元一次不等式表示平面区域和线性规划的概念.2.掌握用二元一次不等式表示平面区域和应用线性规划的方法解决简单的实际问题的能力.3.掌握用线性规划的理论知识解决实际问题的能力.例1 某企业生产A 、B 两种产品;A 产品的单位利润为60元;B 产品的单位利润为80元;两种产品都需要在加工车间和装配车间进行生产;每件A 产品在加工车间和装配车间各需经过0.8h 和2.4h ;每件B 产品在两个车间都需经过1.6h ;在一定时期中;加工车间最大加工时间为240h ;装配车间最大生产时间为288h.已知销路没有问题;在此一定时期中应如何搭配生产A 产品和B 产品;企业可获得最大利润?分析 根据条件;首先应挖掘实际问题的数学本质;为此;我们通过列框图比较各因素间的关系;寻找解题的突破口.产品 单位利润 加工车间 装配车间(最大加工量240h) (最大装配量288h)A(x) 60 B(y) 80z=60x+80y 为线性目标函数.先由线性约束条件确定可行域;然后在可行域内求出目标函数的最优解.最大利润12600元.例2 设实数x 、y 满足不等式组(1)求点(x ;y)所在的平面区域(2)设a >-1;在(1)所求的区域内;求函数f(x ;y)=y-ax 的最大值和最小值.分析 必须使学生明确;求点(x ;y)所在的平面区域;关键是确定区域的边界线.可以去掉绝对值符号入手.解:(1)已知的不等式组等价于⎪⎩⎪⎨⎧≥--≥+≤+≤03232241x x y y x 或⎪⎩⎪⎨⎧<--≥+≤+≤03223241x x y y x解得点(x ;y)所在平面区域为如图1所示的阴影部分(含边界).其中AB :y=2x-5;BC:x+y=4;CD:y=-2x+1;DA:x+y=1.图1(2)f(x ;y)表示直线l :y-ax=k 在y 轴上的截距;且直线l 与(1)中所求区域有公共点. ∵a >-1.∴当直线l 过顶点C 时;f(x ;y)最大. ∵C 点的坐标为(-3;7); ∴f(x ;y)的最大值为7+3a.如果-1<a ≤2;那么当直线l 过顶点A(2;-1)时;f(x ;y)最小;最小值为-1-2a. 如果a >2;那么当直线l 过顶点B(3;1)时;f(x ;y)最小;最小值为1-3a.说明:由于直线l 的斜率为参数a ;所以在求截距k 的最值时;要注意对参数a 进行讨论;方法是让直线l 动起来.例3 某工厂要安排一种产品生产;该产品有Ⅰ、Ⅱ、Ⅲ三种型号;生产这种产品需要两种主要资源:原材料和劳动力;每件产品所需资源数量以及每件产品出售价格如下表所示:型号货源ⅠⅡⅢ原材料(公斤/件)劳动力(小时/件)价格(元/件)424345655分析每天可利用的原材料为120公斤;劳动力为100小时;假定该产品只要生产出来即可销售出去;试确定三种型号产品的日产量;使总产值最大.建立数学模型:(1)用x1、x2、x3分别表示Ⅰ、Ⅱ、Ⅲ种型号的日产量.(2)明确约束条件:⎪⎩⎪⎨⎧≥≥≥≤++≤++,0,0100542120634321321321xxxxxxxxx(3)明确目标函数:Z=4x1+5x2+3x3这样;这个资源利用问题的数学模型为求x1;x2;x3的值;使Z=4x1+5x2+3x3为最大;且满足约束条件.例4某机械厂的车工分Ⅰ、Ⅱ两个等级;各级车工每人每天加工能力;成品合格率及级别加工能力(个/人天) 成品合格率(%) 工资(元/天)Ⅰ240 97Ⅱ160工厂要求每天至少加工配件2400个;车工每出一个废品;工厂要损失2元;现有Ⅰ级车工8人;Ⅱ级车工12人;且工厂要求至少安排6名Ⅱ级车工;试问如何安排工作;使工厂每天支出的费用最少.解析:Ⅰ、Ⅱ级车工分别为x;y人.线性约束条件:目标函数:Z=[(1-97%)·240x+(1-95.5%)·160y]×和 Z=20x+18y.根据题意知即求目标函数Z的最小值.画出线性约束条件的平面区域如图2中阴影部分所示.据图(2)知、点A(6;6.3)应为既满足题意;又使目标函数最小.然而A点非整数点.故在点A上侧作平行直线经过可行域内的整点;且与原点最近距离;可知(6;7)为满足题意的整数解.图2此时Z min =20×6+18×7=246(元).即每天安排Ⅰ级车工6人;Ⅱ级车工7人时;工厂每天支出费用最少.例5 某钢厂两个炼钢炉同时各用一种方法炼钢;第一种方法;每炉用10小时;第二种方法用12小时.(这里包括清炉时间)假定这两种炼法每炉出钢都是5600公斤;而炼一公斤钢的平均燃料费:第一种方法为50元;第二种方法为70元;若要求在72小时内炼钢量不少于36720公斤;问应该怎样分配两种炼法的任务;才使燃料费最少?解:设第一种方法炼x 炉;第二种方法炼y 种;得目标函数z=5600(50x+70y)线性约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤≤≥+0,0x 7212y 7210x 36720y)5600(x y据图解法可得整点解(6;1).即第一种方法炼6炉;第二种方法炼1炉时;燃料费最省.例6 某工厂要制造A 种电子装置45台;B 电子装置55台;为了给每台装配一个外壳;要从两种不同的薄钢板上截取;已知甲种薄钢板每张面积为2平方米;可作A 的外壳3个和B 的外壳5个;乙种薄钢板每张面积3平方米;可作A 和B 的外壳各6个;用这两种薄钢板各多少张;才能使总的用料面积最小?解:设需甲、乙两种钢板分别为x 、y 张;得目标函数Z=2x+3y ;即求Z 的最小值.据图解法易得最优整点解(5;5);即目标函数Z 的最小值为25.即需甲、乙钢板各5张.【难题巧解点拨】例 私人办学是教育发展的方向;某人准备投资1200万元兴办一所完全中学;为了考虑社会效益和经济效益;对该地区教育市场进行调查;得出一组数据列表(以班级为单位):班级学生数 配备教师数 硬件建设 (万元) 教师年薪 (万元)初中 50 28 高中4058根据物价部门的有关文件;初中是义务教育阶段;收费标准适当控制;预计除书本费、办公费以外每生每年可收取600元;高中每生每年可收取1500元.因生源和环境等条件限制;办学规模以20至30个班为宜;教师实行聘任制.初、高中的教育周期均为三年;请你合理地安排招生计划;使年利润最大;大约经过多少年可以收回全部投资?解:设初中编制为x 个班;高中编制为y 个班;则(x>0;y>0;x ;y ∈Z)记年利润为S ;那么S =3x+6y-2.4x-4y ;即 S =0.6x+2y. 如下图所示;作出①;②表示的平面区域;问题转化为在图中阴影部分求直线0.6x+2y-S =0截距的最大值;过点A 作0.6x+2y =0的平行线即可求出S 的最大值.联立⇒⎩⎨⎧=+=+12005828,30y x y x A 的坐标为(18;12).将x =18;y =12代入③;得S max =34.8. 设经过n 年可收回投资;则 11.6+23.2+34.8(n-2)=1200; 所以 n =33.5.【课本难题解答】Ⅰ2.(2)答:当x =5;y =1时;z min =60; (3)答:当x =6;y =9时;z max =195; Ⅱ教材第64页;练习题第2题解:设每天应配制甲种饮料x 杯;乙种饮料y 杯;咖啡馆每天获利z =0.7x+1.2y(元)x 、y 满足约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+0030001032000543600479y x y x y x y x最优解为(200;240) (图略)【命题趋势分析】掌握二元一次不等式表示的平面区域;理解线性规划的意义和线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念;掌握线性规划问题的图解法;并能应用线怀规划的方法解决一些简单的实际问题.【典型热点考题】例1 在直角坐标平面上;求满足不等式组⎪⎩⎪⎨⎧≤+≥≤100,3,3y x x y x y 的整点的个数.导析 数字较大;不易逐一清点;关键是引导学生找出规律;分别令y=0;1;2;……;找出这些线上的整点数;然后把它们相加即可;如图2.解:两条坐标轴及直线x+y=100所围成区域(含边界)上的整点共有 1+2+3+…+101=2102101⨯=5151(个). 而直线y=31x ;x+y=100及x 轴所围区域(边界不包括直线y=31x)上的整点共有: (1+1+1+1)+(2+2+2+2)+…+(25+25+25+25)=4(1+2+…+25)=1300(个)由对称性知;直线y=3x ;x+y=100及y 轴所围区域(边界不包括直线y=3x)上的整点也有1300个.故满足题条件的整点共有 5151-2×1300=2551(个)说明:先求正方形区域上的整点数;有(100+1)2=10201(个);则半个正方形区域(含对角线)上的整点有210110201-+101=5151(个).又直线x+y=100和y=31x 的交点为B(75;25).令y=1;有101-1=100个(不含OB 上的点);令y=1;则直线y=1与y=31x 、x+y=100的交点横坐标分别为3和99;所以3<x ≤99;有96个点;y=2时;6<x ≤98;有92个点;…;y=24时;72<x ≤76;有4个点.故直线y=31x 、x+y=100及y=0所围成的区域内共有2)4100(25+△AOB 内(含边界)共有5151-2×1300=2551个整点.例2 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘;根据需要;软件至少买3片;磁盘至少买2盒;则不同的选购方式有( )A.5种B.6种C.7种 解:选C.设买单片软件x 片;盒装磁盘y 盒;则⎪⎩⎪⎨⎧≥≥≤+,2,3,5007060y x y x ⇒⎪⎩⎪⎨⎧≥≥≤+,2,3(*),5076y x y x ⇒⎪⎩⎪⎨⎧≤≤≤≤.7322,63y x因为x ;y 均为整数;所以x =3;4;5;6;y =2;3;4.这样(x ;y)共有12个;结合条件;肯定有些不合题意;经代入不等式(*)检验知;只有7个(x ;y)正确.说明:本题具有浓厚的时代气息;要求考生思路清晰;有良好的数学应用意识;主要考查分类讨论思想以及分析问题、解决问题的能力.例3 对平面区域D ;用N(D)表示属于D 的所有整点的个数;若A 表示由曲线y=x 2(x ≥0)和两直线x=10;y=1所围成的区域(包括边界);B 表示曲线y=x 2(x ≥0)和两直线x=1;y=100所围成的区域(包括边界).试求N(A ∪B)+N(A ∩B)的值.导析 先画出示意图(如图);其中A 表示由曲线y=x 2(x ≥0)和两直线x=10;y=1所围成的区域(包括边界);B 表示由曲线y=x 2(x ≥0)和两直线x=1;y=100所围成的区域;由于102∪B 所围成的区域恰好为矩形PQRS ;其中PQ=99;QR=9;且点Q 、S 均在曲线y=x 2(x ≥0)上.因此;有N(A ∪B)=(99+1)×(9+1)=1000又A ∩B 形成的区域为抛物线弧段SQ ;它上面的整点个数为N(A ∩B)=9+1=10 ∴ N(A ∪B)+N(A ∩B)=1000+10=1010.【同步达纲练习】A 级一、选择题1.已知点(3;1)和(-4;6)在直线3x-2y+a=0的两侧;则a 的取值范围是( ) A.a <-1或a >24 B.a=7或a=24 C.-7<a <24 D.-24<a <7⎪⎩⎪⎨⎧≥+≤≤222y x y x 则目标函数Z=x+2y 的取值范围是( ) A.[2;6] B.(2;5) C.(3;6) D.(3;5)3.满足|x |+|y |≤4的整点(横纵坐标均为整数)的点(x ;y)的个数是( )二、填空题4.点P(a ;4)到直线x-2y+2=0的距离等于25且在不等式3x+y-3>0表示的平面区域内;则点P 的坐标为 .5.在直角坐标平面上;满足不等式组⎪⎩⎪⎨⎧≥-+-≤+--+332046422y x y x y x 面积是 .三、解答题6.求Z=8x+9y 的最大值;使式中的x ;y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥6325400y x y x y x7.有一批钢管;长度都是4000mm ;要截成500mm 和600mm 两种毛坯;且这两种毛坯数量比大于31配套;怎样截得合理.AA 级一、选择题1.不等式x-2y+6>0表示的平面区域在直线x-2y+6=0的( )⎪⎩⎪⎨⎧≥+-≥+≤0203y x y x x 表示的平面区域的面积等于( ) A.28B.16C.4393.在直角坐标平面上;由不等式组⎪⎪⎩⎪⎪⎨⎧<<--<-+>-0015530632032y y x y x y x 所确定的平面区域内;整点有( )A.3个B.4个C.5个二、填空题1.变量x ;y 满足条件⎪⎩⎪⎨⎧≥≤-+≤+-102553034x y x y x 设Z=x y ;则Z min = ;Z max = .2.已知集合A={(x ;y)||x |+|y |≤1};B={(x ;y)|(y-x)(y+x)≤0};m=A ∩B ;则m 的面积为 .三、解答题x (log x y 2)>0的点(x ;y)表示的平面区域.2.试求三边长均为整数;且最大边长为11的三角形的个数.3.某工厂库存A 、B 、C 三种原料;可用来生产Z ;Y 两种产品;市场调查显示可获利润问:若市场调查情况如(Ⅰ);怎样安排生产能获得最大利润?若市场调查情况如(Ⅱ);怎样安排生产能获得最大利润?【素质优化训练】1.设m 为平面内以A(4;1);B(-1;-6);C(-3;2)三点为顶点的三角形区域内(包括边界);当点(x ;y)在区域m 上变动时;4x-3y 的最小值是 .2.设P(x ;y)是区域|x |+|y |≤1内的动点;则函数f(x ;y)=ax+y(a >0)的最大值是 .3.已知函数f(x)=x 2-6x+5;问满足⎩⎨⎧≥-≤+0)()(0)()(y f x f y f x f 的点(x ;y)在平面上的什么范围?并作图.4.某工厂生产A 、B 两种产品;已知制造A 产品1kg 要用煤9t ;电力4kw ;劳力(按工作日计算)3个;制造B 产品1kg 要用煤4t ;电力5kw ;劳力10个;又知制成A 产品1kg 可获利7万元;制成B 产品1kg 可获利12万元;现在此工厂由于受某种条件限制;只有煤360t ;电力200kw ;劳力300个;在这种条件下应生产A 、B 产品各多少kg 能获得最大经济效益?参考答案:【同步达纲练习】A 级π-18 区域为圆面(x-2)2+(y-3)2max =599 7.截500mm 钢管6节和600mm 钢管1节最合理.AA 级min =0 Z max三、1.区域如图中阴影部分(不包括边界) 2.36个;设三角形另两边长为x ;y ;问题转化为求由x ≥1;y ≤11;及x+y >11所围成区域内整点的个数.3.在(Ⅰ)种情况下获得最大利润为238000元;在第(Ⅱ)种情况下获得最大利润为479000元.【素质优化训练】1.最小值为-18.2.当0<a ≤1时;最大值为1;当a >1时;最大值为a.3.满足条件的点(x ;y)在图中的扇形PAB 和扇形PCD 内(包括边界);其中P 点的坐标为(3;3)4.生产A 、B 产品分别为20kg 和24kg 时;获得最大效益为420万元.。