常见信号拉氏变换
常用的拉氏变换表

常用的拉氏变换表在工程技术和科学研究中,拉氏变换是一种非常重要的数学工具。
它能够将时域中的函数转换为复频域中的函数,从而使得许多问题的分析和求解变得更加简便。
而要熟练运用拉氏变换,掌握常用的拉氏变换表是必不可少的。
拉氏变换的定义为:对于一个定义在0, +∞)上的实值函数 f(t),其拉氏变换 F(s)定义为:\F(s) =\int_{0}^{\infty} f(t) e^{st} dt\其中,s =σ +jω 是一个复变量。
下面我们来介绍一些常用的函数的拉氏变换:1、单位阶跃函数 u(t)单位阶跃函数在 t < 0 时,函数值为 0;在t ≥ 0 时,函数值为 1。
其拉氏变换为:\Lu(t) =\frac{1}{s}\2、单位脉冲函数δ(t)单位脉冲函数在 t = 0 时,函数值为无穷大,且在整个时间轴上的积分值为 1。
其拉氏变换为:\Lδ(t) = 1\3、指数函数 e^(at) (a 为常数)其拉氏变换为:\Le^{at} =\frac{1}{s + a}\4、正弦函数sin(ωt)其拉氏变换为:\Lsin(ωt) =\frac{\omega}{s^2 +\omega^2}\5、余弦函数cos(ωt)其拉氏变换为:\Lcos(ωt) =\frac{s}{s^2 +\omega^2}\6、 t 的幂函数 t^n (n 为正整数)其拉氏变换为:\Lt^n =\frac{n!}{s^{n + 1}}\7、斜坡函数 t其拉氏变换为:\Lt =\frac{1}{s^2}\8、二次斜坡函数 t^2其拉氏变换为:\Lt^2 =\frac{2!}{s^3} =\frac{2}{s^3}\掌握这些常用函数的拉氏变换,可以帮助我们在解决各种问题时快速进行变换和求解。
例如,在电路分析中,通过拉氏变换可以将时域中的电路方程转换为复频域中的方程,从而更方便地求解电路的响应。
在控制系统中,拉氏变换也有着广泛的应用。
通过对系统的输入和输出进行拉氏变换,可以得到系统的传递函数,从而对系统的性能进行分析和设计。
常见信号拉氏变换

常见信号拉氏变换1. 介绍拉氏变换是一种在信号处理领域中常用的数学工具,它能够将时域中的信号转换为复频域中的函数。
拉氏变换可以帮助我们更好地理解和分析各种常见信号的特性和行为。
本文将介绍常见信号的拉氏变换,并详细讨论每个信号类型的特点和拉氏变换公式。
我们将涵盖常见的连续时间信号和离散时间信号,以及它们在频域中的表示。
2. 连续时间信号2.1 常值信号常值信号是指在整个时间范围内保持恒定数值的信号。
它在时域中表示为:x(t)=A其中,A是常数。
对于常值信号,其拉氏变换为:X(s)=A s2.2 单位阶跃函数单位阶跃函数是一种在t=0时从零跳跃到单位幅度的函数。
它在时域中表示为:x(t)=u(t)其中,u(t)是单位阶跃函数。
单位阶跃函数的拉氏变换为:X(s)=1 s2.3 单位冲激函数单位冲激函数是一种在t=0时瞬时达到无穷大幅度的函数。
它在时域中表示为:x(t)=δ(t)其中,δ(t)是单位冲激函数。
单位冲激函数的拉氏变换为:X(s)=12.4 指数衰减信号指数衰减信号是一种随时间指数衰减的信号。
它在时域中表示为:x(t)=e−at其中,a是正常数。
指数衰减信号的拉氏变换为:X(s)=1 s+a2.5 正弦信号正弦信号是一种周期性的连续时间信号。
它在时域中表示为:x(t)=Asin(ωt+ϕ)其中,A是振幅,ω是角频率,ϕ是相位差。
正弦信号的拉氏变换为:X(s)=ω(s2+ω2)3. 离散时间信号3.1 单位取样序列单位取样序列是一种在离散时间点上取值为1的序列。
它在时域中表示为:x[n]=δ[n]其中,δ[n]是单位冲激函数。
单位取样序列的拉氏变换为:X(z)=13.2 指数衰减序列指数衰减序列是一种随时间指数衰减的离散时间信号。
它在时域中表示为:x[n]=a n u[n]其中,a是正常数,u[n]是单位阶跃函数。
指数衰减序列的拉氏变换为:X(z)=11−az−13.3 正弦序列正弦序列是一种周期性的离散时间信号。
拉氏变换基本性质

F(s) F1(s) 1 esT 0
例:周期信号的拉氏变换
LT
f1(t) F1(s)
第一周期的拉氏变换
LT
利用时移特性
f1(t nT ) esnT F1(s)
LT
f (t nT ) F1(s) eSnT
n0
n0
1
F1(s) eST
利用无穷递减等比 级数求和 s a1
1- q
例1:求全波整流周期信号的拉氏变换
设f (t) sint
sin 0t u(t)
t 0
sin0t u(t t0)
t 0 t0
sin0(t t0) u(t)
0 t0
t
sin0(t t0)u(t t0)
t 0 t0
3.时移特性的应用p250.4-2 (1)
sin t 0 t T
1. f (t)
2
0 t为其它值时
解: f (t) sin t[u(t) u(t T )] 2
s 0 dt
s
f (0) f (0 ) f (0 ) lim sF(s) s
再假定f(t)在原点有跃变,则f(t)的导数可写成
df df1 [ f (0 ) f (0 )](t) dt dt
t0
其中f 1(t)在t=0连续,于是
lim df (t) est dt lim df1 est dt
采用 0 系统还是采用 0 系统,所求得的初值
总是 f (0 )
b.若F(s)是有理代数式,则F(s)必须是真分式 即F(s)分子的阶次应低于分母的阶次,若不是 真分式,则应用长除法,使F(s)中出现真分式,而 初值f (0) 等于真分式F0(s) 逆变换f 0(t) . c.物理解释:s ( j ) 相当于接入信
拉氏变换常用公式

拉氏变换常用公式拉普拉斯变换是一种重要的数学工具,用于求解线性常系数常微分方程和线性差分方程。
在控制工程、信号与系统、电路分析等领域中,拉普拉斯变换被广泛应用。
下面是拉普拉斯变换中一些常用的公式:1.输入信号:f(t)的拉普拉斯变换:F(s) = L[f(t)] = ∫[0,∞] (e^(-st))(f(t)) dt2.单位阶跃函数u(t)的拉普拉斯变换:U(s)=L[u(t)]=1/s3.延时函数f(t-T)的拉普拉斯变换:L[f(t-T)]=e^(-Ts)F(s)4.积分操作的拉普拉斯变换:L[∫[0,t]f(τ)dτ]=1/sF(s)5.导数操作的拉普拉斯变换:L[dⁿf(t) / dtⁿ] = sⁿF(s) - sⁿ⁻¹f(0) - sⁿ⁻²f'(0) - ... - f⁽ⁿ⁻¹⁾(0)6.二阶导数操作的拉普拉斯变换:L[d²f(t) / dt²] = s²F(s) - sf(0) - f'(0)7.卷积操作的拉普拉斯变换:L[f(t)*g(t)]=F(s)G(s)8.乘法操作的拉普拉斯变换:L[f(t)g(t)]=F(s)*G(s)9.常用单位阶跃函数和冲激函数的拉普拉斯变换:(1)f(t)=u(t)的拉普拉斯变换:F(s)=L[u(t)]=1/s(2)f(t)=t^nu(t)的拉普拉斯变换:F(s)=L[t^nu(t)]=n!/s^(n+1)(3) f(t) = e^(at) u(t)的拉普拉斯变换:F(s) = L[e^(at) u(t)] = 1 / (s - a)(4) f(t) = sin(ωt) u(t)的拉普拉斯变换:F(s) = L[sin(ωt) u(t)] = ω / (s² + ω²) (5) f(t) = cos(ωt) u(t)的拉普拉斯变换:F(s) = L[cos(ωt) u(t)] = s / (s² + ω²) (6)f(t)=δ(t)的拉普拉斯变换:F(s)=L[δ(t)]=1(7) f(t) = e^(at) δ(t)的拉普拉斯变换:F(s) = L[e^(at) δ(t)] = 1 / (s - a)(8) f(t) = sin(ωt) δ(t)的拉普拉斯变换:F(s) = L[sin(ωt) δ(t)] = ω / (s² + ω²)(9) f(t) = cos(ωt) δ(t)的拉普拉斯变换:F(s) = L[cos(ωt) δ(t)] = s / (s² + ω²)拉普拉斯变换的公式非常有用,可以将时域问题转化为复频域问题,从而更容易进行分析和求解。
拉普拉斯变换

解: Q lim f (t) lim sF(s)
t 0
s
f 0 lim sF (s) s lim s s s a lim 1 s 1 a s 1
f (0)
❖ 6、终值定理
若
f t F s
则
lim f (t) lim sF (s)
t
s0
2.3 拉氏反变换
一、定义:
将象函数 F(s) 变换到与其对应的原函数 f (t)
1 2
Rt
2
t0
0
t
上式中R为常数, 表示抛物线函数信号的幅值。
R(s)
Lr(t)
R S3
4、其他常见函数
L[sin t]
s2
2
L[cos t ]
s2
s
2
L[eat ] 1 sa
L[ (t)] 1
2.2 拉氏变换的运算定理
❖ 1、线形定理(叠加+比例)
若
f1 t F1 s f2 t F2 s
0 1
t 0 t 0
F (s) L[ (t)] 1
s
1 1 s
阶跃信号
0 t 0
r(t)
r(t) R t 0
R 0
t
上式中R为常数, 表示阶跃函数信号的幅值。
阶跃函数的拉氏变换为
R(s) L[r(t)] L[R] R s
2、单位斜坡函数
0 t 0 f (t) t t 0
F (s)
s2 3s 5 A1 (s 2)(s 3) 1.5
s 1
1.5 3 2.5 s 1 s 2 s 3
A2
s2 3s 5 (s 1)(s 3)
3
s 2
故原函数为
拉氏变换

拉普拉斯变换拉普拉斯变换简称拉氏变换。
它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。
并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。
因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。
在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。
本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。
最后,介绍用拉氏变换解微分方程的方法。
在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。
2.1拉氏变换2.1.1拉氏变换的定义若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作[()]f t L 或)(s F ,并定义为:[()]()()e dL stf t F s f t t +∞-==⎰(2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。
原函数是实变量t 的函数,象函数是复变量s 的函数。
所以拉氏变换是将原来的实变量函数()f t 转化为复变量函数()F s 的一种积分运算。
在本书中,将用大写字母表示相对应的小写字母所代表的函数的拉氏变换。
必e 1[1()]1e d L st stt t ss+∞-+∞-=⋅=-=⎰(2.2) 在自动控制系统中,单位阶跃函数相当于一个实加作用信号,如开关的闭合(或断开),加(减)负载等。
⑵单位脉冲函数单位脉冲函数如图2.2所示。
其定义为()0t t t δ∞=⎧=⎨≠⎩ 同时,()d 1t t δ+∞=⎰,即脉冲面积为1。
而且有如下特性:()()d (0)t f t t f δ+∞-∞⋅=⎰(0)f 为()f t 在0t =时刻的函数值。
拉氏变换及应用

§2-3拉普拉斯变换及其应用时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。
例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。
一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。
有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习一些基本时域信号拉氏变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49)且(2-50)所以(2-51)说明:单位脉冲函数可以通过极限方法得到。
设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。
当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。
由单位脉冲函数的定义可知,其面积积分的上下限是从到的。
因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。
由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。
所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为(2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为(2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58)拉氏变换为(2-59)(5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。
信号与系统第6章拉氏变换

t
L[
f ( )d ] F(s) f 1(0)
s
s
其中:
f (1) (0)
0
f ( )d ,为常数
4、延时(时域平移)
若: L[ f (t)] F(s) ,则
L[ f (t t0)u(t t0)] est0 F(s)
5、S域平移
若: L[ f (t)] F(s) ,则
L[ f (t)eat] F(s a)
]/
ds
显然
K12
d[(s
p1)k ds
F (s)]
s p1
继续微分:
K13
1 2
d
2[(s
p1)k ds2
F (s)]
s p1
一般形式:
K1i
(i
1 1)!
d i1[(s
p1)k dsi1
F (s)]
i 1,2,,k
s p1
举例:
F (s)
s2 s(s 1)3
F(s)
K11 (s 1)3
K12 (s 1)2
如果A(s) 的阶次高于B(s) ,可以先用长除法,后用上面
的方法:
举例:
F
(s)
s3 (s
5s2 1)(s
9s 2)
7
则展开后应有:
F
(s)
s
2
(s
s3 1)(s
2)
F(s) s 2 2 1 s 1 s 2
f (t) ' (t) 2 (t) 2et e2t t 0
E(s) D(s)
为求 K1i ,上式两边同乘以(s p1)k
(s
p1)k
F
(s)
K11
K12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见信号拉氏变换
拉普拉斯变换是一种非常重要的数学工具,广泛应用在信号处理
和控制系统中。
在这篇文章中,我们将介绍一些常见的信号及其拉普
拉斯变换,并解释其在实际应用中的意义和作用。
首先,我们来了解一下拉普拉斯变换的基本概念。
拉普拉斯变换
是一种积分变换,它将一个时间域上的函数转变为一个复平面上的函数。
在连续时间系统中,拉普拉斯变换可以将微分和积分方程转化为
代数方程,从而简化系统的分析和求解。
在信号处理中,常见的信号类型包括连续时间信号和离散时间信号。
在连续时间信号中,最常见的信号包括单位阶跃函数、冲激函数
和正弦函数等。
单位阶跃函数在时间t=0时从0跳变到1,描述了系统的开关行为,其拉普拉斯变换可以表示为1/s,其中s是复频域变量。
冲激函数表示一个瞬时的脉冲信号,其拉普拉斯变换为1,即δ(t)的
拉普拉斯变换为1。
而正弦函数在时间域中以周期性振荡的形式出现,在频域中则表现为位于正负无穷处的脉冲,其拉普拉斯变换可以用
1/(s^2+w^2)来表示,其中w是正弦函数的频率。
在离散时间信号中,最常见的信号是单位样值函数和指数函数等。
单位样值函数表示在t=0时为1,其它时刻为0的序列,其拉普拉斯变换可以表示为1/(1-e^-s),其中s是离散频域变量。
指数函数在离散
时间序列中以指数增长或衰减的形式出现,其拉普拉斯变换可以用
1/(1-e^(-a*s))来表示,其中a是指数函数的增长或衰减系数。
拉普拉斯变换在实际应用中扮演着重要的角色。
在信号处理中,拉普拉斯变换可以帮助我们理解信号的频域特性,如频率响应和滤波器设计等。
在控制系统中,拉普拉斯变换可以将微分方程转换为代数方程,从而使系统的分析和设计更加简单和直观。
除了上述介绍的常见信号类型,还有许多其他类型的信号也可以通过拉普拉斯变换进行分析和处理。
例如,矩形波、三角波和高斯函数等都有其特殊的拉普拉斯变换表达式,它们在不同的应用中起到了重要的作用。
综上所述,拉普拉斯变换是一种非常强大的数学工具,用于信号处理和控制系统分析。
通过理解不同信号类型的拉普拉斯变换表达式以及其在实际应用中的意义,我们可以更好地理解和应用信号处理和控制系统的原理和方法。
因此,对于工程师和科学家来说,掌握拉普拉斯变换是非常重要的。