拉氏变换详解

合集下载

数学物理方法 拉氏变换

数学物理方法 拉氏变换

1 c j st (1)利用公式 f (t ) F (s)e ds c j 2 πj
(2)对简单形式的F(s)可以查拉氏变换表得原函数 (3)把F(s)分解为简单项的组合
F ( s ) F1 ( s ) F2 ( s ) Fn ( s )
f (t ) f1 (t ) f 2 (t ) f n (t )
K2 Kn ( s p1 ) F (s) K1 ( s p1 ) s p s p 2 n
令 s = p1 方法2
求极限的方法
N (s)(s pi ) K i lim s pi D(s)
返 回 上 页 下 页
N (s)(s pi ) K i lim s pi D(s)
2. 拉氏变换的定义
定义 [ 0 , ∞)区间函数 f(t)的拉普拉斯变换式:
简写 F (s) L f (t ) , f (t ) L F (s)
-1
F ( s ) f (t )e st dt 0 1 c j st F ( s ) e d s f (t ) c j 2 πj
s 1
3
d K 21 [( s 1) 2 F ( s )] s 1 d [ s 4 ] 4 s 1 ds ds s
f (t ) 4 4e 3te
t
t
返 回
上 页
下 页
小结 由F(s)求f(t) 的步骤: n =m 时将F(s)化成真分式和多项式之和 N 0 (s) F (s) A D(s)
(2) f (t ) δ ( t )的象函数
1 L[ (t )] s d (t ) 1 L (t ) L[ ] s 0 1 dt s 2 d f ( t ) ' 推广:L[ ] s[ sF ( s) f (0 )] f (0 ) 2 dt 2 ' s F ( s) sf (0 ) f (0 )

拉氏变换详细解读

拉氏变换详细解读
2
s+a
(二)、拉氏变换的主要定理 )、拉氏变换的主要定理 1.线性定理
L[ f1(t ) + f2 (t )] = L[ f1(t )] + L[ f2 (t )] = F1(s) + F2 (s)
L[kf (t )] = kL[ f (t )] = kF(s)
2.微分定理
df (t ) L = sF(s) − f (0+ ) dt
n −at
s 2 2 s +ω n! sn+1 n!
( s + a)
1
n+1
( s + a) ( s + b)
1 s ( s + a) ( s + b)
( s + a) ( s + b)
s
序号
−at
f(t)
F(s)
13
e sinωt e cosωt
− at
( s + a ) + ω2
2
ω
14
s + a ) + ω2 (
) 式中 f (−1) (0+ ) 为 ∫ f (t dt 在t时间坐标轴的右端 趋于零时的f 的值,相当于初始条件。 趋于零时的f(t)的值,相当于初始条件。
f (t )(dt )2 = 1 F(s) + 1 f (−1) (0+ ) + 1 f (−2) (0+ ) L ∫∫ s2 s2 s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0

常见信号拉氏变换

常见信号拉氏变换

常见信号拉氏变换1. 介绍拉氏变换是一种在信号处理领域中常用的数学工具,它能够将时域中的信号转换为复频域中的函数。

拉氏变换可以帮助我们更好地理解和分析各种常见信号的特性和行为。

本文将介绍常见信号的拉氏变换,并详细讨论每个信号类型的特点和拉氏变换公式。

我们将涵盖常见的连续时间信号和离散时间信号,以及它们在频域中的表示。

2. 连续时间信号2.1 常值信号常值信号是指在整个时间范围内保持恒定数值的信号。

它在时域中表示为:x(t)=A其中,A是常数。

对于常值信号,其拉氏变换为:X(s)=A s2.2 单位阶跃函数单位阶跃函数是一种在t=0时从零跳跃到单位幅度的函数。

它在时域中表示为:x(t)=u(t)其中,u(t)是单位阶跃函数。

单位阶跃函数的拉氏变换为:X(s)=1 s2.3 单位冲激函数单位冲激函数是一种在t=0时瞬时达到无穷大幅度的函数。

它在时域中表示为:x(t)=δ(t)其中,δ(t)是单位冲激函数。

单位冲激函数的拉氏变换为:X(s)=12.4 指数衰减信号指数衰减信号是一种随时间指数衰减的信号。

它在时域中表示为:x(t)=e−at其中,a是正常数。

指数衰减信号的拉氏变换为:X(s)=1 s+a2.5 正弦信号正弦信号是一种周期性的连续时间信号。

它在时域中表示为:x(t)=Asin(ωt+ϕ)其中,A是振幅,ω是角频率,ϕ是相位差。

正弦信号的拉氏变换为:X(s)=ω(s2+ω2)3. 离散时间信号3.1 单位取样序列单位取样序列是一种在离散时间点上取值为1的序列。

它在时域中表示为:x[n]=δ[n]其中,δ[n]是单位冲激函数。

单位取样序列的拉氏变换为:X(z)=13.2 指数衰减序列指数衰减序列是一种随时间指数衰减的离散时间信号。

它在时域中表示为:x[n]=a n u[n]其中,a是正常数,u[n]是单位阶跃函数。

指数衰减序列的拉氏变换为:X(z)=11−az−13.3 正弦序列正弦序列是一种周期性的离散时间信号。

第九章 拉氏变换.

第九章  拉氏变换.
s sa
例3 求正弦函数f(t)=sinkt(k为实数)的laplace变换
解: L[ f (t )] sinktestdt 0
1 (e jkt e jkt )e st dt 0 2j
1 2j
[ s
1 jk
s
1] jk
s2
k
k2
例4 求余弦函数f(t)=coskt(k为实数)的laplace变换
I
0
f (t)
est d s
s
d
t
0
f
(t )
1 est t
s
dt
f (t) es t
dt
L[
f (t) ]
0t
t
推论:
L
1 tn
f
t
s
dss
ds
s
F
sds
n次
例11 求函数 f(t) = sint / t 的拉氏变换
解:
由于 L(sint)
1 s2 1
则由象函数积分性质有
第九章 拉普拉斯变换
§9.1 拉普拉斯变换的概念
§9.2 拉氏变换的性质 §9.3 拉氏逆变换 §9.4 拉氏变换的应用
引言
Fourier变换的限制:
绝对可积
指数衰减函数et (>0)
在整个数轴上有定义
单位阶跃函数u(t)
演变为拉氏变换
L[ f (t)] F[ f (t) e t u(t)] f (t) e( jw)tdt 0
sint 1
L[ f (t)] L[
t
] s
s2
ds 1
=
arccots
即 sint estdt arc cot s 令s = 0得

电路分析中拉氏变换如何理解与计算

电路分析中拉氏变换如何理解与计算

电路分析中拉氏变换如何理解与计算拉氏变换是一种在电路分析中常用的数学工具,用于将微分方程转换为代数方程,从而简化电路分析的过程。

它基于拉氏变换的定义和拉氏变换的性质进行计算。

下面将详细介绍拉氏变换的概念、计算方法以及其在电路分析中的应用。

一、拉氏变换的概念与定义1.拉氏变换的定义拉氏变换是一种线性、时不变的积分变换,它将一个函数f(t)转换为复数域的函数F(s)。

拉氏变换定义如下:F(s) = L{f(t)} = ∫[e^(-st) * f(t)] dt其中,f(t)是定义在t≥0时间域上的函数,F(s)是定义在复平面上的函数,s=σ+jω是一个复数,σ和ω分别表示实部和虚部。

2.拉氏变换的性质拉氏变换具有一些重要的性质,这些性质是进行拉氏变换计算的基础。

以下是几个常用的性质:线性性质:对于常数a和b,以及函数f(t)和g(t),有L{a*f(t)+b*g(t)}=a*F(s)+b*G(s)。

时延性质:对于函数f(t)和其时延h(t)=f(t-τ),有L{h(t)}=e^(-sτ)*F(s)。

因果性质:对于定义在t≥0时间域上的函数f(t),如果f(t)=0当t<0,那么F(s)只在Re(s)>σ0的区域存在,其中σ0是f(t)中所有极点的实部的最大值。

二、拉氏变换的计算方法在实际计算中,为了将一个函数f(t)进行拉氏变换,通常需要先将其分解为更简单的函数的组合。

常用的计算方法有积分法、查表法和拉氏变换的性质。

1.积分法积分法是根据拉氏变换的定义进行计算,将函数 f(t) 乘以 e^(-st) 后积分。

这种方法适用于简单的函数,如指数函数、幂函数等。

2.查表法拉氏变换的常见函数对应关系可以通过查找拉氏变换表来获得。

在查表法中,将函数f(t)的拉氏变换直接从表格中找到。

这种方法适用于常见函数的变换计算,如单位阶跃函数、脉冲函数等。

3.拉氏变换的性质根据拉氏变换的性质,可以将一个复杂的函数分解成多个简单的函数,然后利用已知的变换对这些简单函数进行变换。

02第二章拉氏变换的数学方法

02第二章拉氏变换的数学方法

02第二章拉氏变换的数学方法拉氏变换是一种重要的数学工具,广泛应用于信号与系统、控制理论、电路分析、通信工程等领域。

本文将介绍拉氏变换的数学方法,包括拉氏变换的定义、性质和常见的拉氏变换对列表。

一、拉氏变换的定义拉氏变换是一种将时间域函数转换为频率域函数的数学工具。

对于一个连续时间函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt其中s是复变量,通常为一个复平面上的点。

拉氏变换可以将一个函数从时间域表示转换为频率域表示,提供了一种更便于分析和处理的数学工具。

二、拉氏变换的性质拉氏变换具有一些重要的性质,如线性性质、平移性质、尺度性质等。

下面简要介绍几个常用的性质:1.线性性质:如果f(t)和g(t)的拉氏变换分别为F(s)和G(s),那么对于任意常数a和b,有a*f(t)+b*g(t)的拉氏变换为a*F(s)+b*G(s)。

2. 平移性质:如果f(t)的拉氏变换为F(s),那么e^(-at)f(t)的拉氏变换为F(s+a)。

3. 尺度性质:如果f(t)的拉氏变换为F(s),那么f(at)的拉氏变换为(1/a)F(s/a)。

这些性质使得我们能够利用拉氏变换进行函数的变换和计算,简化了分析过程。

三、常见的拉氏变换对列表拉氏变换对列表是一些常见的函数及其在拉氏变换下的变换对。

常见的拉氏变换对列表如下:1.常数函数:L{1}=1/s2.单位阶跃函数:L{u(t)}=1/s3.单位冲激函数:L{δ(t)}=14. 指数函数:L{e^(at)} = 1/(s-a),其中a为实数5. 正弦函数:L{sin(ωt)} = ω/(s^2 + ω^2)6. 余弦函数:L{cos(ωt)} = s/(s^2 + ω^2)7. 方波函数:L{rect(t/T)} = (T/s) * sin(Ts/2)8. 指数衰减函数:L{e^(-at)u(t)} = 1/(s+a),其中a为正数这些变换对可以通过拉氏变换的定义进行推导得到,可以用于解决各种信号与系统的分析和计算问题。

8种常见的拉普拉斯变换,想搞不懂都难!

8种常见的拉普拉斯变换,想搞不懂都难!拉普拉斯变换(拉⽒变换)是⼀种解线性微分⽅程的简便运算⽅法,是分析研究线性动态系统的有⼒数学⼯具。

简单点说,我们可以使⽤它去解线性微分⽅程,⽽控制⼯程中的⼤多数动态系统可由线性微分⽅程去描述,因此拉⽒变换是控制⼯程领域必不可少的基础。

什么是拉⽒变换呢?⾸先,我们来看⼀下拉⽒变换的定义——设时间函数为f(t),t>0,则f(t)的拉普拉斯变换定义为:其中,f(t)称为原函数,F(s)称为象函数。

⼀个函数可以进⾏拉⽒变换的充要条件为:(1)在t<0时,f(t)=0;(2)在t≥0的任⼀有限区间内,f(t)是分段连续的;(3)当t→﹢∞时,f(t)的增长速度不超过某⼀指数函数,即:接下来为⼤家介绍⼏种常见的时间常数拉⽒变换,⼤家在看下⾯⼏种时间常数拉⽒变换的时候可将⼏个时间常数与这三个条件⼀⼀对应,有助于理解记忆。

1、单位脉冲函数单位脉冲函数数学表达式为:其对应的图像为:我们来看⼀个脉冲信号:从图中可看出,脉冲函数就像脉冲信号⼀样,在时间的⼀个微段dt内,信号强度快速增长,可达到⽆穷⼤,⽽单位脉冲函数指的是其微段dt与增长的⾼度的乘积为1,即h(dt)=1。

其拉⽒变换为:该函数有⼀个重要性质:f(t)为任意连续函数,当f(t)=e^(-st)时,该性质即可看为单位脉冲函数的拉⽒变换。

2、单位阶跃函数单位阶跃函数的数学表达式为:其函数图像为:其拉⽒变换为:3、单位斜坡函数单位斜坡函数的数学表达式为:函数图像为:其拉⽒变换为:其被积函数为幂函数与指数函数乘积,使⽤分部积分法求解(反对幂三指),这只是推到过程,我们使⽤的时候只需记住t的拉⽒变换为1/s^2即可。

4、单位加速度函数单位加速度函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程与单位斜坡函数的拉⽒变换求解过程相同,这⾥只需记住1/2T^2的拉⽒变换为1/s^3。

5、指数函数指数函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程为凑微分法。

信号与系统第6章拉氏变换

s 3 s 3 5s 2 9s 7 F ( s ) s 2 F ( s) (s 1)(s 2) (s 1)(s 2) 则展开后应有:
F ( s) s 2 2 1 s 1 s 2 f (t ) ' (t ) 2 (t ) 2e t e 2t
6.1 引言



19世纪末,英国工程师赫维赛德采用了一种算 子解决电子工程计算中的问题。但由于当时缺 乏数学证明遭到一些数学家的指责。 而另外一些人如卡尔逊、布罗姆维奇等坚信这 一方法的正确性。 后来,法国数学家拉普拉斯从数学上重新给予 该算法严格的数学定义和证明,称之为拉普拉 斯变换或拉氏变换
k 1
E (s)(s p1 ) k D(s)
上式两边对 s 求微分:
d [( s p1 ) k F ( s)] E ( s)(s p1 ) k k 2 K12 (k 1) K1k ( s p1 ) d [ ] / ds 有: ds D( s )
d[( s p1 ) k F (s)] 显然 K12 ds s p
1 d 2 F1 (s) , K13 2 ds2 s1 2
于是 F (s)
3 2 2 2 (s 1)3 (s 1) 2 s 1 s
于是
3 f (t ) t 2e t 2tet 2e t 2 t 0 2
6.6 双边拉氏变换
对信号 f ( t ) ,
K1 sF ( s) |s 0 100 / 3
, K 2 (s 1) F (s) |s 1 20 , K3 (s 3) F (s) |s 3 10 / 3
t 0
f (t ) 100 / 3 20e t 10 / 3e 3t

拉氏变换详细解读


φ = arctan
1− 1 1−ζ
2
ζ
e−ζωnt sin ωn 1 − ζ 2 t + φ 1−ζ 2
(
18
φ = arctan
2 ωn 2 s ( s2 + 2ζωn s + ωn )
ζ
根据表格直接写出结果
L [δ (t )] = 1, L e
− at
1 L [1(t )] = , s
ω s L [sin ωt ] = 2 , L [ cos ωt ] = 2 2 2 s +ω s +ω
e sinωt →
−at
1 = s+a,
1 L [t ] = 2 s 1 at L e = s−a
s + a ) + ω2 (
2
ω
e cosωt →
−at
s + a ) + ω2 (
3
2
5s3Y (s) + 6s2Y (s) + sY (s) + 2Y (s) = 4sX(s) + X(s) (5s3 + 6s2 + s + 2)Y (s) = (4s + 1) X(s)
Y (s) 4s + 1 = 3 X (s) 5s + 6s2 + s + 2
3.积分定理 积分定理
f (t )dt = 1 F(s) + 1 f (−1) (0+ ) L ∫ s s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0

拉氏变换_精品文档

拉氏变换什么是拉氏变换拉氏变换(Laplace Transform)是一种将函数从时间域转换到复频域的数学工具。

它在工程学科和物理学中有广泛的应用,特别是在控制系统分析和信号处理领域。

拉氏变换通过积分运算将一个函数从时间域(t-domain)变换到频域(s-domain),其中s是一个复变量。

拉氏变换的定义给定一个函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0, ∞] e^(-st) f(t) dt这里,s是复变量,e是自然对数的底数,t表示时间。

拉氏变换的性质拉氏变换具有许多有用的性质,以下是一些常见的性质:1.线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b是常数。

2.移位性质:L{f(t - a)} = e^(-as)F(s),其中a是常数。

3.初值定理:lim_[s→∞] sF(s) = f(0),其中f(0)是函数f(t)在t=0时的初值。

4.终值定理:lim_[s→0] sF(s) = lim_[t→∞] f(t),即函数f(t)在t→∞时的极限等于F(s)在s=0时的极限。

这些性质使得拉氏变换成为了解决微分方程问题以及计算复杂电路的有效工具。

拉氏变换的应用1. 信号处理在信号处理领域,拉氏变换用于分析和处理连续时间信号。

通过将信号从时间域转换到频域,可以更好地理解信号的频谱特性,并进行滤波、降噪、调制等处理。

2. 控制系统在控制系统分析中,拉氏变换被广泛用于研究和设计控制系统的性能和稳定性。

通过将控制系统表示为拉氏域的传输函数,可以方便地进行频率响应、稳定性分析和控制器设计。

3. 电路分析在电路分析中,拉氏变换用于求解电路的幅频特性、相频特性和传输函数。

通过将电路中的电压和电流转换到拉氏域,可以更方便地进行复杂电路的分析和计算。

4. 信号传输拉氏变换在信号传输中的应用非常广泛。

信号的拉氏变换可以帮助我们理解信号在传输过程中的衰减、失真和干扰等问题,从而优化信号传输的方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.常用函数的拉氏变换 (1)例1.求阶跃函数f(t)=A· 1(t)的拉氏变换。
1 单位阶跃函数f(t)=1(t)的拉氏变换为 s 。
0
数学知识回顾
A F ( s) Ae dt e s
st 0
st
A s
(2)例2.求单位脉冲函数f(t)=δ(t)的拉氏变换。
F ( s ) (t )e st dt lim

sn
即原函数 f(t)的n重积分的拉氏变换等于其象 n 函数除以 s 。
6
(4)终值定理
lim f ( t ) lim sF ( s ) t s 0
原函数的终值等于其象函数乘以s的初值。 证:由微分定理,有
L[ f (t )] f (t )e st dt sF ( s) f (0)
7
f ( t ) 注:若 t 时f(t)极限 lim 不存在, t 则不能用终值定理。如对正弦函数和余弦 函数就不能应用终值定理。 (5)初值定理: lim f (t ) lim sF ( s )
t 0 s
证明方法同上。只是要将 s 取极限。 (6)位移定理: a.实域中的位移定理,若原函数在时间上延 s 迟 ,则其象函数应乘以 e
st st 0 0


st 0
sF ( s) f (0)
原函数二阶导数的拉氏变换
L[ f (t )] sL[ f (t )] f (0) s[ sF ( s) f (0)] f (0) s 2 F ( s) sf (0) f (0)

L[ f (t )] e
s
F ( s)
8
b.复域中的位移定理,象函数的自变量延迟a, at 原函数应乘以 e 即: at L[e f (t )] F ( s a)
(7)时间比例尺定理 原函数在时间上收缩(或展宽)若干倍, 则象函数及其自变量都增加(或减小)同 样倍数。即:L[ f ( t )] aF ( as) a 证: L[ f ( t )] f ( t )e st dt
原函数之和的拉氏变换等于各原函数的拉 氏变换之和。 (2)微分性质 若 L[ f (t )] F ( s) ,则有 L[ f (t )] sF (s) f (0) f(0)为原函数f(t) 在t=0时的初始值。
3
证:根据拉氏变换的定义有
L[ f (t )] f (t )e dt s f (t )e dt f (t )e
0
0

0

1
e st dt lim
0
1 st e s

0
lim
0
1 1 s 2s2 s (1 e ) lim (1 1 ) 1 s 1! 2! 0 s
1
(3)例3.求指数函数f(t)=
0
0 st 0
等式两边对s趋向于0取极限
st 左边 lim f ( t ) e dt lim f ( t ) e dt s 0 s 0
f (t ) dt f (t ) 0 lim f (t ) f (0) t
0

右边 lim [ sF ( s ) f (0)] lim sF ( s ) f (0) s 0 s 0 lim f (t ) lim sF ( s ) t s 0
依次类推,可以得到原函数n阶导数的拉氏 变换 L[ f n (t )] s n F (s) s n1 f (0) s n2 f (0) f n1 (0)
4
(3)积分性质
若 L[ f (t )] F ( s )
1

式中 f
F ( s) f (0) L[ f (t )dt] s s
1
(0) 为积分 f (t )dt 当t=0时的值。 证:设 h(t ) f (t )dt 则有 h(t ) f (t )h(t )] h(0)
1 1 1 1 L[h(t )] L[h(t )] h(0) L[ f (t )] h(0) s s s s 1 1 1 F ( s ) f ( 0) s s
e
at
的拉氏变换

F ( s) e e dt e
at st 0 0


( a s ) t
1 ( s a ) t 1 dt e sa sa 0
F(s)
w (s 2 w2 )
几个重要的拉氏变换
f(t) δ (t) F(s) 1 f(t) sinwt
a

0
a
令t / a , 则原式 f ( )e
0

sa
ad aF (as)
9
(8)卷积定理 两个原函数的卷积的拉氏变换等于两个象函 数的乘积。 t 即 L[ f (t ) f ( )d ] F ( s) F ( s)
0 1 2 1 2
5
即:
同理,对f(t)的二重积分的拉氏变换为
1 1 L[ f (t ) dt ] 2 F ( s ) 2 f s s
2 ( 1)
F ( s) f (0) L[ f (t )dt] s s
1
1 (0) f s
( 2 )
(0)
若原函数f(t)及其各重积分的初始值都等于0 则有 L[ f (t )dt n ] 1 F ( s)
1(t)
t
1/s
coswt
2
s
(s 2 w2 )
1s
at
e sin wt
e cos wt
at
at
e
1/(s+a)
w ( s a) 2 w 2 sa ( s a) 2 w 2
2

3.拉氏变换的基本性质 (1)线性性质
L[af1 (t ) bf 2 (t )] aL[ f1 (t )] bL[ f 2 (t )]
相关文档
最新文档